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Abstract
Alzheimer’s disease is a neurodegenerative disorder accounting for more than 50% of

cases of dementia. Diagnosis of Alzheimer’s disease relies on cognitive tests and analysis

of amyloid beta, protein tau, and hyperphosphorylated tau in cerebrospinal fluid. Although

these markers provide relatively high sensitivity and specificity for early disease detection,

they are not suitable for monitor of disease progression. In the present study, we used label-

free shotgun mass spectrometry to analyse the cerebrospinal fluid proteome of Alzheimer’s

disease patients and non-demented controls to identify potential biomarkers for Alzheimer’s

disease. We processed the data using five programs (DecyderMS, Maxquant, OpenMS,

PEAKS, and Sieve) and compared their results by means of reproducibility and peptide

identification, including three different normalization methods. After depletion of high abun-

dant proteins we found that Alzheimer’s disease patients had lower fraction of low-abun-

dance proteins in cerebrospinal fluid compared to healthy controls (p<0.05). Consequently,

global normalization was found to be less accurate compared to using spiked-in chicken

ovalbumin for normalization. In addition, we determined that Sieve and OpenMS resulted in

the highest reproducibility and PEAKS was the programs with the highest identification per-

formance. Finally, we successfully verified significantly lower levels (p<0.05) of eight pro-

teins (A2GL, APOM, C1QB, C1QC, C1S, FBLN3, PTPRZ, and SEZ6) in Alzheimer’s

disease compared to controls using an antibody-based detection method. These proteins

are involved in different biological roles spanning from cell adhesion and migration, to regu-

lation of the synapse and the immune system.

Introduction
Alzheimer’s disease (AD) is an age-dependent neurodegenerative disorder and the most com-
mon form of dementia in the elderly population, accounting for more than 50% of all dementia
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cases [1]. Epidemiological investigations have estimated that the numbers of AD patients will
double every 20 years to more than 66 million worldwide in 2030 and 100 million by 2050 [2, 3].

Alzheimer’s disease is associated with multiple molecular characteristics including extracel-
lular beta-amyloid (Aβ) plaque deposition and accumulation of intracellular neurofibrillary
tangles composed mainly of hyperphosphorylated tau protein. These pathological findings are
believed to mediate the extensive loss of neurons and synapses as well as the inflammatory pro-
cesses [4]. The diagnosis of AD is based on clinical examinations that can be complemented by
analysis of Aβ42, total tau (t-tau), and hyperphosphorylated tau (p-tau) level in cerebrospinal
fluid (CSF) (reviewed in [5, 6]). Despite having relatively high sensitivity and specificity, these
biomarkers have limited value for monitoring disease progression [6–8].

Cerebrospinal fluid is a proximal fluid in direct contact with the brain interstitial fluid that
potentially reflects biochemical changes related to central nervous system (CNS), making it a
promising source of biomarkers in neurological disorders such as AD [9]. CSF protein concen-
tration can vary between 15 to 60 mg/dl and the protein level can be affected by age [10]. Over
the last decade, there has been a growing interest in applying proteomics to identify disease-
specific biomarkers to increase our understanding of underlying pathogenesis of AD. Most
CSF biomarker discovery studies have been performed using a classic proteomics platform
based on two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry
(MS) or tandem mass spectrometry (MS/MS) [11–13]. Although 2-DE provides high resolu-
tion protein separation, it has limitations regarding detection of low abundant proteins [14].
As an alternative, gel-free shotgun MS in conjunction with quantitative proteomic technique,
e.g. stable isotope labeling [15, 16] or label-free methods [17–20], have recently been used for
identification and quantification of proteins involved in the pathogenesis of AD. Furthermore,
combining gel-free shotgun MS approaches with protein depletion of high abundant proteins
enables detection and quantification of low abundant proteins [21].

To analyze data sets generated by mass spectrometry-based methods, specialized software
programs are commonly required. Commercial solutions are widely popular, mostly because of
providing user-friendly environments whereas, open source programs offer more flexibility in
terms of possibilities to modify existing algorithms. Careful selection of proper programs for
data processing is crucial, since different programs have been shown to produce different and
in some cases contradictory results (for reviews on this topic, see [22]and [23]). This inconsis-
tency has been traced back to the application of different algorithms and improper choice of
parameters (by the users) due to complex interface or lack of proper documentation (for more
detailed description of different factors, see [24]). In addition to selection of software for initial
data analysis, different methods of downstream processing and analysis such as normalization
and statistical testing will influence the results. The basic assumption for many studies includ-
ing CSF is that the protein concentrations in patients and healthy controls are similar; an
assumption that is also reflected in global normalization methods used [15, 25, 26], however if
this assumption is not correct it may have an negative impact on the final result.

The aim of this study was to detect novel protein markers that can be used to distinguish
between AD and healthy elderly controls, to evaluate the consistency of software selection and
impact of normalization methods used on result. We have employed a novel “Dot-it-Spot-it1”

total protein assay to measure protein concentrations of small volumes of CSF from ten patients
diagnosed with AD and ten non-demented subjects. The label free mass spectrometry data was
processed using five different programs to evaluate quantification reproducibility and peptide
identification performance. To evaluate the assumptions of normalization on the final results, we
applied three different normalization algorithms and compared the results to that of using an
affinity proteomics approach utilizing antibody suspension bead arrays of selected proteins.
Finally, eight proteins were validated as different in expression between AD and controls.
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Materials and Methods

Samples
This study was based on proteomic analysis of CSF from ten AD patients and ten non-
demented controls. Samples were collected according to the recommended consensus protocol
for CSF collection and biobanking [27] and obtained from the Uppsala Berzelii Technology
Centre for Neurodiagnostics biobank at the Uppsala University Hospital. All patients under-
went brain imaging, routine laboratory testing as well as neurological and cognitive examina-
tions. The average Aβ42, tau, and p-tau in the AD patients were 420±117, 652±376, 132±112
(mean±SD ng/l), respectively. The control subjects had normal cognition according to their
MMSE performance. The Regional Ethical Review Board in Uppsala, Sweden had approved
the collection of CSF samples and the conducted research (Dnr 48–2005). The participants
provided their written informed consent for research. The main clinical features of the patients
are summarized in Table 1.

