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Abstract

Background: miRNAs play a key role in normal physiology and various diseases. miRNA profiling through next
generation sequencing (miRNA-seq) has become the main platform for biological research and biomarker
discovery. However, analyzing miRNA sequencing data is challenging as it needs significant amount of
computational resources and bioinformatics expertise. Several web based analytical tools have been developed but
they are limited to processing one or a pair of samples at time and are not suitable for a large scale study. Lack of
flexibility and reliability of these web applications are also common issues.

Results: We developed a Comprehensive Analysis Pipeline for microRNA Sequencing data (CAP-miRSeq) that
integrates read pre-processing, alignment, mature/precursor/novel miRNA detection and quantification, data
visualization, variant detection in miRNA coding region, and more flexible differential expression analysis between
experimental conditions. According to computational infrastructure, users can install the package locally or deploy
it in Amazon Cloud to run samples sequentially or in parallel for a large number of samples for speedy analyses.
In either case, summary and expression reports for all samples are generated for easier quality assessment and
downstream analyses. Using well characterized data, we demonstrated the pipeline’s superior performances,
flexibility, and practical use in research and biomarker discovery.

Conclusions: CAP-miRSeq is a powerful and flexible tool for users to process and analyze miRNA-seq data scalable
from a few to hundreds of samples. The results are presented in the convenient way for investigators or analysts to
conduct further investigation and discovery.
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Background
miRNAs are small non-coding RNAs that regulate mRNAs
at the post-transcriptional level by either degrading or
blocking its translation and thus affecting protein transla-
tion. Changed miRNA expression patterns can be used for
diagnostic and prognostic biomarkers [1]. Hybridization
based microarray technology has been used for miRNA
profiling; however, this technology is hindered by its
narrow detection range (low sensitivity for low and satur-
ation for high expressed miRNA), higher susceptibility to
technical variation [2], and lack of ability to detect novel
miRNAs and structural sequence changes. miRNA profil-
ing through next generation sequencing (miRNA-Seq)
overcomes the limitations and has become increasingly

popular in biomedical research. However, miRNA-Seq has
caused many analytical challenges to researchers, as it
needs significant computational resources and bioinfor-
matics expertise. Several tools have been developed over
the past few years. mirTools [3] is a web tool that can de-
tect small RNAs and conduct differential expression for a
pair of sample. miRNAkey [4] and miRDeep* [5] create a
Java interface that allow users to run data locally by drag-
ging and clicking but limit to one or a couple of samples
at time. wapRNA [6] can conduct both RNA and miRNA-
seq analysis for a single sample through their web server.
omiRas [7] is another recent web application for users
to upload multiple raw sequence data with differential
expression analysis by DESeq [8] between two sample
groups.
The common issues with the web-based tools are lack

of flexibility (parameter options, outdated reference gen-
ome or miRNA annotations), reliability (server down or
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not functional at all), and control of sensitive patient data.
Most of these tools can only process one sample at time
or have a data upload limit or require pre-processed data
beforehand as input. These constraints significantly limit
the use of these existing applications for projects with
many samples and complex study designs. None of the
tools detect single nucleotide variants (SNVs)/mutations
in the coding region of miRNAs, which is increasingly
important as it may affect miRNA binding on multiple
targets [9-11].
To address these limitations, we have developed a

CAP-miRSeq, a comprehensive analysis pipeline for deep
microRNA sequencing data, which integrates read pre-
processing, alignment, mature/precursor/novel miRNA
qualification and prediction, SNV detection in the coding
region of miRNA, data visualization, and differential ex-
pression between experimental conditions with biological
replicates. The results are in a convenient matrix format
(both raw and normalized expression count from mature
and novel miRNAs) for all samples in a run or project for
further analyses. The pipeline is implemented in the Linux
environment to run multiple samples in parallel or se-
quentially through either local installation or Amazon
Cloud but can also be run in a single machine mode using
a virtual machine for a limited number of samples. Using
well characterized data, we demonstrated the pipeline’s

superior performances, flexibility, and practical use in re-
search and biomarker discovery.

