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Abstract

Background—Patients with follicular lymphoma (FL) have heterogeneous outcomes. Predictor 

models able to distinguish, at diagnosis, patients at high versus low risk of progression are still 

needed.

Methods—The primary objective of this study was to use gene-expression profiling data to build 

a signature predictive of outcome in patients treated in the rituximab era. In a retrospectively 

assembled training cohort of 134 pretreatment FL patients from the prospective randomized 

PRIMA trial, we developed an expression-based predictor of progression-free survival (PFS) that 

was further evaluated in FFPE samples obtained from three independent international cohorts, 

using NanoString technology. The validation cohorts comprised a distinct set of patients from the 
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PRIMA trial (n=178), a cohort from the University of Iowa/Mayo Clinic Lymphoma SPORE 

(n=201) and the Hospital Clinic University of Barcelona (n=109). All tissue samples consisted of 

pretreatment diagnostic biopsies and were confirmed as FL grade 1-3a. The patients were all 

treated with regimens containing rituximab and chemotherapy, possibly followed by either 

rituximab maintenance or ibritumomab-tiuxetan consolidation.

Findings—The expression levels of 395 genes were associated with a risk of progression. 

Twenty-three genes reflecting both B-cell biology and tumor microenvironment were retained to 

build a predictive model, which identified a population at an increased risk of progression 

(p<0.0001). In a multivariate Cox model for PFS adjusted on rituximab maintenance treatment and 

FLIPI-1, this predictor was found to independently predict progression (adjusted hazard ratio (HR) 

of the high-risk compared to the low-risk group: 3.68; 95%CI: 2.19-6.17). The digital gene 

expression data met quality criteria for 460/488 (94%) FFPE samples of the validation cohorts. 

The predictor performances were confirmed in each of the individual validation cohorts (adjusted 

HR [95%CI] comparing high risk to low risk groups were respectively 2.57 [1.65-4.01], 2.12 

[1.32-3.39] and 2.11 [1.01-4.41]). In the combined validation cohort, the median PFS values were 

3.1 (95%CI: 2.4-2.8) and 10.8 (95%CI: 10.1-NR) years in the high- and low-risk groups, 

respectively. The risk of lymphoma progression at 2 years was twice as high in the high-risk group 

(38% (95%CI: 29-46) versus 19% (95%CI: 15-24)). In a multivariate analysis, the score predicted 

PFS independently of anti-CD20 maintenance treatment and of the FLIPI score (hazard ratio for 

the combined cohort, 2.30; 95%CI, 1.72-3.07).

Interpretation—We developed a robust 23-gene expression-based predictor of PFS, applicable to 

routinely available FFPE biopsies from FL patients at diagnosis. This score may allow 

individualizing therapy for patients with FL according to the patient risk category.

Funding—Roche Company, SIRIC Lyric, LYSARC, NIH and the Henry J. Predolin Foundation, 

Spanish Plan Nacional de Investigacion SAF2015-64885-R.

Introduction

Follicular lymphoma (FL) is the most common indolent lymphoma and is characterized by 

prolonged median survival, usually exceeding 10 years.1 Treatment options range from 

watchful waiting to CD20-directed immunotherapy alone or in combination with 

chemotherapy.2 New non-cytotoxic combinations are also currently being evaluated.3 Patient 

outcomes are, however, highly heterogeneous, and a significant proportion of patients are at 

risk of early progression and/or transformation into high-grade lymphoma.4 Currently, 

Follicular Lymphoma International Prognostic Index (FLIPI-1 and FLIPI-2) scores are the 

best clinical pre-treatment predictors of outcome, although they are unable to accurately 

capture the group of patients who progress within 2 years.5–7 There have also been proposals 

to combine the mutation status of several genes with FLIPI to improve the identification of 

FL patients at high risk of progression.8,9 Hence, new predictor models able to distinguish, 

at diagnosis, patients with markedly distinct outcomes are still needed to personalize 

treatment approaches.

Gene-expression signatures previously reported in FL in the pre-rituximab era have 

highlighted the influence of non-malignant tumor-infiltrating cells.10 However, the 
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prognostic impact of immune cells in the microenvironment, assessed using 

immunohistochemistry, has remained controversial, potentially due to heterogeneity of 

patient cohorts, methodologies, and statistical endpoints across the studies.11–14 Overall, 

there is still a lack of robust confirmatory studies with which to translate these original 

findings for routine patient management.

