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Environmental conditions can alter the form, function, and behavior of organisms over short and long timescales, and even over
generations. Aphid females respond to specific environmental cues by transmitting signals that have the effect of altering the
development of their offspring. These epigenetic phenomena have positioned aphids as a model for the study of phenotypic
plasticity. The molecular basis for this epigenetic inheritance in aphids and how this type of inheritance system could have evolved
are still unanswered questions. With the availability of the pea aphid genome sequence, new genomics technologies, and ongoing
genomics projects in aphids, these questions can now be addressed. Here, we review epigenetic phenomena in aphids and recent
progress toward elucidating the molecular basis of epigenetics in aphids. The discovery of a functional DNA methylation system,
functional small RNA system, and expanded set of chromatin modifying genes provides a platform for analyzing these pathways
in the context of aphid plasticity. With these tools and further research, aphids are an emerging model system for studying the
molecular epigenetics of polyphenisms.

1. Introduction

While the genome has been portrayed as a “blueprint”
instructing the development of an adult organism, the
articulation of genotype into phenotype is a more com-
plex phenomenon. Context-dependent development and
environment-dependent phenotypic variation have been
observed for decades [1]. Like the changes in gene expression
that intrinsically occur in development, environment can
affect gene expression and alter developmental trajectories
[2]. If these developmental responses to the environment,
and plasticity itself, can increase fitness and are heritable,
then morphology, physiology, behavior, or life history strate-
gies can evolve elements of adaptive phenotypic plasticity
[1, 3]. This can result in the production of continuous or
discrete phenotypic variation (polyphenism). The possibility
for nongenetic heritable effects of environment on develop-
ment raises doubts about the “blueprint” view of the genome
[4].

Waddington originally defined “epigenetics” as the study
of phenomena that act to produce phenotype from genotype
all within in a framework of evolutionary biology [5–7].
Waddington’s view of epigenetics now largely encompasses

the fields of developmental biology and evolutionary devel-
opmental biology, which describe, in part, how patterns
of gene expression change during ontogeny and through
evolution [8]. The modern field of epigenetics examines how
patterns of gene expression, instructed by extrinsic biotic or
abiotic factors, can be passed to offspring through means
other than the inheritance of DNA sequence. Examples
of inherited epigenetic phenomena include stable cell fate
specification during pluripotent stem cell divisions, dosage
compensation and X chromosome inactivation, imprinting,
and position effect variegation in Drosophila [9]. Models for
seemingly disparate phenomena have converged on common
mechanisms for establishing heritable gene expression pat-
terns: changes in chromatin architecture due to the effects
of DNA methylation, small RNAs, and chromatin modifying
enzymes [10, 11].

2. Predictive Adaptive Developmental
Plasticity through the Aphid Life Cycle

Aphids, soft-bodied insects that feed on the phloem sap
of plants, have long been a model for studying the causes
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and consequences of phenotypic plasticity. They exhibit both
a wing polyphenism (consisting of winged and unwinged
females) and a reproductive polyphenism (consisting of asex-
ual and sexual individuals). The production of alternative
morphs by genetically identical individuals by definition
involves epigenetic mechanisms. Here, we describe these two
polyphenisms within the context of the aphid life cycle.
We then discuss the environmental cues that trigger the
polyphenisms. Finally, we discuss what is known about
epigenetic mechanisms in the pea aphid.

The life cycle of a model aphid species, the pea aphid
Acyrthosiphon pisum, begins as a “foundress”—a female
aphid that hatches in the spring from an overwintering egg.
The foundress produces, via live birth (viviparity), a popula-
tion of female unwinged aphids through asexual reproduc-
tion (apomictic parthenogenesis) that continues to repro-
duce asexually over several generations. This population is
genetically identical, aside from spontaneous mutations [12],
and lacks males during the spring and summer months.
Environmental factors such as high aphid density, host plant
quality, and predation can induce unwinged females to
produce winged offspring. Winged asexual females disperse
and colonize new host plants, founding new colonies via
parthenogenesis. The parthenogenetic production of winged
and unwinged female aphids continues during the spring and
summer.

