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Abstract: To enhance the encryption proficiency and encourage the protected transmission of
multiple images, the current work introduces an encryption algorithm for multiple images
using the combination of mixed image elements (MIES) and a two-dimensional economic map.
Firstly, the original images are grouped into one big image that is split into many pure image
elements (PIES); secondly, the logistic map is used to shuffle the PIES; thirdly, it is confused with the
sequence produced by the two-dimensional economic map to get MIES; finally, the MIES are gathered
into a big encrypted image that is split into many images of the same size as the original images.
The proposed algorithm includes a huge number key size space, and this makes the algorithm secure
against hackers. Even more, the encryption results obtained by the proposed algorithm outperform
existing algorithms in the literature. A comparison between the proposed algorithm and similar
algorithms is made. The analysis of the experimental results and the proposed algorithm shows that
the proposed algorithm is efficient and secure.

Keywords: image encryption; multiple-image encryption; two-dimensional chaotic economic map;
security analysis

MSC: 68U10; 68P25; 94A60

1. Introduction

A huge number of images are produced in many fields, such as weather forecasting, military,
engineering, medicine, science and personal affairs. Therefore, with the fast improvement of computer
devices and the Internet, media security turns into a challenge, both for industry and academic research.
Image transmission security is our target. Many authors have proposed many single-image encryption
algorithms to solve this problem [1–8]. Single-image encryption algorithms involve those using a
chaotic economic map [1,2], using a chaotic system [3], via one-time pads-a chaotic approach [4],
via pixel shuffling and random key stream [5], using chaotic maps and DNA encoding [6] and using
the total chaotic shuffling scheme [7]. In [8], the authors proposed two secret sharing approaches for 3D
models using the Blakely and Thien and Lin schemes. Those approaches reduce share sizes and remove
redundancies and patterns, which may ease image encryption. The authors in [9] concluded that
the dynamic rounds chaotic block cipher can guarantee the security of information transmission and
realize a lightweight cryptographic algorithm. A single-image can encrypt multiple images repeatedly,
but the efficiency of that encryption is always unfavorable. Researchers have increased their attention
towards multiple-image encryption because a high efficiency of secret information transmission is
required for modern multimedia security technology. Many multiple-image algorithms have been
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presented. The authors of [10] presented a multiple-image algorithm via mixed image elements and
chaos. A multiple-image algorithm using the pixel exchange operation and vector decomposition
was proposed in [11]. In [12], the authors presented an algorithm using mixed permutation and
image elements. The authors presented multiple-image encryption via computational ghost imaging
in [13]. In [14], the authors proposed an algorithm using an optical asymmetric key cryptosystem.
A multiple-image encryption algorithm based on spectral cropping and spatial multiplexing was
presented in [15]. The authors of [16] proposed a multiple-image encryption algorithm based on
the lifting wavelet transform and the XOR operation based on compressive ghost imaging scheme.
Even with this large number of proposed algorithms, some practical problems still exist. For instance,
some multiple-image algorithms have faced the problem that the original images cannot be recovered
completely [17–19]. Those algorithms were used to encrypt multiple images, but the corresponding
original images were not recovered completely. This leads to lossy algorithms, which are not
appropriate for those applications needing images with high visual quality. Another problem is
that the complex computations of some algorithms affect the encryption efficiency [20,21]. Therefore,
good techniques are required for solving these problems [22]. In the current paper, a new efficient
multiple-image encryption algorithm using mixed image elements (MIES) and a two-dimensional
chaotic economic map is proposed. The advantages of this algorithm are that it is able to recover plain
images completely and simplifies the computations. Experimental results demonstrate its practicality
and high proficiency.

The rest of the paper is organized as follows. The pure image elements (PIES) and the MIES are
defined in Section 2. In Section 3, a brief introduction to the two-dimensional chaotic economic map is
presented. The secret key generation is presented in Section 4. In Section 5, a new encryption algorithm
of multiple images is designed. Experimental results and analyses are introduced in Section 6. Section 7
presents a comparison between the proposed algorithm and the identical algorithms. Conclusions are
given in Section 8.

2. PIES and MIES

Matrix theory can be used to divide a big matrix into many small matrices and vice versa.
Furthermore, in the image processing field, it is simple to divide an image into many small images and
vice versa. For instance, Figure 1 can be divided into 16 small images with an equal size, as displayed
in Figure 2. Therefore, the original image can be retrieved from these 16 images.

Figure 1. Lena image with a 512× 512 size.