Implementation
CAP-miRSeq components and functions
CAP-miRSeq has following major components, each per-
forming a particular function (Figure 1).

A. Read quality assessment and pre-processing: As
miRNAs are short (around 22 bps) and the routine
sequencing generally has a read length of 50bps or
above, this is a critical step for miRNA sequencing
data analysis. Reads are first quality checked and
low quality bases are trimmed from the 3′ end.
Subsequently reads are dynamically trimmed for
an adapter sequence by “cutadapt” [12]. Reads less
than 17 bases after trimming (by default) are discarded.
Second quality check is performed after the trimming
to evaluate the read length distribution which is
expected to be centered at 22 bases for a good
miRNA-seq library preparation.

B. Alignment: The pipeline conducts two alignment
processes for trimmed reads, one used internally for
miRDeep2 [13] to quantify and predict novel
miRNAs and another for all RNA quantification,
data visualization and miRNA variant detection,

Figure 1 Workflow diagram of CAP-miRSeq.
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both using the popular alignment tool Bowtie [14].
The miRDeep2 mapper module converts fastq reads
to fasta where unique sequences are counted for
alignment. The second alignment generates the
standard bam which can be used for RNA
quantification and variant detection.

C. miRNA prediction and quantification: This process
is handled by miRDeep2 as it not only quantifies
reads mapped to miRNA coordinates but also
evaluates the miRNA compatibility of the sequence
where reads are stacked, i.e., whether it can form a
hairpin structure of a pre-miRNA and the read
distribution at different part of the structure
(5′, 3′ mature miRNA, loop) follows the pattern of
Dicer processing [13,15]. Novel miRNAs are identified
in a similar manner for the genomic regions not
defined by miRBase annotation. A confidence score of
a true miRNA is assigned to each miRNA detected.

D. All captured RNA quantification: miRNA-seq library
may contain a variety of transcripts. By quantifying all
RNAs and their percentages in the library, we can
evaluate the quality of the miRNA-seq experiment
and utilize the information for other captured small
RNAs. CAP-miRSeq quantifies all RNAs as defined in
the latest GENCODE annotations (release 18) and
displays the percentage of each RNA category in a pie
chart for QC purpose.

E. SNV detection in the coding region of known
miRNAs: The aligned bam file is processed using
GATK [16] to call SNVs in miRNA primary
transcripts. If a SNV is located in the seed region of
the mature miRNA (1–8 base of 5′ end), it is flagged
in the variant report.

F. Sequence data visualization: CAP-miRSeq has two
ways of visualization. For each miRNA, known or
predicted, a PDF file is generated for its hairpin
structure, along with aligned reads at each portion
of hairpin structure. An xml configuration file is
generated automatically for IGV (http://www.
broadinstitute.org/igv/) for users to visualize
aligned reads and SNVs.

G. Data reports: CAP-miRSeq generates several reports.
The first is a high level summary for each sample’s
alignment statistics and number of miRNAs detected.
The merged reports of raw count and normalized
count in reads-per-million (RPM) for known miRNAs
of all samples in matrix format make it easier for
further analyses. A URL link to miRBase is provided
for each miRNA for detailed annoations. As predicted
novel miRNAs only have genomic coordinates and
can differ from sample to sample, it would be difficult
to conduct comparison for a large number of samples.
On the other hand, a true novel miRNA is often
detected in multiple samples. We have implemented a

strategy to merge a commonly detected novel miRNA
across samples if their start/end coordinates overlap
by at least 80%. A new genomic coordinate is created
for these miRNAs using the outer most coordinate.
We have observed that most commonly detected
miRNAs have the same or very similar coordinates,
which further verify a true novel miRNA.

H. Differentially expressed miRNAs between biological
conditions: One of the main motivations behind
miRNA profiling is the identification of differentially
expressed miRNAs between two experimental
conditions. The CAP-miRSeq implements edgeR,
empirical analysis of digital gene expression data,
from Bioconductor (http://www.bioconductor.org/)
described previously [17]. The model uses empirical
Bayes estimation and exact tests based on the negative
binomial distribution. The analysis can be conducted
between two groups, either paired or non-paired
samples. Differential p value distribution and volcano
plot are provided to visualize the magnitude of the
differences between the compared conditions.