In fall, a change from asexual to sexual reproductive
modes occurs. Asexual females sense the changing photope-
riod and temperature and respond by parthenogenetically
producing sexual females and males. Males are produced
genetically by the loss of one X chromosome during
parthenogenetic oocyte division and can be winged or
unwinged. Since only sperm containing an X chromosome
are viable, sexual females lay only female eggs on the host
plant. The egg must “overwinter” for three to four months
at cold temperatures in order to complete development
and hatch as a foundress in the spring [13, 14]. Other
aphid species switch host plants, produce winged sexual
females or produce males earlier than pea aphids. These
adaptations (sexual versus asexual, winged versus unwinged)
have evolved in response to environmental changes that
are predictable (seasons) and unpredictable but common
(population density, host plant quality, and predation).

3. Experimental Evidence for
Epigenetic Phenomena in Aphids

The wing and reproductive polyphenisms are examples of
how the maternal environment affects the development
of the offspring as a “predictive adaptive response” [15].
Several groups have described the triggering environmental
cues and aphid responses. Though the cues differ for the
reproductive and wing polyphenisms, the developmental
response for both is separated by at least one generation
from the triggering cue. Additionally, the resulting morphs
are discrete forms and not simply continuous differences
along a phenotypic gradient. This binary phenotypic output
from an inductive signal gives the aphid experimental system

an advantage for studying the epigenetic contribution to
phenotypic plasticity.

3.1. Induction of Winged Aphids. Winged offspring can be
induced by tactile stimulation of unwinged asexual aphids,
either by interactions with other aphids, interactions with
nonpredator insects, or experimental stimulation [16–18].
Unwinged mothers produce both unwinged and winged
offspring; winged aphid mothers rarely produce winged
offspring [16]. Other factors, such as the age of the mothers
and temperature, can also modulate the degree of wing
induction [18, 19]. The production of winged offspring can
also be induced by the presence of aphid predators [20–22].
However, this effect may be driven by increased aphid walk-
ing, and thus increased inter-aphid interactions, in response
to predator presence [23]. The environmental changes listed
above are unpredictable but generally common, and aphids
facultatively express the wing phenotype to limit predation
and competition for resources.

In some aphids, wing induction occurs prenatally [24]
while other species can be induced postnatally [16]. In
prenatal determination, the environmental cue perceived by
the mother must be transmitted to its embryos in utero,
and the daughter embryos respond to this maternal signal.
The precise nature of this maternal signal or its response
is not known, though some studies implicate the juvenile
hormone (JH) pathway (but see [16]). However, wing
development itself does not occur until the second to third
larval stage and is accompanied by the development of wing
musculature, increased sclerotization of the cuticle, changes
in eyes, antennal sensory rhinaria, and reproductive output
[25, 26]. Thus, several days and presumably several rounds of
cell division separate induction and resulting developmental
response.

3.2. Induction of Sexual Aphids. The production of sexual
morphs and the resulting overwintering egg coincides with
predictable, seasonal changes in photoperiod and temper-
ature. Sexual aphid morphs are observed in temperate
zones during the fall and winter but not in the spring or
summer, and aphids were the first animals shown to respond
to changes in photoperiod [27]. Later studies defined the
lengths of light and dark phases necessary for the induction
of sexual aphids (reviewed in [28]). An embryo that devel-
oped under experimentally controlled long-day “summer”
conditions (16 hours of light, 8 hours of darkness), and
shifted to short day “fall/winter” conditions (12 hours
light, 12 hours darkness) upon birth, can produce sexuals-
producing mothers that consequently give birth to sexual
offspring [28]. Experimental manipulations of temperature
can modulate the degree of sexual morph production [29],
and high temperatures can override the effect of short
days on sexual induction [29, 30]. Based on the timing of
sexual offspring birth, determination of embryos destined
to become sexual morphs is thought to occur after embry-
onic germ cell cluster formation and migration, roughly
corresponding to stage 17 of asexual embryo development
[13, 31]. Induction of sexual-producing aphids and their
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sexual offspring requires at least 10 consecutive days of
fall/winter conditions [32], which appears to prevent aphids
born prior to the vernal equinox from undergoing sexual
induction. Some strains of aphids also produce sexual aphids
followed by asexual females, possibly to hedge bets against a
harsh winter and the lack of host plants [33, 34].