Assume that O1m×n, O2m×n, · · · , Okm×n are k original images. O1m×n can be divided into a
small images set, {B1i}. Each element B1i ∈ {B1i} is referred to as the pure image element.
On the other hand, k sets of PIES {B1i}, {B2i}, · · · , {Bki} can be created, which correspond to
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O1m×n, O2m×n, · · · , Okm×n, respectively. A large set C = {B1i} ∪ {B2i} ∪ · · · ∪ {Bki} can be obtained
by mixing all PIES together. Each element Ci ∈ C is referred to as the mixed image element.

The current paper presents a new encryption algorithm of multiple images using MIES and the
two-dimensional chaotic economic map. The secret key is very important to restore the original images
from the MIES.

Figure 2. Pure image elements (PIES) of the Lena image with a 512× 512 size.

3. The Two-Dimensional Chaotic Economic Map

The study of the following two-dimensional chaotic economic system (dynamical system) was
introduced in [23]:

αn+1 = αn + k
[

a− c− bαn

γn
− b log(γn)

]
,

βn+1 = βn + k
[

a− c− bβn

γn
− b log(γn)

]
,

 (1)

where:
γn = αn + βn, n = 0, 1, 2, ...

There are six parameters in the chaotic economic map (1). These parameters have economic
significance; the parameter a > 0 is used to capture the economic market size, while the market price
slope is referred to by the parameter b > 0. To obtain a chaotic region, a must be greater than b and c.
A fixed marginal cost parameter is denoted by c ≥ 0, and the speed of adjustment parameter k > 0.
The chaotic behavior of the chaotic economic map (1) at a = 3, b = 1, c = 1, α0 = 0.19, β0 = 0.15 and
k ∈ [0, 6.0001] is shown in Figure 3. In the current paper, the parameters a = 3, b = 1, c = 1 and
k = 5.9 of the map (1) have been chosen in the chaotic region having positive Lyapunov exponents, as
displayed in Figure 4.

Figure 3. The chaotic behavior of the map (1) at a = 3, b = 1, c = 1, α0 = 0.19, β0 = 0.15 and
k ∈ [0, 6.0001].
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Figure 4. Lyapunov exponent for the chaotic economic map (1) at a = 3, b = 1, c = 1, α0 = 0.19,
β0 = 0.15 and k ∈ [0, 6.0001].

4. The Secret Key Generation

Let B = (bij), i = 1, 2, ..., M, j = 1, 2, ..., N, be the big image created by combining the k original
images of size m×, where bij refers to the pixel value at the position (i, j) and (M, N) is the size of
the big image B. The key mixing proportion factor can be used to calculate Kz, z = 1, 2, 3, · · · , 10,
as follows:

Kz =
1

256
mod

 zM
8

∑
i= (z−1)M

8 +1

N

∑
j=1

bij, 256

 (2)

Then, update the initial condition Θ0 using the following formula:

Θ0 ←
(Θ0 + K)

2
, (3)

where Θ0 = x10, x20, x30, x40, r10, r20, r30, r40, q10, q20 and K = Kj, j = 1, 2, · · · , 10, receptively.
After that, take four initial values, x10, x20, x30, x40, four parameters for the logistic map,

r10, r20, r30, r40, two initial values for the system, q10, q20, and four system parameters, a, b, c, k.

5. The Proposed Multiple-Image Algorithm

To encrypt multiple images jointly, the current work presents a new encryption algorithm of
multiple images using MIES and the two-dimensional chaotic economic map. The flowchart of the
new encryption algorithm is shown in Figure 5.

The proposed algorithm is processed as follows:
In the multiple-image decryption, the same chaotic economic sequences are generated on the

multiple-image encryption that will be used to recover the original images and using the inverse steps
of Algorithm 1.



Entropy 2018, 20, 801 5 of 21

Start

Original 1, Original 2, ..., Original k
Original images

Combining

Big image

Segmenting

Pure image elements

Shuffling
x10, r10, x20, r20

Logistic map

Pure image elements after shuffling
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2D CEM map

Mixed image elements

Combining

Big scrambled image

Shuffling
x30, r30, x40, r40

Logistic map

Big scrambled image after shuffling

Segmenting

Image 1, Image 2, ..., Image k
Encrypted images

Stop

Figure 5. Flowchart of multiple-image encryption.
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Algorithm 1 Multiple-image encryption
Input: k original images, O1, O2, · · · , Ok, xi0, ri0, i = 1, 2, 3, 4 for logistic shuffling and

a, b, c, k, α0, β0 for the two-dimensional chaotic economic map (1).
Output: Encrypted images Image 1, Image 2, · · · , Image k.
Step 1: Create a big image by combining the k original images.
Step 2: Divide the big image into PIES of m1 × n1 size such that mod(m, m1) = 0,

mod(n, n1) = 0 and the original images with size m× n.
Step 3: Shuffle the pixels of PIES using the logistic map:

xn = rxn−1(1− xn−1), n = 1, 2, 3, · · · , and use the parameters (x10, r10) and (x20, r20)
for shuffling the rows and the columns, respectively.