Sample collection and handling
CSF was collected at room temperature by aspiration lumbar puncture into polypropylene
tubes. After collection, the samples were directly centrifuged at 1300 g for 10 minutes at +4°C
to pellet any cell debris. After centrifugation, all CSF samples were visually inspected for blood
contamination, frozen and stored at -80°C.

Chemicals and reagents
Acetonitrile (ACN), methanol (MeOH), acetic acid (HAc), formic acid (FA), ammonium
bicarbonate (NH4HCO3) were obtained fromMerck (Darmstadt, Germany). Acetone,

Table 1. Demographic information of patients and controls.

Patient Case Gender Age, years Duration of disease (years) Age of onset (years) Aß42 ng/l tau ng/l p-tau ng/l

1 AD Male 78 2 76 350 54 420

2 AD Male 81 2 79 310 1380 227

3 AD Male 78 2 75 470 340 76

4 AD Male 88 3 85 290 420 61

5 AD Male 75 3 72 420 1100 128

6 AD Male 76 2 74 411 732 93

7 AD Male 84 3 81 700 555 76

8 AD Male 75 3 72 459 697 80

9 AD Male 77 16 60 347 540 83

10 AD Male 82 1 80 444 703 78

11 Control Male 89 - - - - -

12 Control Male 89 - - - - -

13 Control Male 88 - - - - -

14 Control Male 87 - - - - -

15 Control Male 88 - - - - -

16 Control Male 89 - - - - -

17 Control Male 88 - - - - -

18 Control Male 88 - - - - -

19 Control Male 88 - - - - -

20 Control Male 88 - - - - -

doi:10.1371/journal.pone.0150672.t001
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ethylenediaminetetraacetic acid tetrasodium salt dihydrate (EDTA), protease inhibitor cock-
tail, phosphate buffered saline (PBS), trifluoroacetic acid (TFA), triethyl ammonium bicarbon-
ate (TEAB), sodium citratemonobasic, sodium dodecyl sulphate (SDS), and chicken
ovalbumin were purchased from Sigma Aldrich (St. Louis, MO, USA). For tryptic digestion,
iodoacetamide (IAA), urea and dithiothreitol (DTT) were obtained from Sigma Aldrich and
trypsin/Lys-C mixture (mass spectrometry grade; Promega, Mannheim, Germany). Ultrapure
water was prepared by Milli-Q water purification system (Millipore, Bedford, MA, USA).

Multiaffinity immunodepletion
To enrich the low abundant proteins prior to nanoLC-MS/MS analysis, each CSF sample was
depleted of the seven highly abundant proteins (albumin, IgG, alpha-1-antitrypsin, IgA, hapto-
globin, transferrin, and fibrinogen) using a human Multiple Affinity Removal System (MARS
Hu-7) 4.6 mm×50 mm LC column (Agilent Technologies, Palo Alto, CA, USA) connected to
ÄKTA Explorer 100 HPLC system (Pharmacia Biotech, CA, USA) in the order according to S1
Table. Depletion was performed according to the instructions provided by manufacturer with
the exception that Buffer A in the supplied kit was replaced with PBS buffer (10 mM
NaH2PO4/Na2HPO4, 3 mM KCl and 137 mMNaCl, pH 7.4) and Buffer B was replaced with
50 mM citrate buffer, pH 2.3.

Briefly, an aliquot of 500 μL of each CSF sample was dried using an ISS110 Speedvac system
ISS110 (Thermo Scientific, Waltham, MA, USA). The dried samples were reconstituted in
100 μL of Buffer A and injected at 0.25 mL/min into the column equilibrated at room tempera-
ture with Buffer A. Fractions of 1 mL were collected and the depleted CSF was obtained in frac-
tions 3 and 4, which were pooled together. After freezing 10 μL for protein estimation the
remaining volume of the 2 mL pool was concentrated down under vacuum prior to protein
digestion and MS analysis. After 5 mL washing with Buffer A, the eluent was changed to the
pH 2.3 buffer and the flow rate was increased to 1 mL/min. The captured CSF proteins were
released from the column and collected in fractions 10–12 and pooled. The pools were adjusted
to neutral pH with 1 M NaOH to a final volume of 4.2 mL, and used only for protein estima-
tion. Afterwards, the column was washed with Buffer A before next sample was injected.

Protein quantification
Total protein concentration of the two pools from each CSF sample was estimated by an ultra-
sensitive total protein assay, the Dot-it-Spot-it1 protein assay (http://dot-it-spot-it.com;
Maplestone AB, Knivsta, Sweden) according to the instructions provided. Aliquots from the
pools were diluted 1/10-1/40 in 0.75% SDS, 10 mM TRIS buffer pH 7.5, 0.15 M NaCl and
0.02% NaN3. Human albumin (Sigma) was used for calibration in the range 0.32–10 ug/mL.
The total protein content of the crude CSF samples was measured after 200-times dilution of
the sample. The diluted samples were dispensed in 1 μL aliquots on the detection sheets in 3
replicates and rapidly dried. The sheets were then placed in a large well with 1 mL of detection
solution and incubated for 4 min, followed by 4 min incubation in 1 mL of washing solution.
The absorbent sink was removed from the sheets. The sheets were then dried and mounted on
the scanning template, which was detected by an Epson Expression 1600 Pro scanner (Epson,
Long Beach, California, USA). The blackness intensity was quantified in each dedicated spot
on the image with Image J (http://rsbweb.nih.gov/ij/). Protein concentrations were estimated
by comparing the sample results with the outcome of the human albumin calibration curve
using Rodbard curve fitting in Image J. The percentage of protein in the depleted fraction was
calculated as the %-ratio between proteins in the depleted fraction/proteins in (depleted
+ released fraction).
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Protein digestion
The entire amount of protein in the depleted CSF sample was digested with trypsin. Briefly, the
proteins were re-dissolved in 50 μL of digestion buffer (6 M urea, 100 mM TEAB). A volume of
10 μL of chicken ovalbumin solution (0.05 μg/μL) was added to each CSF sample. A volume of
15 μL of 45 mM aqueous DTT was added to all samples and the mixtures were incubated at
37°C for 2 hours to reduce the disulfide bridges. The samples were cooled to room temperature
and 15 μL of 100 mM aqueous IAA was added before incubating the mixtures for an additional
40 min at room temperature in darkness to carabamidomethylate the cysteines. Afterwards, a
volume of 50 μL of 100 mM TEAB was added to all the samples. Finally, trypsin/Lys-C mixture
dissolved in 100 mM TEAB was added to the samples, yielding a final trypsin/protein concen-
tration of 5% (w/w). The tryptic digestion was performed at 37°C overnight. Prior to mass
spectrometry analysis, the peptides were purified and desalted on Isolute C18 solid phase
extraction (SPE) columns (1 mL, 50 mg capacity, Biotage, Uppsala, Sweden) using the follow-
ing schedule: The column was first wetted in 3×500 μL of 100% ACN and equilibrated with
3×500 μL 1% HAc. The tryptic peptides were adsorbed to the media using five repeated cycles
of loading. The column was washed using 3×1 mL of 1% HAc and finally the peptides were
eluted in 300 μL 50% ACN, 1% HAc. After desalting, the eluate was vacuum centrifuged to dry-
ness and re-dissolved in 60 μL 0.1% trifluoroacetic acid prior to nano-LC-MS/MS.