Similar to winged aphid induction, the induction of
sexual aphids is a complex process that involves multiple tis-
sues and extends over several days of development. Though
external morphological differences between asexual and
sexual females are few, the difference in internal morphology
is striking. Aphid ovaries consist of 12–16 ovarioles, each of
which contains germ cells housed in an anterior germarium.
In sexual ovaries, germaria are connected to oocytes [31, 35].
The sexual haploid oocyte will fill with yolk contributed by
nurse cells in the germarium, grow in size, and pass through
the uterus to undergo fertilization. However, in asexual
ovaries, the germarium is connected to a posterior string
of successively older asexual embryos progressing through
development, from one-celled embryos to fully developed
embryos ready for parturition.

Both aphid polyphenisms are examples of the maternal
epigenetic determination of offspring phenotype. The mater-
nal inducing signal, received by the offspring as embryos,
is translated into an expansive suite of developmental
changes well after birth. Over 90 years ago, Ewing [36]
reviewed several studies on wing induction and postulated
a transgenerational “physiological inheritance” that is “not
dependent on the germplasm (or at least the chromosomes)
but which modifies the expression of somatic characters.”
Sutherland [37] also hypothesized a nongenetic “intrinsic
factor” that delayed production of winged offspring from
mothers born early from winged grandmothers. The trans-
generational response to changing environmental conditions
in aphids in some cases may involve juvenile hormone
(JH). Application of JH or JH analogs to aphid mothers
can prevent sexual induction under fall/winter conditions
[38, 39]. Neurosecretory cells within the mother’s brain likely
perceive light and dark and transduce the photoperiod signal
to the progeny directly or indirectly through JH [40, 41].
Thus, in the reproductive polyphenism, this “physiological
inheritance” may be due to maternal hormonal signals that
establish heritable epigenetic information that sets gene
expression patterns in the developing embryo. Below, we
discuss how genomics technologies and bioinformatics have
invigorated investigation of the molecular basis of this
epigenetic phenomenon.

4. The Aphid Genome: A Model for Plasticity

The genome of the pea aphid A. pisum is distinctive
among insect and even animal genomes for several reasons
[42]. With its large size (∼517 Mbp) and large number of
predicted genes (∼35,000 genes, many well-supported by
homology, EST, or RNA-seq data), the pea aphid possesses
one of the largest gene repertoires among animals, rivaling
that of Daphnia pulex, another polyphenic arthropod [43].
Repetitive elements (REs) account for a large fraction of

the assembled genome (38%) [42, 44]. The large number
of genes is due to a large number of gene duplications:
2,459 gene families of various functions have undergone
duplication, with many families containing more than 5
paralogs. Indeed, paralogs account for nearly half of the total
aphid genes, similar to that of Daphnia [43]. Notable among
these are duplications of genes involved in DNA methylation,
small RNA pathway, and chromatin modifications and
remodeling (discussed in detail below). Furthermore, the
aphid genome has the lowest G/C content among sequenced
insects at 29.6%. The pea aphid community now has an
impressive set of genomic data and tools: a draft genome
sequence, expressed sequence tags (EST), full-length cDNA
sequences, microarrays, and RNAi [42, 45–60].

This genome information can be leveraged toward
understanding the basis of aphid plasticity and the role of
epigenetics in that plasticity. For example, aphid-specific
gene duplications may have facilitated the evolution of
developmental plasticity, as greater phenotypic space can
be explored through the differential expression of diverged
paralogs in response to environmental variation. Indeed,
reports of differential paralogous gene expression between
different aphid morphs lend support to this hypothesis [51,
61–65]. The molecular basis for the differential expression
of aphid paralogs is thus far unknown. We speculate that, in
a manner similar to other arthropods [66], environmentally
sensitive expression of maternal hormones helps establish
heritable patterns of chromatin architecture in the embryo
that affect gene expression patterns during development.
This could involve DNA methylation, which can regulate
gene expression in arthropods [67, 68], small RNAs, and
chromatin modifications. Below, we discuss recent results
lending support to a functional epigenetic system in aphids
that may underlie polyphenic aphid development.