Step 4: Generate the chaotic economic sequences using:

αn+1 = αn + k
[

a− c− bαn

γn
− b log(γn)

]
,

βn+1 = βn + k
[

a− c− bβn

γn
− b log(γn)

]
,

where n = 0, 1, 2, · · · , a = 3, b = 1, c = 1, α0 = 0.001, β0 = 0.002 and k = 5.9.
Step 5: Do the following preprocessing for the generated values in Step 4:

αi = f loor(mod(αi × 1014, 256)) and βi = f loor(mod(βi × 1014, 256)),
Step 6: Convert αi and βi into binary vectors, say A and B, respectively.
Step 7: Perform a bit-wise XOR between A and B, say C = bitxor(A,B).
Step 8: Convert the pixels of shuffled PIES into a binary vector, say D.
Step 9: Perform a bit-wise XOR between C and D, say E = bitxor(C,D).
Step 10: Combine these mixed scrambled PIES into a big scrambled image.
Step 11: Shuffle the pixels of the big scrambled image using the logistic map, and use the

parameters (x30, r30) and (x40, r40) for shuffling the rows and the columns,
respectively.

Step 12: Divide it into images of equal size m× n. These images are viewed as encrypted
images, say Image 1, Image 2, · · · , Image k.

Step 13: End.

6. Experimental Results and Analyses

To show the efficiency and robustness of the proposed algorithm, nine (k = 9) original gray
images of a 512× 512 size are shown in Figure 6. Let x10 = 0.1, x20 = 0.2 be the initial values and
r10 = 3.9985, r20 = 3.9988 be the parameters of the logistic map for shuffling the PIES. Furthermore,
let x30 = 0.3, r30 = 3.9984 and x40 = 0.4, r40 = 3.9986 be the initial values and the parameters of
the logistic map for shuffling the big scrambled image. Let α0 = 0.19, β0 = 0.15, a = 3, b = 1, c = 1
and k = 5.9 be the initial values and the control parameters of the chaotic economic map (1). All nine
original gray images are combined into one big image, which is displayed in Figure 7. Figures 8–13
show the big scrambled images that correspond to the MIES of equal sizes 4 × 4, 8 × 8, 16 × 16,
32× 32, 64× 64 and 128× 128, respectively. The corresponding encrypted images of MIES with size
64× 64 are shown in Figure 14. Furthermore, the corresponding decrypted images are displayed
in Figure 15. Experiments are performed with MATLAB R2016a software to execute the proposed
algorithm on a laptop with the following characteristics: 2.40 GHz Intel Core i7-4700MQ CPU and
12.0 GB RAM memory.

The performance of the presented multiple-image encryption algorithm is investigated in detail
as follows.
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Figure 6. Original images.

Figure 7. Big image.

Figure 8. Mixed image elements (MIES) with equal size 4× 4.



Entropy 2018, 20, 801 8 of 21

Figure 9. MIES with equal size 8× 8.

Figure 10. MIES with equal size 16× 16.

Figure 11. MIES with equal size 32× 32.
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Figure 12. MIES with equal size 64× 64.

Figure 13. MIES with equal size 128× 128.

Figure 14. Encrypted images. (a) encrypted image of airplane. (b) encrypted image of barbara.
(c) encrypted image of lena. (d) encrypted image of aerial. (e) encrypted image of boat. (f) encrypted
image of peppers. (g) encrypted image of baboon. (h) encrypted image of cat. (i) encrypted image of
butterfly.
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Figure 15. Decrypted images.

6.1. Analysis of the Key Space

A large key space is required to make the brute-force attack infeasible [10]. In the proposed algorithm,
the key space was selected as follows. In the logistic map, x10, r10, x20, r20, x30, r30, x40, r40 were selected
to shuffle rows and columns. α0, β0, a, b, c and k were selected for the chaotic economic map (1). Then, the
key space size was 1015×14 = 10210 if the computer precision were 10−15. Table 1 shows that the key
spaces in [10,20,22] were less than the presented key space. Therefore, it was large enough to make the
brute-force attack infeasible.