I. Pipeline implementation: The pipeline is
implemented with combination of shell, perl,
python, and R scripts in a Linux environment. It can
be run sequentially on a single machine or in
parallel in a cluster with Sun Grid Engine (SGE).
The package can be installed locally with a set-up
script and detailed instructions. For users not
comfortable with the installation, we provides a
virtue machine image of the software and users can
load it into their virtue machine player such as
Oracle VM VirtualBox (https://www.virtualbox.org/)
to use the software directly for a small scale study.
An Amazon Machine Image is also provided for
users to take an advantage of the powerful computa-
tional environment.

Test datasets

1. MCF7 cell line: This dataset has 4 miRNA
sequencing libraries from MCF7 breast cancer cell
line as described previously [13] (Accession number:
GSE31069). Two libraries are control and 2 are after
Dicer knock-down. For the control and experiment
samples one was isolated from cytoplasmic fraction
and the other from all cell content. The data was
generated from Illumina Genome Analyzer II at 36
bps. Further details are summarized in Table 1. This
unique dataset is used to demonstrate: (a) the multiple
sample processing by parallel computing; (b) merged
data report and summary; (c) differential miRNA
expression before and after Dicer knock-down
through paired design and consideration of
normalization when majority of miRNAs are reduced
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from the Dicer knock-down; (d) The ability of
CAP-miRSeq in discerning the Dicer effect on
blocking miRNA biogenesis.

2. Clear cell renal cell carcinoma (ccRCC): This dataset
contains 10 pairs of tumor and normal kidney for
patients with renal cell carcinoma [18] (GEO
accession#: GSE24457). miRNA-seq was conducted
by Illumina sequencer. In the study, several up
(miR-210, miR-122, miR-155, and miR-224) and
down (miR-184 and miR-206, miR-200c, miR-141,
miR-200a, miR-200b, and miR-429) expressed
miRNAs in cancer relative to paired normal kidney
were identified and validated through RT-PCR
previously [18]. Notably, the study identified a clus-
ter of miRNAs in chromosome Xq27.3 that were all
down expressed (miR-506, miR508-3p, miR-509-5p,
miR-509-3p, miR-509-3-5p, miR-510 and miR-514)
as a feature of the cancer and further validated by
RT-PCR. We used the dataset to test our pipeline
whether the same results could be replicated.

Results
Pipeline performance
CAP-miRSeq is mainly developed for a cluster environ-
ment to parallelize multiple jobs for faster processing so
the run time is roughly the time needed for a single sam-
ple to complete the whole pipeline, plus the time such as
to merge multiple samples and create summary reports.
When all 4 MCF7 libraries were run simultaneously in
our cluster environment, it took about 4–5 hours to
complete with maximum 10 G memory usage. The sam-
ple SRR326279 has the highest number of reads and when
it was run through the interactive mode, it took 5 hours
for the whole process with 4G memory usage.

Representative outputs from the core module of
CAP-miRSeq
The first high level report summaries the number of reads
from a sequencer, the number of reads got trimmed, the
number of reads tossed after trimming because of shorter
than specified minimum length, the number of reads
aligned to the reference genome, to mature and precursor
miRNAs, and the number of miRNAs detected with at
least 5 reads each sample (Figure 2A). This will give inves-
tigators a quick grasp on how the sequencing experiment
performs. Three mature miRNA quantification reports in