5. DNA Methylation

Several epigenetic processes rely on DNA methylation,
which involves the addition of a methyl group (–CH3)
to the 5-carbon of cytosine in genomic DNA to form 5-
methylcytosine. Methylation modifications are most com-
monly found on cytosines at CG dinucleotides, resulting
in a symmetrical double-stranded pattern. They are less
commonly found in a CHG or CHH context, where H =
A, G, or T [69]. These methyl groups act as a “memory”
at particular genes and function during the normal growth
and differentiation of many organisms [70, 71]. DNA
methylation can negatively affect transcription by either
physically interfering with the binding of proteins that
activate transcription, or recruiting other proteins that affect
chromatin structure (see Chromatin Remodeling section).
They also silence the activity of transposons and inactive
genes [72].

In aphids, DNA methylation was originally observed
at the E4 esterase gene in insecticide-resistant green peach
aphids, Myzus persicae [73–75]. Contrary to the generally
understood role of DNA methylation in negatively regulating
transcription, the E4 esterase gene was only expressed when it
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Figure 1: Vertebrates and invertebrates vary in Dnmt subfamily
enzyme copy number. The number of boxes in each color (black,
grey, white) indicates the number of paralogs of each type of Dnmt.

was methylated [76]. At the time, few studies had investigated
the functional consequences of the observed low levels of
methylation in insects [67]; thus, few conclusions could be
made about the role of methylation in vertebrates versus
invertebrates. Mandrioli and Borsatti [77] reported the
presence of DNA methylation in the heterochromatic regions
of pea aphid DNA, although they did not identify specific
regions that were methylated.

DNA methyltransferases (Dnmts) are the enzymes that
add methyl groups to nucleotides in DNA, using S-adenosyl
methionine as the methyl donor. Animals use three classes
of Dnmts [69, 78]. Dnmt1 acts as a maintenance methyl-
transferase, attaching methyl tags to newly synthesized DNA
strands; Dnmt3 typically methylates DNA de novo; Dntmt2,
an RNA cytosine methyltransferase, is no longer considered
a true DNA methyltransferase [79, 80]. However, current
evidence suggests that all three active Dnmts (Dnmt1,
Dnmt3a, and Dnmt3b) may be involved in the maintenance
of DNA methylation [81]. Considerable variation across taxa
exists as to the presence or absence of each category of Dnmt
[82]. For example, the honey bee (Apis mellifera) has two
copies of Dnmt1, one of Dnmt2 and one of Dnmt3 [83],
while C. elegans has lost all Dnmts and seems to lack DNA
methylation [70, 84] (Figure 1). Clearly, some organisms
develop and reproduce successfully without methylation
enzymes and thus without methylated DNA.

The previous reports of methylated aphid DNA indicated
the presence of Dnmts in the aphid genome. However,
given variation among taxa in Dnmt occurrence, it was
not obvious a priori that an aphid genome would contain
all of the DNA methylation enzymes. By searching the
pea aphid genome sequence [42], Walsh et al. [85] found
two copies of Dnmt1, a Dnmt2 a Dnmt3, and a gene
distantly related to the other Dnmts that they called Dnmt3X.
Dnmt3X lacks key amino acids thought to be necessary
for Dnmt function. It may, therefore, be a pseudogene.
Additional proteins involved in DNA methylation are present
in the pea aphid genome: the methylated-CpG binding
proteins MECP2 (one copy) and NP95 (three copies), and

Dnmt1 associated protein that associates with Dnmt1 to
recruit histone deacetylases [85, 86]. Walsh et al. [85] also
quantified overall methylcytosine levels, finding that 0.69%
(±0.25%) of all of the cytosines were methylated. This
low percentage closely matches the low methylation levels
observed in other insect genomes [82]. Further, twelve pea
aphid genes are methylated in their coding regions, but
not in their introns [85]. Three of those genes are juvenile
hormone (JH) associated genes, chosen for analysis because
JH has previously been shown to be involved in phenotypic
plasticity in aphids [28]. Further investigation of the gene
for JH binding protein revealed one methylated site that
had a marginally significant higher level of methylation in
winged relative to wingless asexual females [85]. Overall,
these data indicated that the pea aphid has a functional DNA
methylation system.