Table 1. Comparison of the current key space with other key spaces in the literature.

Algorithm Proposed Algorithm Ref. [10] Ref. [20] Ref. [22]

Key Space 10210 1060 2451 = 5.8147× 10135 1.964× 2428 = 1.3614× 10129

6.2. Analysis of the Key Sensitivity

An excellent multiple-image encryption algorithm should be very sensitive to modifying any
key of the encryption and the decryption processes. Making a small modification to the key of
the encryption, the output encrypted image (the second one) should be absolutely unlike the first
encrypted image. Furthermore, if the encryption and decryption keys have a small difference, then the
encrypted image cannot be restored correctly [23]. The restored images of the encrypted images in
Figure 14 with a small change of the secret key, say α0 = 0.190000000000001 instead of α0 = 0.19, and
the other parameters unchanged, are shown in Figure 16. The result shows that a small modification
of the key can lead to completely different encrypted images, and the restoration of original images
becomes very complicated. As the sensitivity of x10, r10, x20, r20, x30, r30, x40, r40, β0, a, b, c and k
was the same as α0, their examples are omitted here.
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Figure 16. Decrypted images with the correct secret key, except α0 = 0.190000000000001, instead of
α0 = 0.19.

6.3. Analysis of the Histogram

The original images’ histograms are shown in Figure 17, while the corresponding encrypted
images histograms are shown in Figure 18. Figures 16 and 18 display that the original images had
different histograms, while the corresponding encrypted images histograms had a uniform distribution
approximately. Therefore, the encryption process damaged the original images’ features.

Figure 17. Histograms of the original images.
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Figure 18. Histograms of the encrypted images.

6.4. Analysis of Histogram Variance

The histogram variance of a gray image is defined by:

Var(V) =
1

256

255

∑
i=0

[vi − E(V)]2, (4)

where E(V) = 1
256 ∑255

i=0 vi and V is the pixel number vector of 256 gray levels.
This can clarify the impact of the encrypted image to some degree. In a perfect random image, all

the gray levels have equal probabilities. Therefore, the histogram variance equals zero. Therefore, the
histogram variance of the encrypted image via an effective encryption algorithm should tend to zero.
Table 2 shows the values of the histogram variances of the encrypted images of the original images in
Figure 19 via Tang’s algorithm [20], Zhang’s algorithm [10] and the proposed algorithm, respectively.

Table 2. Comparison of histogram variances between three algorithms.

Algorithm Tang’s Algorithm [20] Zhang’s algorithm [10] Proposed Algorithm

Figure 19a 1261.8 1155.5 1055.5
Figure 19b 1192.3 989.6 984.8
Figure 19c 1213.1 1111.6 1079.7
Figure 19d 8710.3 929.6 916.9
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Figure 19. Input images. (a) Elaine; (b) Baboon; (c) Boat; (d) Couple.

6.5. Analysis of Information Entropy

In a digital image, the information entropy can be an indicator of the pixel values’ distribution.
For a perfect random image, P(vi) =

1
256 , i = 0, 1, 2, · · · , 255, where vi is the i-th gray level of the image

and P(vi) is the probability of vi. Furthermore, it has information entropy = 8. Now, the information
entropy is computed by [24]:

H(V) = −
255

∑
i=0

P(vi)log2P(vi) (5)

Table 3 lists the values of information entropy for the encrypted images in Figure 14.
The information entropy of the encrypted images of the proposed algorithm is better than the
information entropy of the encrypted images of the multiple-image encryption algorithm in [10].
Therefore, the efficiency and security of the proposed algorithm is clear.

Table 3. Information entropy for the encrypted images in Figure 14.

Images (a) (b) (c)
Entropy 7.9984 7.9987 7.9986

Images (d) (e) (f)
Entropy 7.9982 7.9986 7.9983

Images (g) (h) (i)
Entropy 7.9986 7.9989 7.9986

6.6. Analysis of the Correlation Coefficients

In the image encryption, the correlation coefficient was used to measure the correlation between
two neighboring pixels, horizontally, vertically and diagonally neighboring. It is evaluated by [25]:

RV1V2 =
COV(V1, V2)√
D(V1)

√
D(V2)

(6)

where:

COV(V1, V2) =
1
N

N

∑
i=1

(v1i − E(V1))(v2i − E(V2)),
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D(V) =
1
N

N

∑
i=1

(vi − E(V)),

and

E(V) =
1
N

N

∑
i=1

vi.