a matrix format are generated. As a miRNA can be coded
by multiple precursors, the weighted miRNA count
attached to each miRNA precursor is reported in
“miRNA_expression_raw.xls”, with mature and precur-
sor miRNA IDs and hyperlink to miRBase (http://www.
mirbase.org/, Figure 2B). The similar but normalized
per million of mapped reads to miRNAs is provided
in “miRNA_expression_norm.xls” so investigators can
compare relative expression quickly among samples
(Figure 2C). Noted is that in some cases where ma-
jority of miRNAs are reduced due to the global inhib-
ition of miRNA biogenesis such as Dicer knock-down,
the commonly used normalization methods are often
not appropriate as illustrated later in the manuscript.
Additionally, matured miRNAs coded by different precur-
sors with the exact same sequence are impossible to dis-
tinguish. To facilitate further analysis, the expression of
such miRNAs is summed across different precursors
from a weighted raw count report with a unique mature
miRNA ID (Figure 2D). Novel miRNAs across samples
are merged into a single report (Figure 2E) where original
and merged coordinates and a true miRNA confidence
score are recorded. An IGV session file is automatically
generated for users to load aligned bam files to visualize
sequence read data (Figure 2F). The read distribution to
each part of precursor miRNA sequence can also be ex-
amined for each miRNA (Figure 2G).

Quantification of all captured RNAs
While the core module discovers miRNAs, it is neces-
sary to quantify all RNAs in the library for quality
control and maximize the use of the data. Through
intersecting GENCODE annotation for the 4 miRNA
sequencing libraries of MCF7, we found that for both
cytoplasmic and total miRNAs, the Dicer depleted cells
had a significant reduced miRNA proportion (reduced
from 85% to 61% and from 90% to 77% for cytoplasm and
total RNA, respectively, Figure 3), as the Dicer disrupted
the miRNA biogenesis from pre-miRNAs to mature
miRNAs. This also confirmed good miRNA-seq library
preparation as majority of the RNAs were from miRNAs.
A low miRNA percentage often would suggest failed
miRNA purification or low miRNA content. The step also
quantified many other RNAs such as snoRNA, snRNA,
tRNA or lincRNA for interested investigators.

Differential expression of miRNA before and after Dicer
treatment
The MCF7 dataset was used for illustration. The pipeline
generated a boxplot of miRNA expression before and
after normalization and multidimensional scaling plot
(Additional file 1,A and B). Differential p value distribu-
tion and volcano plot were also created for overall examin-
ation of differential expression magnitude and significance

Table 1 Data summary for MCF7 miRNA-seq data

SRA_ID Treatment miRNA source Read number

SRR326279 control cytoplasm 15,493,265

SRR326280 control total 14,670,735

SRR326281 Dicer knock-down cytoplasm 9,237,490

SRR326282 Dicer knock-down total 8,689,337
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(Additional file 1,C and D). Library size normalization,
i.e., using the total number of reads mapped to miRNAs
as a normalization factor to standardize different depths of
sequencing, is routinely carried out and works well most of
time. However, in some special cases where miRNAs are
globally reduced such as the blockage of their biogenesis
from Dicer knock-down or gene mutations [19], this
normalization would artificially boost the expression of

reduced miRNAs and obscure true differences. Using the
number of reads aligned to genome or the total number
of reads generated or a subset of miRNAs that are not
affected by miRNA biogenesis is preferred. Indeed, when
we used the number of aligned reads to miRNAs as a
normalization factor, only slightly more miRNAs were
down-expressed after Dicer treatment (Additional file 1D).
However, this was largely corrected by using the number

Figure 2 Example outputs from CPAP-miRSeq (MCF7 dataset). A. Summary statistics of each miRNA-seq library processed. B. Raw mature
miRNA expression table, weighted count for miRNAs coded by multiple pre-miRNAs. C. Normalized mature miRNA expression table by number of
reads per million (RPM). D. Summarized mature miRNA expression table for those with multiple pre-cursors. These miRNAs are indistinguishable
by sequence but have the same biological effect. This table is used for final differential expression analysis. E. Merged novel miRNA expression
across samples. F. Integrative Genome Viewer (IGV) to visualize sequence level data for a single nucleotide variant. G. Mapped read distribution in
different parts of the hairpin structure of miRNA precursor which provides a strong evidence of an authentic miRNA.
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of reads aligned to the whole genome as the library size
for normalization (Additional file 2). We used this special
case to illustrate that it may not be wise to conduct differ-
ential expression blindly before making sure that a default
normalization method is appropriate. For this reason,
we do not recommend running differential expression
at the time of sample processing but after the data is
fully quality assessed and the study design is fully
understood.

miRNA coding region variant detection
We used the two control cell lines SRR326279 SRR326280
(without Dicer knockdown) with deeper sequencing to de-
tect and compare SNVs for illustration. At the minimum
10X coverage and genotyping quality score greater than
30, 225 SNVs were detected in the coding region of
miRNAs in either sample, of which 200 (89%) were confi-
dently detected in both samples. For the remaining 25 po-
sitions, all but 2 positions had the same alternative allele

but not at sufficient frequency to call a variant in one of
the samples. Among the 200 SNVs, 66 were in the mature
miRNA and others in the precursor miRNAs. The high
concordance between the two replicates demonstrated the
variant call reliability.