6. Aphid Genome Methylation Patterns

With the pea aphid genome sequence, patterns of DNA
methylation could be investigated using an indirect measure
that utilizes the observed versus expected levels of CpG
methylation (CpGO/E). This method is based on the fact that
methylated cytosines are hypermutable, resulting in a loss
of CpGs in methylated regions. Regions of DNA with low
CpGO/E are inferred to have been historically methylated and
thus are considered areas of dense methylation [87].

Walsh et al. [85] used this method to examine the coding
regions of all predicted genes in the pea aphid genome. The
resulting histogram of gene frequency by CpGO/E exhibited
a clear bimodal distribution, indicating two gene classes:
genes with and without a history of DNA methylation.
This same pattern was observed in another polyphenic
species, the honey bee, whereas it was not observed in
nonpolyphenic species like the red flour beetle (Tribolium
castaneum), Anopheles gambiae, and Drosophila melanogaster
[88]. These data began to approach the intriguing question
of whether methylation levels associate with aphid alternative
phenotypes, but to take this question a step further required
gene expression data.

Brisson et al. [89] used a pea aphid microarray to
identify significantly differentially expressed (DE) genes
between fourth instars and adults, males and females, and
wing morphs within each sex (wing morphology in asexual
females is polyphenic, while in males it is genetically deter-
mined). Using these data, Hunt et al. [90] asked whether gene
methylation density associated with patterns of DE genes
among the different phenotypic groups. Overall, genes with
condition-specific expression (i.e., genes with DE among
categories) showed higher CpGO/E levels than genes that were
more ubiquitously expressed. They concluded that morph-
biased genes have sparse levels of methylation while non-
morph-biased genes have dense levels of methylation. In a
similar study, Elango et al. [88] showed that genes with DE
between honey bee queens and workers had higher CpGO/E
levels. These studies, along with others [68, 91], suggest that
ubiquitously expressed genes in insects are the most likely to
be densely methylated.
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What are the gene categories with low and high CpGO/E
values? The highly methylated class includes gene ontology
(GO) terms associated with general organismic functions
such as metabolic processes. In contrast, genes with sparser
methylation encompass a wider variety of functions such as
signal transduction, cognition, and behavior [90]. Given the
putative role for methylation in alternative morphologies,
these patterns are counterintuitive since morph-biased genes
would be presumed to be the most highly methylated.
One way to reconcile this contradiction is to modify
the hypothesis: if morph-biased genes have sparser CpG
methylation, their CpG sites are available for the action of de
novo methylation. These genes could then acquire differential
methylation states, and thus different expression states,
on a generation-by-generation basis, induced by relevant
environmental circumstances. In support of this, RNAi of
the Dnmt3 de novo methyltransferase in honey bees led to
changes in reproductive morph specification [92].

These previous studies relied on indirect measures of
methylation specifically focused on methylation at CG din-
ucleotides. A catalog of all base positions in the genome that
exhibit methylation, known as a “methylome,” would allow
for global comparative analyses of DNA methylation. This
has been achieved in other organisms (e.g., [91, 93, 94]), and
indeed a pea aphid methylome is currently being pursued (O.
Edwards, D. Tagu, J. A. B., S. Jaubert-Possamai, unpublished
data). With the methylome, it will be possible to answer the
following questions: Are there differences in CG, CHG, or
CHH methylation patterns between winged and wingless or
sexual and asexual females? If so, what specific genes exhibit
methylation differences between morphs? Does methylation
associate with alternative splicing? Does methylation have a
role in regulating the abundant paralogs in the pea aphid
genome? Does methylation correlate with expression levels?