Three thousand pairs of pixels were selected randomly in all three directions from the two images
(original and encrypted); see Figures 19a and 21a, respectively. Then, the correlation coefficients of
the two neighboring pixels were computed using Equation (4). The neighboring pixel correlation of
Figures 19a and 20a are plotted in Figures 21 and 22. Their correlation coefficients are illustrated in
Tables 4 and 5. The original images’ correlation coefficients were approximately equal to one, while
the corresponding ones of encrypted images were approximately equal to zero. The results conclude
that the proposed algorithm can conserve the image information.

Figure 20. Encrypted images of the proposed algorithm. (a) Elaine; (b) Baboon; (c) Boat; (d) Couple.

Table 4. The original images’ correlation.

Directions Horizontal Vertical Diagonal

Figure 19a 0.9757 0.9729 0.9685
Figure 19b 0.9228 0.8597 0.8476
Figure 19c 0.9383 0.9715 0.9224
Figure 19d 0.9439 0.8687 0.8334

Table 5. The encrypted images’ correlations.

Directions Horizontal Vertical Diagonal

Figure 20a −0.0035 0.0014 0.0007
Figure 20b 0.0036 −0.0005 0.0010
Figure 20c 0.0015 0.0013 −0.0017
Figure 20d −0.0008 0.0008 0.0031
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Figure 21. Neighboring pixel correlation of Figure 19a (original image). (a) Horizontal direction;
(b) Vertical direction; (c) Diagonal direction.



Entropy 2018, 20, 801 16 of 21

Figure 22. Neighboring pixel correlation of Figure 20a (encrypted image). (a) Horizontal direction;
(b) Vertical direction; (c) Diagonal direction.

6.7. Analysis of Differential Attack

In the differential attack, the encryption algorithm was used to encrypt the original image before
and after modification, then the two encrypted images were compared to discover the link between
them [26]. Therefore, a good image encryption algorithm should be the desired property to spread the
effect of a minor change in the original image of as much an encrypted image as possible. Number of
pixels change rate (NPCR) and unified averaged changed intensity (UACI) are famous measurements,
which were used to measure the resistance of the image encryption algorithm for differential attacks.
The NPCR and UACI are defined as follows,

NPCR =
∑i,j d(i, j)

M× N
× 100%, (7)

UACI =
1

M× N

[
∑
i,j

|I1(i, j)− I2(i, j)|
255

]
× 100%. (8)

where:

d(i, j) =

{
0 if I1(i, j) = I2(i, j),

1 if I1(i, j) 6= I2(i, j)
(9)
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M and N are the width and height of the original and the encrypted images; I1 and I2 are the
encrypted images before and after one pixel changed from the original image. For example, a pixel
position (71, 42) was selected randomly, and it has the value 159 in Figure 19a. The pixel value was
modified to 244 to examine the ability to combat the differential attacks. Table 6 lists the results
of Figure 19a–d. The results show that a small modification in the plain image will result in a big
modification in the cipher image. Therefore, the proposed algorithm can face differential attacks.

Table 6. The values of number of pixels change rate (NPCR) and unified averaged changed intensity
(UACI) for Figure 19.

Image NPCR UACI

Figure 19a 99.62% 33.44%
Figure 19b 99.61% 33.85%
Figure 19c 99.62% 33.42%
Figure 19d 99.60% 33.18%

6.8. Chosen/Known Plaintext Attack Analysis

Attackers have used two famous attacks called chosen-plaintext attack and known-plaintext
attack for attacking any cryptosystem. The secret keys are not only dependent on the given initial
values and system parameters, but also on the plain images. Therefore, when the plain images are
changed, the secret keys will be changed in the encryption process. Therefore, attackers cannot take
important information by encrypting some predesigned special images. Therefore, the proposed
algorithm robustly resisted both attacks.

6.9. Noise Attack Analysis

The encrypted images in Figure 20 are distorted by adding Gaussian noise with mean = 0 and
variance = 0.001 and salt and pepper noise with density = 0.05. The corresponding decrypted images
are displayed in Figure 23. Moreover, Table 7 shows the mean squared error (MSE) and the peak
signal-to-noise ratio (PSNR) between input images and decrypted images based on the proposed
algorithm. Based on Table 7, we can conclude that the proposed algorithm had the highest resisting
ability to salt and pepper noise since the PSNR was more than 65 (dB).