Dicer knock-down leads to reduced miRNA expression
After the Dicer treatment, the total miRNAs in MCF7
cell line were reduced 23.87% and 13.40%, respectively
for miRNAs extracted from cytoplasm and whole cell
component among all RNA transcripts (Figure 3). There
was essentially no change for rRNA (increase of 1.16%
and 0.02%), snoRNA (increase of 0.23% and 1.36%), and
snRNA (2.9% and 0.19%). On the contrary, protein cod-
ing mRNAs increased about 11% in both cytoplasm and
whole cell component RNAs. Differential miRNA ana-
lysis between the Dicer knock-out and controls by paired
analysis showed 246 miRNAs with p value less than
0.05, among which 166 (67%) were down and 80 (33%)

Figure 3 Distribution of all detected RNAs by category for MCF7 dataset. A. RNA extracted from cytoplasm without the Dicer treatment.
B. RNA extracted from total RNA (both cytoplasm and nucleus) without the Dicer treatment. C. RNA extracted from cytoplasm with the Dicer
treatment. D. RNA extracted from total RNA (both cytoplasm and nucleus) with the Dicer treatment. miRNA expression is significantly repressed
in the Dicer treated cell lines (C and D).
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were up expressed (Additional file 2). The miRNAs that
were not repressed were likely matured by Dicer inde-
pendent pathways [20-22]. These results were consistent
with what was previously reported [13].

Deregulated miRNAs in the dataset of ccRCC
Using CAP-miRSeq to process the raw fastq data and
obtain the mature miRNA expression for 20 samples
(10 tumor and normal pairs), we then conducted dif-
ferential expression between tumor and normal samples
by paired edgeR model. The analysis found 144 miRNAs
with differential expression p value < 0.01, of which 103
with false discovery rate < 0.05. All 11 changed miRNAs
reported in the original report [18] were confirmed
to be similarly up or down expressed from our ana-
lyses (Figure 4A). Additionally, we observed that all
miRNAs in chromosome Xq27.3 locus were signifi-
cantly down expressed in ccRCC tissues (Figure 4B).
The result further validated the reliability of our pipe-
line and analysis.

Comparison with other publicly available tools
We used the sample SRR326279 to compare the known
miRNA prediction and quantification with several most re-
cent public tools (Table 2). omiRAS detected 739 mature
miRNAs with minimum 2 reads while our CAP-miRSeq
detected 860 miRNAs. For the common 739 matured
miRNAs, the correlation coefficient is almost 1 (0.999).
Novoalign miRNA module does not perform miRNA pre-
diction. We quantified the mature miRNAs using bed-
tools where 881 mature miRNAs had minimum 2 reads.
The correlation coefficient with CAP-miRSeq is 0.95.
miRTools2 only reported 172 mature miNRAs with 2
reads or above and these miRNAs had overall lower ex-
pression compared to CAP-miRSeq, omiRNA or Novalign
(with correlation coefficient of 0.81). CAP-miRSeq de-
tected 194 novel miRNAs while mirTools reported 35
novel miRNAs. omiRAS needs at least two samples to run
and does not report novel miRNAs for each individual
sample.