NanoLC-MS/MS analysis
The nanoLC-MS/MS experiments were performed using a 7 T hybrid LTQ FT mass spectrom-
eter (ThermoFisher Scientific, Bremen, Germany) fitted with a nano-electrospray ionization
(ESI) ion source. On-line nanoLC separations were performed using an Agilent 1100 nanoflow
system (Agilent Technologies, Waldbronn, Germany). Each sample was analyzed by RP-
nanoLC-MS/MS in duplicates (technical replicates) in the order according to S2 Table. The pep-
tide separations were performed on in-house packed 15-cm fused silica emitters (75-μm inner
diameter, 375-μm outer diameter). The emitters were packed with a methanol slurry of reversed-
phase, fully end-capped Reprosil-Pur C18-AQ 3 μm resin (Dr. Maisch GmbH, Ammerbuch-
Entringen, Germany) using a PC77 pressure injection cell (Next Advance, Averill Park, NY,
USA). The injection volumes were 5 μL and corresponded to 2 μg of tryptic peptides. The separa-
tions were performed at a flow of 200 nL/min with mobile phases A (water with 0.5% acetic acid)
and B (89.5% acetonitrile, 10% water, and 0.5% acetic acid). A 100-min gradient from 2% B to
50% B followed by a washing step with 98% B for 5 min was used. Mass spectrometric analyses
were performed using unattended data-dependent acquisition mode, in which the mass spec-
trometer automatically switches between acquiring a high resolution survey mass spectrum in
the FTMS (resolving power 50000 FWHM) and consecutive low-resolution, collision-induced
dissociation fragmentation of up to five of the most abundant ions in the ion trap.

Antibody suspension bead arrays
A bead-based microarray platform was used as an orthogonal method for analysis of proteins
selected based on the mass spectrometry results. All the 20 samples and a technical triplicate
represented by a sample pool were processed and analyzed as previously described [28]. In
brief, crude CSF was diluted 1:2 and the protein content was labeled with biotin. In parallel,
Human Protein Atlas antibodies (http://www.proteinatlas.org) generated towards the selected
proteins were immobilized onto color-coded magnetic beads (Luminex corp.), each antibody
assigned to a specific bead ID, and later combined into an array in suspension. The labeled
samples were then further diluted 1:8 and heat treated at 56°C for 30 min followed by cooling
to RT for 15 min before overnight incubation with the array. For readout, unbound proteins
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were washed off using a liquid handler (Biotek EL406) and detection mediated through a strep-
tavidin-conjugated fluorophore (Invitrogen). At least 50 beads per identity were measured in a
FM3D instrument (Luminex corp.) and the median fluorescence intensity (MFI) per bead and
sample used for further analysis.

Data analysis
Statistical analysis on CSF protein amount. The percentage of protein in the depleted

CSF fraction was calculated as the ratio between protein amount in depleted fraction divided
by the sum of amounts in both fractions, multiplied by hundred. A two-sample t-test was per-
formed on percentage and amount of protein in depleted fraction as well as on the sum of total
protein amount. The basic assumption of normally distributed residuals was not violated.

Mass spectrometry identification and quantification. The following five mass spectrom-
etry data processing programs were used to perform identification and quantification: Sieve v
2.1 (Thermo), DecyderMS v2.0 (GE healthcare), Maxquant [29], PEAKS (Bioinformatics Solu-
tions Inc.) and OpenMS [30]. The raw data was imported into the programs and retention
time was cropped to the range from 1500 to 5400 seconds. The quantification was performed
using the following parameters (default settings were used for unmentioned parameters): Sieve:
low charge: 1, high charge: 4, retention time alignment window: 2 min, maximum number of
frames: 7000; DecyderMS: ion peaks were automatically detected using a typical peak width of
0.4 min, signal to background threshold of 3, and uniform background subtraction. The result-
ing intensity maps were aligned using DeCyder MS 2.0, allowing a time tolerance of 2 min and
m/z tolerance of 0.01 Da; Maxquant: Type: Standard, Multiplicity: 1, Match time: 1 min, align-
ment time window: 2 min; PEAKS: Retention time shift tolerance: 2 min, Mass error tolerance:
10 ppm; For OpenMS, we used an automated label free pipeline introduced by [31] using the
following parameters: FeatureFinderCentroided: Mz tolerance: 0.07 Da, min spectra length: 6,
max missing peaks: 3, slope bound of mass trace: 1, low charge: 1, high charge: 4, isotope Mz
tolerance: 0.05; IDMapper: RT tolerance: 40 seconds, Mz tolerance: 10 ppm; MapAlignerIden-
tification: Mz: 10 ppm, RT: 120 seconds; FeatureLinkerUnlabeledQT: 10 ppm, RT: 60 seconds.
The following software search engines were used to perform the identification: Mascot for
Sieve and DecyderMS; Andromeda [32] for Maxquant; combination of SPIDER [33], PEAKS
[34], and PEAKS DB [35] for PEAKS; and a combination of Xtandem [36] and omssa [37] for
openMS (combined using “ConsensusID” [38] tool in openMS) using the default settings. For
protein identification the UniProt/Swiss-Pro human database (release 2014_03, containing
20272 entries) with ovalbumin chicken protein sequence added to data database and combined
with a decoy database (the sequences were reversed) was used; for identifying peptides the fol-
lowing settings were used for all the search engines: Enzyme: Trypsin, missed cleavages: 2 pre-
cursor mass tolerance: 10 ppm, fragment mass tolerance: 0.7 Da, minimum charge: 2,
maximum charge: 3, fixed modifications: Carbamidomethyl (C), variable modifications: Oxi-
dation (M) and Deamidated (N and Q). False discovery rate (FDR) was calculated based on the
target/decoy database and the peptides with FDR lower than 0.05 were chosen as true positive
hits (considering the risk of having one false positive in 20 observation). Peptides with FDR
lower than 0.05 and log2 transformed data was used in all the subsequent analysis.