7. Chromatin Modification and
Remodeling Pathway

The production of a cell fate relies on stable gene expression
patterns specified by intrinsic and/or external factors during
development. Current models propose that DNA methyla-
tion and chromatin architecture set stable, yet modifiable,
patterns of gene expression. An array of different DNA-
bound proteins, largely consisting of histones, acts in concert
to create higher-order structures that alter chromatin shape
from local to global scales. Histones H2A, H2B, H3, and
H4 form an octamer on which DNA is wrapped, forming
a structure known as a nucleosome, that can make DNA
locally inaccessible to DNA-binding factors. Histone tails
extend from the core octamer and are available for modifi-
cation such as acetylation, ADP ribosylation, methylation,
phosphorylation, SUMOylation, and ubiquitylation. These
modifications affect local chromatin function by adjusting
its accessibility and attractiveness to regulatory complexes
[95]. Variant histones can replace core octamer subunits,
endowing the local chromatin environment with unique
structural and functional properties [96]. Nucleosomes
themselves can be repositioned to allow local access to DNA

by nucleosome remodeling complexes [97]. This large array
of activities is thought collectively to establish a “code” of
chromatin characteristics, which reflects the functional and
structural state of the underlying chromosomal DNA. His-
tone modifications, nucleosome remodeling, DNA methy-
lation, and even small RNA pathways may be functionally
linked and interdependent in a context-dependent manner
[98–100].

Increasing evidence shows that a simple model of “open”
and “closed” chromatin is insufficient to explain functional
and structural differences among different regions of the
genome. Instead, chromatin structure can be viewed as
a composite of structural and functional domains with
unique combinations of histone post-translational modifica-
tions, DNA methylation patterns, variant histone members,
nucleosome position and chromosome territory within the
nucleus [101, 102]. Chromatin structure is maintained across
mitotic divisions, although theoretical and experimental
evidences have not yet converged on a mechanism for that
transmission.

A survey of aphid chromatin genes is the first step in
understanding how heritable chromatin structure may be
associated with aphid polyphenisms. The current draft of
the aphid genome indicates expansions of antagonistic chro-
matin modifying and remodeling pathways [61]. Histones
and histone variants are conserved in the aphid genome at
numbers similar to Drosophila melanogaster, though histone
variants such as Cenp-A and protamines appear absent [61].
The major chromatin remodeling complexes (SWI/SNF,
CHD1, ISWI, and NURD) are represented in the aphid
genome. The most striking observation is that expansions
of gene families involved in histone acetylation are mirrored
by expansions of genes involved in histone deacetylation.
A similar situation is seen for genes involved in histone
methylation and histone demethylation [61, 103]. Since the
effect of acetylation and methylation on chromatin state
and gene expression is context-dependent, these multiple
antagonistic activities could contribute towards a complex
regulation of chromatin state in aphids.

Evidence thus far for morph-associated chromatin archi-
tecture in aphids is in its early stages. The holocentric struc-
ture of aphid chromosomes (which presumably have diffuse
kinetochores) could have effects on higher-order chromatin
structure. Stainings of pea aphid chromatin detected several
histone modifications, such as methylation of histone H3
on lysine 4 and lysine 9 [61, 77, 104]. In particular, largely
overlapping differential histone methylation of these residues
was observed in specific regions of chromatin [61]. Dupli-
cations of antagonistic histone modifying genes could be
interpreted as a “need” for a balance of chromatin modifying
activities. Alternatively, these duplications could be merely
coincident with the general level of gene duplication in the
aphid genome and may not have biological relevance for
any specific trait. Chromatin immunoprecipitation (ChIP),
expression analysis, and evolutionary analysis of these
genes should help distinguish between these hypotheses.
Additionally, next-generation sequencing technologies can
be used to survey morph-specific chromatin modifications
[105].
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8. Small RNA Pathway

Work over the last 15 years has implicated small noncoding
RNAs as a layer of epigenetic control. Small RNAs direct
the transcriptional or post-transcriptional repression of gene
activity in a gene-specific manner. Classes of small non-
coding RNAs include endogenous microRNAs (miRNAs);
exogenous and endogenous short interfering RNAs (siRNAs
and esiRNAs); and Piwi protein-associated small RNAs
(piRNAs) [106–108]. This dizzying array of small RNAs is
generated by transcription either of endogenous miRNA-
and siRNA-encoding genes, or of repetitive elements, trans-
posons and noncoding regions [109]. These classes differ in
their biogenesis, processing, function, and partner proteins
[110]. Here, we discuss progress in studying aphid miRNA
and piRNA pathways.