Sequence depth and miRNA capture
One of the common questions in miRNA-Seq design is
how deep miRNA sequencing needs to be. To provide
some guidance to investigators, we conducted a simula-
tion study with a miRNA-Seq sample with 25 million of
reads. The experiment started from the complete dataset
and then randomly drew 0.5, 1, and 2 to 24 with 2 mil-
lion increments. At the full data, 1,121 miRNAs were
detectable with at least 2 reads and these miRNAs were
binned into 5 levels of expression. Almost all miRNAs
with expression greater than 15 reads (58% of expressed
miRNAs) were detectable at 6–8 million of sequence
reads. With 12–18 million of reads, 78% of all expressed
miRNAs could be detected. Although further increase of
sequence depth could capture very low expressed miRNAs,
their biological significance can be questionable thus a

Figure 4 Changed miRNAs in renal cancer carcinoma validated
by CAP-miRSeq. A. Significantly up and down expressed miRNAs
in renal cell carcinoma compared with paired normal kidney
as previous reported and described in the text. B. Significantly
down expressed miRNAs in chromosome Xq27.3 locus
as reported.

Table 2 Comparison of different tools in miRNA detection

CAP-miRSeq omiRAS miRTools2 Novoalign

Version v1.1 12/2013 v2 2.07.13

Aligner Bowtie Bowtie SOAP Novoalign+

Ref Genome hg19 hg19 hg19 hg19

Time 5 hrs 12 hrs Variable 6 hrs

Memory 4 GB - - 10 G

Mature miRNA
(> = 2)

860 739 172 881

Novel miRNA 194 NA* 35 No prediction

Correlation with
other tools

- 0.99 0.81 0.95

*NA–omiRAS requires at least two samples to run with differential expression
analysis; however, it does not report novel miRNAs for each individual sample.
+Novoalign is just an alignment toot and it does not perform miRNA
prediction and quantification. omiRAS and miRTool2 are web based tools and
no memory usage information is available.
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sequence depth of at least 10 million reads per sample
could get a reasonable capture for expressed miRNAs
(Figure 5) assuming the miRNA-Seq library mostly con-
sists of miRNAs.

Discussion
With high multiplexing and a low number of required
reads for a sufficient sequencing depth, miRNA-seq be-
comes a popular platform for miRNA profiling with tens
or even hundreds of samples, which makes the web based
applications or applications that process one sample at
time impractical. Herein we have presented a powerful
and comprehensive analytical pipeline flexible to process
many samples simultaneously for users with a cluster envir-
onment or sequentially for those who don’t have the com-
puting capacity. The pipeline generates merged reports of
known and novel miRNAs for all samples to make further
analyses easier. Optionally, the users can request differential
expression analysis for grouped or paired design, SNVs
or mutation detection in the coding region of miRNAs.
Through the well characterized datasets, we have demon-
strated its superior performances, reliability and flexibility.
The relative performance of different miRNA-Seq tools

was compared comprehensively previously [23]. The sen-
sitivity and specificity of different tools in detecting known
or novel miRNAs appear different among different spe-
cies of data. miRDeep was shown with high specificity
in known miRNA detection and high sensitivity in novel
miRNA prediction [23]. miRDeep2 [13], the overhaul ver-
sion of miRDeep, is used in our pipeline for miRNA detec-
tion and quantification and demonstrates the similar
performances in our comparisons.

Some published tools have the function performing
differential miRNA expression analysis between samples
[3,4,7,24]. However, miRanalyzer, CPSS and miRNAKey
only allow a pair of samples using Chi Square or Fisher’s
exact on raw read counts. miRTools2, the updated version
of miRTools and omiRas allow users to perform differen-
tial expression analysis between two or more samples.
However, the former needs each sample processed separ-
ately ahead of time while omiRas can not handle paired
design. The potential issues with the “automatic” differen-
tial expression analysis are that it conducts the analysis
before data quality is thoroughly examined, which is the
must-step for any genomic data analysis. Secondly, most
analysis tools use library size calculated from the mapped
reads to miRNAs as a normalization factor, which in some
cases is not appropriate as we illustrated where majority
of miRNAs are reduced as the result of Dicer knock-
down. Although we provide the convenient option to con-
duct differential expression analysis when running the
pipeline, it is strongly recommended to be done after a
rigorous quality assessment is completed and the study
design is fully understood. A standalone script is provided
for the post pipeline differential analysis in our package.
SNVs or mutations in miRNA coding region can have