Software comparison. The five data analysis tools were compared in terms of number of
identified and mapped peptides (peptides that were assigned to quantified features in MS
intensity map), number of identified proteins, reproducibility between technical replicates
(samples were analyzed in duplicate), unbiased separation of AD and healthy control using
principal component analysis (PCA), and peptide level correlation to levels of the targeted pro-
teins using antibody-based profiling.
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To compare the number of identified peptides and proteins between the programs, only the
peptides mapped to quantified features, with FDR lower than 0.05, and found in more than 90
percent of the replicates were included.

Reproducibility was measured as the coefficient of determination (R2) and variance ratio
between the technical replicates calculated based on the peptides (non-normalized data) found
in all the biological and technical replicates (full coverage) and across all software tested. The
variance ratio for each sample (with two technical replicates, t1 and t2) was given by:

variance ratio ¼

P
ðXt1�Xt1 Þ2
Nt1�1P
ðXt2�Xt2 Þ2
Nt2�1

Where Xt1 and Xt2 are the vectors of peptide intensities, Xt1 and Xt2 are the mean of peptide
intensities, and Nt1 and Nt2 are the number of peptides quantified in the first and the second
technical replicate, respectively. A variance ratio close to one was regarded as a low ratio. To
evaluate technical reproducibility and measure distance between AD and control samples, the
peptide intensities were transformed using PCA. Mahalanobis distance between the technical
replicates as well as between AD and control samples was calculated based on the first two
components of the PCA result. Hypothesis testing was performed using Mahalanobis distance
and p-values were derived using F distribution, showing cluster similarity between the techni-
cal replicates as well as between AD and control samples (A higher p-value indicates more clus-
ter similarity) [39].

Disease related proteins. To find proteins present with altered levels in AD patients com-
pared to healthy controls, the data was first analyzed using reference normalization [40]. The
correlation between the technical replicates was estimated using “duplicateCorrelation” [41]
and the “lmFit” function applied to fit multiple linear models using the “limma” [42] package
in R [43]. Finally, the “ebayes” function [44] was used to compute moderated t-statistics for
comparison of AD versus control (assuming normal distribution of intensities). Using a liberal
approach, peptides with p-value lower than 0.05 and with at least three observations (in 10
ADs and 10 controls) were selected for calculating proteins p-value and fold change (multiple
isoforms of a proteins were regarded as different proteins). The significantly altered peptides
(p-value<0.05) were manually curated based on the quality of quantified features, for OpenMS
a specific cutoff of 0.2 for the feature quality score was used as quality cutoff and for remaining
software all quantified features were visually inspected and incorrectly quantified or linked fea-
tures were removed. For estimation of protein expression, the protein p-value was calculated as
median of peptide p-values (as well as fisher's combined probability test [45]) and the protein
fold change was calculated as median of peptide fold changes.

Antibody suspension bead arrays. The Wilcoxon rank sum test was applied using raw
data for group wise comparisons based on the antibody suspension bead array data and p-val-
ues lower than 0.05 were regarded as statistically significant. The log2 fold change was calcu-
lated from the ratio of medians in the AD group over controls and used for comparisons to the
mass spectrometry data. For proteins with multiple antibodies, the one with the lowest p-value
was selected for the comparison.

Correlation between mass spectrometry and antibody-based profiling. In order to cal-
culate the correlation between antibody-based profiling and MS the average of technical repli-
cates was used. Pearson correlation coefficient between MS and antibody-based profiling was
calculated between all the peptides (allowing no missing values) of a protein in MS and all the
antibodies used for the corresponding protein in the antibody-based profiling method. The
correlation was calculated for the raw and the three types of normalized MS data:

CSF Proteome in Alzheimer's Disease

PLOS ONE | DOI:10.1371/journal.pone.0150672 March 7, 2016 7 / 25



Median normalization: Intensity of the ith peptides in the jth sample (pij) was subtracted by
the median intensities of the all the peptides in the corresponding sample:

Normalized ðpijÞ ¼ pij � simedian

Where simedian
is the median of jth sample.

Reference normalization: The normalized value of the ith peptide in the jth sample (pij) was
calculated as:

Normalized ðpijÞ ¼ pij � ðsj � sref Þmedian

Where (sj − sref)median is the median of differences between sample sj and a reference sample
(sref) which was selected as the sample with the lowest number of missing features.