The miRNA and siRNA pathways provide animals and
plants a means of attenuating the activities of viruses and
selfish genetic elements [111]. Additionally, miRNAs post-
transcriptionally regulate the expression of many endoge-
nous genes [112, 113]. Primary miRNA transcripts in the
form of a stem-loop are processed by the Drosha/Pasha com-
plex [114] into pre-miRNAs which are exported from the
nucleus via Exportin 5 [115–117]. The Dicer1/Loquacious
complex then pares the pre-miRNA down to a 21-nucleotide
miRNA duplex [118–120]. Mature miRNAs or endogenous
siRNAs are then loaded onto a RNA-induced silencing
complex (RISC), which contains an Argonaute (Ago) family
member protein, of which there are five in Drosophila
(Ago1–3, Piwi and Aubergine) [121]. In Drosophila, Ago1-
containing RISCs bind miRNAs while Ago2 RISCs contain
siRNAs [122]. One strand of the duplex is retained in
this complex as the single-strand miRNA or “guide” siRNA
[123, 124]. RISC facilitates annealing of the single-strand
miRNA to 3′ UTRs of target mRNAs to either block protein
translation and promote target mRNA degradation [109], or,
if the miRNA is nearly fully complementary to the target,
direct cleavage of the target mRNA by RISC, similar to a
siRNA (Figure 2).

In Drosophila, Ago3 and the germline-specific Piwi and
Aubergine Argonaute subfamily members associate with
Piwi-associated piRNAs [125–127]. This class of small RNAs
arises from “piRNA clusters” in heterochromatin in a
manner distinct from siRNAs [107]. Piwi and Aubergine
proteins exhibit “Slicer” activity when bound to piRNAs and
cleave their piRNA’s cognate RNA [128, 129]. Tudor domain
proteins and arginine methylation of Piwi/Aubergine by the
PRMT5 methyltransferase modulate Piwi/Aubergine associ-
ation with piRNAs [130–133]. In addition, Piwi subfamily
members may regulate the translation of germline transcripts
[134, 135] and affect chromatin architecture to promote
silencing [69, 136–138].

Analysis of the aphid genome sequence has revealed
that the miRNA pathway has expanded in aphids [139].
Drosophila contains two Dicer genes, Dicer1 and Dicer2,
while mammals and C. elegans possess only one Dicer [140].
Jaubert-Possamai et al. [139] showed that the aphid genome,
however, contains single copies of the Dicer2 and Ago2
siRNA pathway components and duplicates of Pasha, Dicer1,

Loquacious and Ago1 miRNA pathway genes relative to
Drosophila (Figure 2). Aphid Ago1b and two of the four Pasha
paralogs have undergone rapid evolution since duplication.
The aphid dcr-1a and dcr-1b genes are lineage-specific
duplications distinguished by a 44-amino acid insertion in
the first RNAse III domain of DCR-1B. The aphid-specific
duplication of Loquacious, a partner protein of Dicer1 that
binds to precursor miRNAs and esiRNAs, complements the
Dicer1 duplication. These potential binding partners could
form an array of complexes that regulate gene expression.

The identification of miRNAs encoded by the aphid
genome firmly establishes the presence of active small RNA
pathways in aphids [141]. Legeai et al. [141] used homology,
deep sequencing, and predictive methods to converge on
149 pea aphid miRNAs, of which 55 are conserved among
insects and 94 are thus far aphid-specific. Seventeen miR-
NAs showed differential expression among asexual, sexuals-
producing asexual, and sexual females. Polyphenic locusts
[142] and honeybees [143] also express small RNAs in
morph-specific patterns. Aphid miRNAs can now be tested
for their roles in aphid plasticity. As of yet, no aphid esiRNAs
or piRNAs have been identified, but these small RNAs could
be identified by prediction or by empirical methods.