Figure 23. Results of noise attack analysis: (a–d) the decrypted images after adding Gaussian noise
with mean = 0 and variance = 0.001; (e–h) the decrypted images after added salt and pepper noise with
density = 0.05.

6.10. Analysis of Occlusion Attack

The current section is assigned to the analyses of occluded data decryption. Data that are occluded
are hidden or ignored data inside the process. Firstly, 128× 128, 512× 512, 512× 1024 and 512× 1536
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sized data occlusions of the horizontally concatenated encrypted image were performed. Secondly,
the decrypted image of each one was analyzed. Figure 24 shows the results of the occlusion attack.
Based on Figure 24, the decrypted images of 128× 128, 512× 512, 512× 1024 sized occluded encrypted
images were disfigured, but discernible by the human eye, while decrypted images of 512× 1536 sized
occluded encrypted images were not restored. Hence, the proposed algorithm could resist up to a 50%
(512× 1024) occlusion attack.

Figure 24. Results of occlusion attack analysis: (a,f,k,p) horizontally concatenated encrypted image
with a 128× 128, 512× 512, 512× 1024 and 512× 1536 size of occlusion, respectively; (b–e), (g–j), (l–o)
and (q–t) decrypted “Elaine”, “Baboon”, “Boat” and “Couple” images, respectively, when there is
a 128× 128, 512× 512, 512× 1024 and 512× 1536 size of occlusion in the horizontally concatenated
encrypted image.
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Table 7. Measurements of the noise attacks of the proposed algorithm.

Image Noise MSE PSNR

Figure 23a 0.0603 60.3255
Figure 23b Gaussian 0.0602 60.3346
Figure 23c variance = 0.001 0.0474 61.3691
Figure 23d 0.0560 60.6455

Figure 23a 0.0184 65.4921
Figure 23b salt & pepper 0.0162 66.0291
Figure 23c density = 0.05 0.0172 65.7719
Figure 23d 0.0155 66.2276

7. Comparison with Other Algorithms

A comparison between Tang’s algorithm [20] and Zhang’s algorithm was performed in [10].
The result of the comparison concluded that Zhang’s algorithm was faster than Tang’s algorithm.
Therefore, a comparison between Zhang’s algorithm and the proposed algorithm is presented.
The same four original gray images are chosen as input images and are displayed in Figure 19.
Furthermore, the size of MIES = 64× 64 is selected. The encrypted images of the proposed algorithm
and Zhang’s algorithm are shown in Figures 20 and 25, respectively. The computational times
of both algorithms are listed in Table 8. Although the time of Zhang’s algorithm is less than the
proposed algorithm, the encrypted images’ histograms of the proposed algorithm are uniformly
distributed, and the encrypted images histograms of Zhang’s algorithm are not uniformly distributed
(see Figure 13 in [10]). Therefore, the experimental results conclude that the proposed algorithm is
efficient. The security of Zhang’s algorithm is a little weaker than the proposed algorithm since the key
space size of the proposed algorithm is larger than Zhang’s algorithm and two additional shuffling
operations are added to the proposed algorithm, one for PIES and one for the big scrambled image.

Figure 25. Encrypted images of Zhang’s algorithm.

Table 8. Computational time (seconds).

Algorithm Time

Zhang’s algorithm [10] 2.169
Proposed algorithm 2.386
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8. Conclusions

The current paper has proposed a new multiple-image encryption algorithm using combination
of MIES and a two-dimensional chaotic economic map. The key space size of the proposed algorithm
is 10210. Therefore, it gives priority to the proposed algorithm to resist against brute-force attack.
The experimental results have demonstrated that the proposed algorithm produced encrypted
images that have histograms with uniform distributions. In addition, the proposed algorithm has
demonstrated that the encrypted images have information entropies close to eight. It robustly resists
chosen/known plaintext attacks, has the highest resisting ability to salt and pepper noise and can
resist up to a 50% (512× 1024) occlusion attack. Comparison experiments with Zhang’s algorithm
were performed. Furthermore, the analyses of the algorithm conclude that the proposed algorithm is
secure and efficient. It can be applied in several fields like weather forecasting, military, engineering,
medicine, science and personal affairs. In this paper, the proposed idea was simulated on grayscale
images, which had the same size. In the future, the proposed idea will applied on grayscale images
with different sizes.
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