Spiked-in normalization [40]: peptides of chicken ovalbumin protein (which was spiked in
the samples as an internal standard) were used to compute normalization factor for each sam-
ple separately for each of the five programs. The chicken ovalbumin peptides were first mean-
centered across the samples:

Normalized ðcpijÞ ¼ cpij � cpimean

Where cpij is intensity of i
th chicken ovalbumin peptide in the jth sample and cpimean

is mean

of the ith peptide across all the samples. The peptide intensities in each sample were then sub-
tracted by mean of the chicken ovalbumin intensities in the corresponding sample:

Normalized ðpijÞ ¼ pij � cpjmean

Where pij is the intensity of i
th peptide in the jth sample and cpjmean

is mean of chicken oval-

bumin peptides in the jth sample.
For each antibody, the highest correlating peptide in mass spectrometry was selected to

examine the effect of normalization on the correlations.

Result

CSF protein amount
The total amount of protein in the two pools obtained after the MARS Hu-7 column affinity
purification of 0.5 mL CSF was 187±61 μg (mean±SD) for nine non-demented controls and
178±81 μg for ten AD patients, showing no significant difference. The result for one of the con-
trol samples was omitted, as the value of 587 μg was an outlier compared to the range 90–
330 μg for the other 19 samples. Estimation of protein amount in crude CSF verified that this
sample was aberrantly high compared to the other samples (we suspected that this sample was
contaminated with blood and therefore, it was omitted only for statistical analysis performed
on the protein amount but it was included in MS and antibody-based analysis).

The protein amount in the depleted CSF fraction (the flow-through fraction) was 46.2±
17 μg and 30.8±14 μg for the control (n = 9) and AD patient (n = 10) group, respectively, show-
ing a statistically significant difference (p-value = 0.046). Calculation of the fraction between
unbound and bound proteins showed that 24.8±5.5% and 17.5±2.4% was obtained in the
depleted CSF fraction for the control and AD patient groups, respectively. The difference
between the groups was statistically significant (p-value = 0.003). No significant difference was
found for the amount of proteins captured and released by the column (Fig 1).
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Software comparisons
Peptide identification. The highest number of unique peptides was identified and

mapped using PEAKS (Fig 2A). The number of identified and mapped peptides in PEAKS was
almost twice as many compared to the other programs. Similar identification performance was
observed using Maxquant and OpenMS. The lowest number of identified peptides was found
using Sieve and DecyderMS. The highest number of proteins was identified using OpenMS,
but PEAKS identified the highest number of proteins characterized with more than one pep-
tide. The lowest number of proteins was mapped and identified using Sieve and DecyderMS.
Only 173 proteins out of 894 proteins was identified and mapped across all five programs
whereof the majority of the proteins were identified and mapped by only one program (Fig 2B
and 2C).

Reproducibility. The highest correlation between the technical replicates was found using
Sieve (median R2 = 0.981). OpenMS (median R2 = 0.971), PEAKS (median R2 = 0.971), and
DecyderMS (median R2 = 0.971) performed the second best. Maxquant (median R2 = 0.911)
showed substantially lower correlations between the technical replicates compared to other
programs. The variance ratio comparison also showed that Sieve (median ratio = 1.001) had
the lowest ratio of variation between the technical replicates, followed by OpenMS (median
ratio = 1.003), DecyderMS (median ratio = 1.004), PEAKS (median ratio = 1.033), and Max-
quant (median ratio = 0.976) (S1A and S1B Fig).

In general, we observed high reproducibility between replicates as indicated by clear cluster-
ing of technical replicates using PCA (S2 Fig). However, in terms of Mahalanobis distance
between the first two component of PCA, the highest reproducibility (higher p-value) was
found using PEAKS and the lowest reproducibility was found using Maxquant (Fig 3).

Fig 1. Protein concentration in AD and control samples before and after hu-7 depletion. (A) Total amount of protein in CSF in AD and control samples
(a control sample showed aberrantly high protein amount and was omitted in further protein amount calculation). (B) Percentage of proteins left after hu-7
depletion showed a statistical significant difference (p = 0.003) between the two groups. AD: Alzheimer’s disease; C: healthy control.

doi:10.1371/journal.pone.0150672.g001
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Furthermore, assuming a difference between AD and controls, OpenMS and Sieve showed
slightly better separation between AD and controls compared to the other programs.

Disease-associated proteins. Using the combined results of all the five programs and after
manual curation, we found 162 statistically significantly altered proteins (p-value<0.05)
between Alzheimer’s disease and non-demented controls (S3 Table) where 31 proteins was
identified and found to be statistically significantly differentially altered by all the five
programs.

Effect of normalization on quantification. In order to examine the effect of normaliza-
tion methods on the number of statistically significantly altered proteins between AD and
healthy controls, we compared the number of proteins with positive and negative fold changes
in each program after applying each normalization method. Using the median or reference
normalization, nearly the same proportion of the proteins with increased and decreased level
was statistically significantly altered across all the programs. However, when the normalization
was performed locally (spiked in normalization), the number of statistically significantly
altered proteins with increased level was decreased and the number of proteins with decreased
level was increased in all the programs (Fig 4). The overlap of significantly altered proteins
between the programs was low using non normalized data (S3 Fig). Higher overlap was found
using spiked-in and median normalization (S3B and S3C Fig) compared to reference normali-
zation (S3D Fig).

Verification using antibody-based profiling. At the time of analysis and to the best of
our knowledge, 70 out of the 162 proteins have previously not been reported to be statistically
significantly altered in levels between AD and healthy controls. Based on antibody availability
in the Human Protein Atlas, 52 proteins (represented by in total 112 antibodies) were selected
for analysis using the suspension bead array technology. After initial data quality control, one
of the AD samples was excluded from further analysis.