The piRNA pathway also expanded in aphids. Within
aphids, the Piwi/Aubergine subfamily has undergone exten-
sive gene duplications, with eight Piwi paralogs and three
Ago3 paralogs found in the genome ([144], and Figure 2).
Parallel to the expansion of aphid Piwi/Aubergine members,
the aphid genome contains three PRMT5 methyltrans-
ferase paralogs (compared to one in Drosophila) [61],
at least three Tudor-domain containing proteins and two
copies of the HEN1 2′-OH RNA methyltransferase (D. G.
Srinivasan, unpublished results). Similarly, in C. elegans,
27 Argonaute family proteins have been identified—some
without Slicer activity—that act in different aspects of the
small RNA pathway [145]. This may be the case in aphids
as aphid Piwi paralogs do show differential expression
between different aphid morphs [144]. The high number
of repetitive and mobile genetic elements in the aphid
genome mirrors the expansion of the Argonaute protein
family in aphids [42, 44, 146]. This suggests morph-specific
regulation of transposons and mRNAs in a Piwi-dependent
manner.

9. Current Hypotheses and Comparisons with
Other Arthropod and Nonarthropod Systems

Most of what is known about the patterns and processes
associated with DNA methylation come from studies in
noninsect systems, primarily in mammals and plants. From
these studies, a view emerged that methylation levels are high
in CpG contexts, with transposons, other repeats, promoters,
and gene bodies exhibiting methylation [78, 93, 147].
Promoter methylation is associated with a downregulation
of transcription. More recent studies have shown that gene
body methylation is ancestral to eukaryotes, but other
methylation patterns, such as methylation of transposons,
are taxon specific [148, 149].
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Methylation in insects has traditionally been understud-
ied due to the finding that Drosophila melanogaster, the
most well-developed insect model, has almost no detectable
DNA methylation [150]. It was therefore assumed that DNA
methylation does not play an integral role in insect biology as
it does in mammals and plants. Recent efforts have changed
this impression. Whole-genome bisulfite sequencing of Apis
mellifera [151] and Bombyx mori [91] has shown that insect
genomes are, indeed, methylated. However, these studies
have also shown that there are key differences between
insect methylomes and vertebrate or plant methylomes. First,
less than one percent of cytosines in insects is methylated
compared with 20–80% in plants and mammals. Second,
as mentioned above, insects exhibit variable numbers of
each of the Dnmt enzymes. Third, methylation in insects is
highest in gene bodies. And finally, transposable elements

and other repetitive elements do not appear to be methylated
at high levels. One pattern is shared among insects, plants,
and mammals: genes with the highest and lowest expression
levels show the least gene body methylation, while those with
moderate levels of expression are the most highly methylated
[68, 88, 148].

One intriguing idea that insect methylation studies have
raised is the possibility that gene body methylation controls
alternative splicing of transcripts. In fact, methylation in A.
mellifera is enriched near alternatively spliced exons, and
alternative transcripts of at least one gene are expressed
in workers versus queens [68, 151]. Thus, methylation
could control alternative splicing, with alternative transcripts
being deployed to achieve alternative phenotypes. In general,
because of their smaller genomes, accessibility as study
organisms, and gene body methylation, insects may emerge



8 Genetics Research International

as valuable systems for understanding the causes and conse-
quences of DNA methylation [82].

How can DNA methylation be coupled to other epi-
genetic pathways in aphids? The measurement of relative
methylation and accompanying chromatin states is a clear
first step to test the connections between aphid gene
duplications, gene expression, and chromatin structure.
The interplay between chromatin modifications and DNA
methylation may converge on differential expression and/or
splicing of morph-specific genes. Additionally, small RNAs
are expressed in morph-specific expression patterns in
polyphenic locusts [142] and honeybees [143], and loss
of piwi in Drosophila is associated with the loss of hete-
rochromatic histone modifications and of HP1 association
with chromatin in somatic cells [138]. Interestingly, the
piRNA pathway in Drosophila has been associated with the
suppression of phenotypic variation through the Hsp90
pathway [152] and with de novo DNA methylation of an
imprinted locus in mice [153]. Additionally, Drosophila
piRNAs can be epigenetically transmitted from mother
to egg and affect the suppression of transposons in the
next generation [154]. Identification, characterization, and
correlation of small RNAs, DNA methylation, and chromatin
structure to polyphenic aphid traits will help resolve the
epigenetics underlying aphid life cycles.
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