a significant implication because of the miRNAs’ broad
binding and action profiles. None of the miRNA-seq
tools identify the variants/mutations from miRNAs using
a reliable variant caller. We implemented the most com-
monly used GATK for variant call. From MCF7 cells, we
found many high confidence SNVs in the coding regions
of miRNAs and some were in the seed region of mature
miRNAs. As the functional implications of these variants
can not be predicted in the non-coding regions of the
genome by current prediction tools and miRNAs often
have RNA editing events [25-27], further investigation is
needed for their biological implications.
In our comparison with other tools, we have obtained

very good correlation with omiRAS and Novoalign miRNA
module. The high correlation with omiRAS is not a sur-
prise as it also uses miRDeep as a miRNA prediction tool.
The slightly lower correlation with Novoalign is likely due
to the fact that Novoalign does not have miRNA prediction
step and a detected miRNA is simply the number of aligned
reads in the known miRNA annotation. We are not sure
why miRTools2 only reported 172 mature miNRAs (about
a fourth of other tools) with systematic lower expression
from their default settings even though the same refer-
ence genome version and miRNA annotation were used.
We suspect the parameter of keeping a randomly selected
alignment for a read with multiple alignments may
contribute to the discrepancy or it might not count
the isomiRs.
Other recent tools that were evaluated but not presented

include wapRNA, miRDeep*, and CPSS. Both wapRNA

Figure 5 Simulation result of sequence depth vs. miRNA
capture. The original library has ~25.4 million single end reads.
miRNAs are defined as expressed at an arbitrary cutoff of > =2 reads
and clustered into five expression level groups based on the
number of assigned reads. The original library is randomly sampled
at 14 different depths from 0.5M to 24M. For each of the five groups
from each sub-library, the number of miRNAs with > =2 reads are
calculated and the ratio over the corresponding total from the
original library is displayed. About 78% of expressed miRNAs can be
detected at sequence depth of 12–18 million of reads.
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and miRDeep* only allow processing one sample at a
time and do not report mature miRNA expression (but
step-loop region), which is not directly comparable with
CAP-miRSeq and others. CPSS did not return any result
in spite of several tries.

Conclusions
CAP-miRSeq is a powerful and flexible tool for users to
process and analyze both a small and large number of
miRNA-seq samples quickly. The results of both known
and novel miRNAs are presented in the merged and
convenient format for investigators or analysts to con-
duct further investigation and discovery. The simultan-
eously called variants in the coding regions of miRNAs
can be used to investigate gene regulation mechanism
and phenotype or disease associations.

Availability and requirements
Project name: CAP-miRSeq: a comprehensive analysis
pipeline for microRNA sequencing data.
Project home page: http://bioinformaticstools.mayo.edu/

research/cap-mirseq/.
Operating system(s): Linux.
Programming language: Perl, Python, R and BASH.
Other requirements: Java (7u45), FastQC (0.10.1),

Bowtie (0.12.7), Samtools (0.1.19), Bedtools (2.17.0), HT-Seq
(0.5.3p9), miRDeep2 (2.0.0.5), VCFTools (0.1.11), GATK
(2.7-2-g6bda569), Picard (1.77).
License: GNU GPLv2.
Any restrictions to use by non-academics: None.

Additional files

Additional file 1: QC visualization and differentially expressed
miRNAs between experimental conditions. A. boxplot of raw miRNA
expression. B. multi-dimentional scaling for the 4 miRNA-seq libraries.
Samples are separated by the RNA extraction method in the first principal
component (X-axis) and the Dicer treatment in the second principal
component (Y-axis). C. histogram of differential expression p value.
D. volcano plot of differntially expressed miRNAs (red highlight for those
with false discoveray rate less than 0.05).

Additional file 2: 2 M-A plot of differentially expressed miRNAs
between the Dicer knock-down and controls. Instead of using the
reads aligned to miRNAs, the total number of aligned reads was used as
a normalization factor. miRNAs were largely repressed (over 2/3) due to
the Dicer inhibition. A small number of miRNAs were unaffected or more
expressed (mostly in the low expression range), which may be random
noise or go through alternative pathways independent of Dicer.
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