Fig 2. Five data processing programs identification comparison. (A) Comparison of identification performance between five mass spectrometry data
processing tools based on number of identified peptides, proteins, and proteins identified with more than one peptide. (B) The number of identified and
mapped proteins across the different programs. (C) Overlap of protein identification between different programs.

doi:10.1371/journal.pone.0150672.g002

Fig 3. Technical replicates reproducibility comparison. Five programs were ranked based on the
distance between technical replicates as well as between AD and control samples. The p-values were
calculated based on Mahalanobis distance computed on the first two components of PCA (for raw data in
each program). Lower p-value reflects less similarity between the groups (AD and controls as well as
between technical replicates). The highest distance between AD and controls was found using OpenMS and
the lowest distance between technical replicates was found using PEAKS. Rep: replicate; AD: Alzheimer’s
disease; C: healthy controls.

doi:10.1371/journal.pone.0150672.g003
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The antibody-based analysis revealed 11 of the 52 proteins (S4 Table) as statistically signifi-
cantly different (p-value<0.05) between AD and healthy controls in two repeated experiments
with a median technical variation of 5%. For the majority of the proteins we found decreased
level in AD samples compared to healthy controls. Fold change comparison of mass spectrom-
etry (reference normalized data) and antibody-based profiling measurements revealed incon-
sistencies between the two techniques in the direction of the fold changes of 30 out of 52
targeted proteins (Fig 5A). However, when the data was normalized using spiked-in normaliza-
tion method and the same peptides (as used for reference normalization) were used to compute
the fold changes and p-values, we found that the fold changes for a majority of the proteins
with inconsistencies were reduced to 20 proteins (Fig 5B). Furthermore, with the spiked-in
normalization the number of statistically significant proteins was decreased from 52 to 17 pro-
teins. Overall, with this method there were consistent fold changes between mass spectrometry
and antibody-based profiling for 22 out of 24 proteins (Fig 5C). Taking both MS and antibody-
based profiling into account, eight proteins were statistically significant (Table 2). Among the

Fig 4. Comparison of proteins with significantly changing levels between AD and healthy controls.Comparison of the number of significantly altered
proteins identified by different normalization methods and five mass spectrometry data processing tools.

doi:10.1371/journal.pone.0150672.g004
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Fig 5. Comparison of protein fold changes derived from the antibody-based analysis andmass spectrometry. (A) Scatter plot of protein fold changes
between mass spectrometry (reference normalization) and antibody-based analysis. The protein p-values and fold changes were calucluated using
statistically significantly differentially altered peptides. (B) Scatter plot of protein fold changes between mass spectrometry (spiked-in normalization) and
antibody-based profiling. After normalization with spiked-in method, the protein p-values and fold changes were computed using the same peptides as used
in the panel A (C) Scatter plot of protein fold changes between mass spectrometry (spiked-in normalization) and a where the protein p-values and fold
changes were computed using statistically significantly differentially altered peptides (proteins are shown based on Uniprot ID). MS: Mass spectrometry;
ABA: antibody-based analysis.

doi:10.1371/journal.pone.0150672.g005
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eight proteins, four proteins were found to be significantly differentially altered by at least two
programs and the remaining proteins were only found by one program (Table 2). These pro-
teins included leucine-rich α2 glycoprotein (LRG), apolipoprotein M (ApoM), complement
C1q subcomponent (subunit B, C) (C1QB and C1QC), complement C1S (C1S), EGF-contain-
ing fibulin-like extracellular matrix protein 1 (fibulin-3, FIBL3), receptor-type tyrosine-protein
phosphatase zeta (PTPRZ) and seizure protein 6 homolog (SEZ6), all displaying lower levels in
AD compared to controls (Fig 6A–6H). Additionally, when the level of eight proteins in anti-
body-based analysis was transformed using PCA, we observed that the control sample with the
abnormal concentration (labeled as C4) was clearly deviating from the other samples as well as
the AD sample (AD9) with the longer duration of the disease (Fig 6I). Moreover, nearly the
same pattern of deviation was found in the clustering of significantly differentially abundant
peptides/peaks in the MS data (Fig 6J).

Correlation to antibody-based profiling. Out of 52 targeted proteins, 27 proteins were
identified and quantified by all the programs (S5 Table, bold and underlined entities represent
the overlapping proteins across the programs). Comparing correlation distribution of the over-
lapping proteins from the three normalization methods revealed that performing local normal-
ization (spiked-in) resulted in a considerable improvement of correlations between the mass
spectrometry and antibody-based profiling measurements compared to raw data and global
normalization methods (median correlation for each normalization: spiked-in: 0.826, raw data:
0.794, reference: 0.542, median: 0.553) irrespective of the software used for quantification (Fig
7; an example for correlation improvement is illustrated in S4 Fig). Furthermore, quantification
using raw data led to higher correlations compared to the global normalization methods

Table 2. Proteins selected from spiked-in normalized data that were verified in the antibody-based analysis as novel disease-associated markers
for Alzheimer’s disease.

Antibody based analysis Mass spectrometry

Uniprot ID Antibody
used for
statistical
analysis

p-
value

Fold
change

Median
p-value

Fisher’s
p-value

Median
fold
change

Highest correlated statistically
significantly differentially expressed
peptide to the significantly differentially
expressed antibody

Correlation of
the peptide to
the statistically
significantly
differentially
expressed
antibody

Statistically
significantly
differentially
altered in
program

A2GL_HUMAN HPA001888 0.004 -0.348 0.0001 <0.0001 -1.579 LQELHLSSNGLESLSPEFLRPVPQLR 0.972 DecyderMS—
Maxquant—
OpenMS—
PEAKS—Sieve

APOM_HUMAN HPA051006 0.010 -0.438 0.021 0.021 -1.577 SLTSC(Carbamidomethyl)LDSK 0.733 OpenMS

C1QB_HUMAN HPA052116 0.037 -0.395 0.027 <0.0001 -0.800 LEQGENVFLQATDK 0.912 DecyderMS—
Maxquant—
OpenMS—
PEAKS—Sieve

C1QC_HUMAN HPA001471 0.017 -0.174 0.030 0.001 -0.834 VPGLYYFVYHASHTAN(Deamidated)
LCVLLYR

0.810 DecyderMS—
Maxquant—
OpenMS—
PEAKS—Sieve

C1S_HUMAN HPA018852 0.022 -0.342 0.027 <0.0001 -0.637 VEDPESTLFGSVIR 0.938 DecyderMS—
OpenMS—
PEAKS—Sieve

FBLN3_HUMAN HPA062231 0.008 -0.150 0.044 0.044 -1.353 EHIVDLEMLTVSSIGTFR 0.857 Maxquant

PTPRZ_HUMAN HPA015103 0.018 -0.143 0.049 0.049 -0.721 AIIDGVESVSR 0.639 DecyderMS

SEZ6_HUMAN HPA011777 0.011 -0.215 0.004 0.004 -3.015 RPAYGDVTVTSLHPGGSAR 0.890 DecyderMS

The presented peptide sequences represent peptides with the highest correlation to the corresponding antibody. The mass spectrometry statistical

information was found using the program shown in bold text in the corresponding column.

doi:10.1371/journal.pone.0150672.t002
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(reference and median normalization). The reference and median normalization methods
resulted in similar correlations between mass spectrometry and antibody-based profiling mea-
surements. Moreover, we observed similar correlation patterns in all the programs (median
correlation using spiked-in normalization: PEAKS: 0.870, OpenMS: 0.836, Maxquant: 0.820,
Sieve: 0.802, DecyderMS: 0.793). The same overall pattern of correlation was found when the
programs were compared using all the proteins (S5 Fig).

Fig 6. Quantitative analysis of proteins from antibody-based technique. (A)-(H) Relative intensities of the eight disease-associated proteins. (I) Principal
component analysis of the eight proteins (J) clustering of the sample in MS analysis (only openMS is shown) where C4 and AD9 samples are deviating from
the other samples. LRG = Leucine-rich alpha-2-glycoprotein; APOM = Apolipoprotein M; C1QB = Complement C1q subcomponent subunit B;
C1QC = Complement C1q subcomponent subunit C; C1S = Complement C1s subcomponent; FBLN3 = EGF-containing fibulin-like extracellular matrix
protein 1; PTPRZ = Receptor-type tyrosine-protein phosphatase zeta; SEZ6 = Seizure protein 6 homolog.

doi:10.1371/journal.pone.0150672.g006

Fig 7. Distribution of all the highest correlated peptide-antibody pairs betweenmass spectrometry and antibody based analysis. The results
obtained for the five programs and three normalization methods used were correlated to the antibody-based analysis.

doi:10.1371/journal.pone.0150672.g007
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Discussion

Lower fraction of low-abundance proteins in Alzheimer’s disease
After depleting of the seven most abundant proteins from the CSF samples, the protein amount
and the fraction of proteins in the unbound depleted fraction in the subject with AD was statis-
tically significantly lower compared to the healthy elderly controls. The lower protein amount
might reflect loss of several proteins due to the depletion procedures [46] but since the samples
were randomized before depletion the possibility of protein loss only in the AD group is low,
but it can not be ruled out. The difference in protein amount might also represent the age dif-
ference between the study groups [10], where the elderly healthy controls are on average nine
years older compared to AD. However, previous studies are suggesting novel CSF AD biomark-
ers with lower levels in AD CSF compared to controls [47–51] that might reflect more general
differences in protein amount between AD and non-AD.

Effects of initial data analysis on peptide identification and reproducibility
There are several programs developed for initial mass spectrometry data processing and pro-
tein identification. However, due to the different algorithms implemented in these programs,
they might produce different and even contradictory results [23]. Multiple studies have evalu-
ated and compared different data processing and identification algorithms used in these pro-
grams [52–57]. We found that the PEAKS program identified and mapped considerably higher
number of peptides compared to the other programs. PEAKS uses a combination of three iden-
tification search engines through the PEAKS database (a de novo sequencing database) [35]. It
has previously been reported that combining multiple search engines substantially increases
the number of identified peptides and proteins [58], a finding in line with our observation that
both PEAKS and OpenMS identified more peptides than Sieve and DecyderMS (which both
use the Mascot search engine). Despite identifying substantially higher number of peptides
using PEAKS, the number of identified proteins was similar to the other programs. We found
that PEAKS search engine is capable of characterizing each unique protein by multiple pep-
tides. In addition, we found that Maxquant identified higher number peptides compared to
Sieve and DecyderMS which is in line with other studies by Cox, J., et al [32] and Colaert, N.,
et al using SILAC [59]. However, we found that many of the peptides identified only in Max-
quant (not in OpenMS) were in fact non-proteotypic peptides (the peptides that were assigned
to more than one protein). After removing these peptides, the peptide identification perfor-
mance was similar between the two programs. Finally, observed that the majority of the pro-
teins were identified by one program. This can be explained by multiple factors such as
different pre-processing methods, scoring functions as well as failure to build a mass feature
for the peptides (unmapped peptides). This implies that to gain appropriate peptide/protein
coverage, multiple programs can be employed not only for the identification but also for the
quantification. As for identification there are several methods to score combined identification
from multiple search engines [38]. However, to the best of our knowledge there are no
approaches to score or combine quantification results from several programs.

In label free shotgun proteomics, it is common to make technical replicates for each sample
to increase the reliability of the downstream analysis. In general, all the programs produced
acceptable correlation and low variation between the technical replicates also indicating high
reproducibility of the MS analysis. Sieve produced the highest reproducibility and in agreement
with previous studies, we also found that OpenMS produced higher reproducibility across tech-
nical replicates compared to Maxquant [60] as well as DecyderMS and PEAKS. Considering
the variation ratio, PEAKS program was deviating from the other programs whereas it resulted
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in similar correlation pattern to the other programs, achieving higher correlation than Decy-
derMS and Maxquant. We found that these high correlations were caused by a number of pep-
tides with large intensities and high correlation between the technical replicates that masked
the low correlation of peptides with small abundance. Therefore, despite having high correla-
tion between the technical replicates, variance ratio comparison resulted in large difference in
variance in some of the technical replicate pairs in PEAKS program.

Data normalization affects biological conclusions
Normalization is performed to reduce the technical variation and remove bias caused by differ-
ences in protein concentration and other technical aspects of the MS analysis [40, 61]. Using
relative protein levels generated by antibody-based profiling, we compared the mass spectrom-
etry results using three different normalization methods (median, reference, and spiked-in nor-
malization) based on data from five different data processing programs. We found that global
normalization strategies resulted in low correlation to the affinity data. Most of the global nor-
malization methods are based on the assumption that the distribution of proteins with
increased and decreased abundance between groups of interest is nearly symmetrical [26]. The
violation of this assumption in the investigated CSF samples was not clear until removal of the
seven most abundant proteins prior to MS analysis, which is contributing with more than 75%
on the total protein mass. By performing local normalization based on a spiked-in protein,
thus only correcting for experimental bias, the correlations to the antibody-based profiling
results were substantially increased. It is important to note that the antibody-based profiling
was performed on the crude and not depleted CSF. Spiked-in normalization resulted in a con-
siderable reduction of fold changes comparing AD to non-AD, a more consistent result to that
of antibody-based technique and this was found irrespective of the program used for the MS
quantification. In addition, spiked-in normalization resulted in equal or higher overlap of
result between the programs (despite finding lower number of altered proteins). This suggests
that global normalization should be used with care when analyzing CSF in case of systematic
differences between groups of interest can not be ruled out. We suggest adding one or several
recombinant proteins from a different species than the investigated, which can be used for cor-
recting for experimental bias and to investigate if the assumption for using global normaliza-
tion is valid.

Disease associated proteins
Eight proteins were found to display concordant results using the two technologies, all display-
ing lower levels in the AD patients compared to the controls. Several of the reported proteins,
including ApoM, LRG, FBLN3 and PTPRZ, have functions related to cell adhesion, migration,
and morphology [62–71] and have been reported as important in the development of various
cancer types [72–79] as well as diabetes [80, 81]. Also related to immune system, (C1QB and
C1QC), complement C1S, and SEZ6 have been reported to be involved in synapse development
[82–84]. However, the relation of these proteins to the neurological diseases is not understood.
We are conducting a study with a large cohort to further verify the presence of these proteins
in CSF.

Supporting Information
S1 DataFile. Antibody based technique quantification data.
(XLSX)
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S2 DataFile. DecyderMS median normalized data quantification data.
(XLSX)

S3 DataFile. DecyderMS raw data quantification data.
(XLSX)

S4 DataFile. DecyderMS reference normalized data quantification data.
(XLSX)

S5 DataFile. DecyderMS spiked in normalized data quantification data.
(XLSX)

S6 DataFile. Maxquant median normalized data quantification data.
(XLSX)

S7 DataFile. Maxquant raw data quantification data.
(XLSX)

S8 DataFile. Maxquant reference normalized data quantification data.
(XLSX)

S9 DataFile. Maxquant spiked in normalized data quantification data.
(XLSX)

S10 DataFile. OpenMS median normalized data quantification data.
(XLSX)

S11 DataFile. OpenMS raw data quantification data.
(XLSX)

S12 DataFile. OpenMS reference normalized data quantification data.
(XLSX)

S13 DataFile. OpenMS spiked in normalized data quantification data.
(XLSX)

S14 DataFile. PEAKS median normalized data quantification data.
(XLSX)

S15 DataFile. PEAKS raw data quantification data.
(XLSX)

S16 DataFile. PEAKS reference normalized data quantification data.
(XLSX)

S17 DataFile. PEAKS spiked in normalized data quantification data.
(XLSX)

S18 DataFile. Sieve median normalized data quantification data.
(XLSX)

S19 DataFile. Sieve raw data quantification data.
(XLSX)

S20 DataFile. Sieve reference normalized data quantification data.
(XLSX)

S21 DataFile. Sieve spiked in normalized data quantification data.
(XLSX)
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S22 DataFile. Identified and mapped (to a feature) proteins and peptides using DecyderMS
software. Charge state and mass/charge are not available for DecyderMS since the program
combines the charge states.
(XLSX)

S23 DataFile. Identified and mapped (to a feature) proteins and peptides using Maxquant
software.
(XLSX)

S24 DataFile. Identified and mapped (to a feature) proteins and peptides using OpenMS
software.
(XLSX)

S25 DataFile. Identified and mapped (to a feature) proteins and peptides using PEAKS
software.
(XLSX)

S26 DataFile. Identified and mapped (to a feature) proteins and peptides using Sieve soft-
ware.
(XLSX)

S1 Fig. Reproducibility comparison between five data processing programs. (A) Distribu-
tion of coefficient of determination between the technical replicates in five mass spectrometry
data processing programs. The higher the correlation the closer the replicates quantification.
(B) Distribution of variation ratios between the technical replicates in each tool. The closer the
values to 1 the lower the variation between the technical replicates.
(PDF)

S2 Fig. Reproducibility of mass spectrometry experiment. PCA of peptide intensities show-
ing how study groups (AD: Alzheimer’s disease; C: healthy control) and the technical replicates
(the number after underline) are clustered. (A) DecyderMS. (B) Maxquant. (C) OpenMS. (D)
PEAKS. (E) Sieve.
(PDF)

S3 Fig. Overlap of significantly altered proteins between different programs using raw data
and three normalization methods. (A) Raw data. (B) Spiked-in normalization. (C) Median
normalization. (D) Reference normalization.
(PDF)

S4 Fig. An example of correlation improvement using three normalization method and
raw data. Scatter plot of the highest correlated peptide between mass spectrometry and lumi-
nex (Protein P3IP1). Protein names are shown as Uniprot ID. (A) Reference normalization.
(B) Median normalization. (C) Raw data. (D) Spiked-in normalization. Abb. ABA: antibody-
based analysis.
(PDF)

S5 Fig. Distribution of all the highest correlated peptide-antibody pairs between mass spec-
trometry and antibody-based analysis. The results obtained for the five programs and three
normalization methods used were correlated to the antibody-based analysis.
(PDF)

S1 Table. Depletion setup for CSF samples.
(XLSX)
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S2 Table. LC-MS/MS run order CSF samples.
(XLSX)

S3 Table. Differentially altered proteins.
(XLSX)

S4 Table. The proteins with statistically significantly altered levels in the antibody-based
profiling.
(XLSX)

S5 Table. Correlation of the highest correlated peptide-antibody pair between Mass spec-
trometry and antibody-based technique.
(XLSX)
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