We hypothesized that a gene-expression profiling (GEP)-based study, reflecting both the 

tumor biology and microenvironment, would allow building a composite signature predictive 

of outcome in patients treated in the rituximab era. We thus investigated the biological 

features of FL tumors in a retrospective analysis using samples of patients from a large 

phase III trial.15 We developed a gene-expression-based predictor of progression-free 

survival (PFS) applicable to formalin-fixed paraffin-embedded (FFPE) tissues, a resource 

generated during routine diagnostic work-up. We validated this predictor model in three 

distinct, independent cohorts of patients, all receiving immunochemotherapy as first-line 

treatment. Beyond the predictor model, we used these data to evaluate gene-expression 

signatures reflecting different aspects of tumor biology for their association with outcome.

Methods

Study design and patients

A gene-expression-based predictor model was produced using a training cohort of FL 

patients and then tested for clinical validation in three independent cohorts (Figure 1). All 

tissue samples (training and all three validation cohorts) consisted of pretreatment diagnostic 

biopsies (obtained within 12 months before treatment initiation) and were confirmed as FL 

grade 1-3a16 by expert hematopathologists. This study was conducted in accordance with the 

Declaration of Helsinki. All patients signed a consent form for participation in specific 

biological studies.

Training cohort—Fresh-frozen tissue (FFT) tumor biopsies were prospectively obtained 

from 160 untreated patients participating in the phase III randomized PRIMA trial, which 

evaluated rituximab maintenance after rituximab-chemotherapy induction in high-tumor-

burden FL patients (NCT00140582). In this trial, patients were first treated by one of the 

three rituximab-chemotherapy regimens (R-CHOP: rituximab, cyclophosphamide, 

doxorubicine, vincristine, prednisone; R-CVP: rituximab, cyclophosphamide, vincristine, 

prednisone; R-FCM: rituximab, fludarabine, cyclophosphamide, mitoxantrone). After this 

induction phase, patients who obtained a complete or partial response were randomly 

assigned to observation or rituximab maintenance for 2 years (see appendix p 2 for inclusion 

criteria and design of the PRIMA trial).15 Response and progression were defined with 

international standard criteria.17 Patients of the training cohort were French and Belgian 

patients, exclusively selected based on the availability of FFT samples. The clinical 

characteristics and median follow-up (6.6 years) of this training cohort were similar to those 

of patients from the whole PRIMA study (appendix p 24). RNA of sufficient quality 

(RIN>6.5) was obtained for 149/160 cases and further processed. FFPE biopsies were also 

available for 53 of these patients for technical validation of gene expression quantification 

on fixed tissue.
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Validation cohorts—The model generated from the training cohort was further evaluated 

in three independent cohorts of patients for whom FFPE biopsies obtained at diagnosis were 

available, including a distinct validation set from the PRIMA trial (limited to FFPE samples 

from French and Belgian patients of the PRIMA trial who were not part of the training 

cohort: cohort 1, n=178) and two other sets of newly diagnosed patients, followed in large 

clinical centers, the University of Iowa/Mayo Clinic Lymphoma SPORE18 (UIMC, cohort 2, 

n=201) and the Hospital Clinic University of Barcelona (BCN, cohort 3, n=109). Cohorts 2 

and 3 consisted of newly diagnosed patients who were prospectively recruited in 

observational studies. They were all treated with regimens containing rituximab and 

chemotherapy, possibly followed by either rituximab maintenance or ibritumomab-tiuxetan 

consolidation and with a median follow-up exceeding five years (Table 1). Progression, as 

identified during routine follow-up practices, was defined with similar criteria as in the 

training cohort. Given that patients having received R-chemotherapy in these validation 

cohorts did not have to fulfill PRIMA trial inclusion criteria, their characteristics (including 

distribution in the different FLIPI categories) may differ.

Gene-expression profiling experiments

Gene-expression profiling was first performed in the training cohort using the Affymetrix 

GeneChip® Human Genome U133 Plus 2.0 array (data available at https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93261). Digital gene expression 

quantification of selected genes was then conducted on RNA from FFPE samples by means 

of NanoString technology, both in some biopsies of the training set (n=53) and in the 

validation cohorts (appendix pp 2,3 for detailed experimental methods).

Statistical analysis

Predictive model building—All genes (14,356 probesets representing unique genes and 

considered expressed above noise level, appendix p 4) were tested for association with PFS 

in the training cohort. As rituximab maintenance significantly impacted PFS in the PRIMA 

trial (appendix p 9), a multivariate Cox regression analysis including maintenance treatment 

as a cofactor was applied to the 134 randomized patients. Initial clinical features (such as 

FLIPI score) were not included in the model, in order to design a fully biologically based 

model. P-values were adjusted for multiple testing, and only genes significant at the False 

Discovery Rate (FDR) threshold of 5% were retained. Of the 395 genes whose expression 

was significantly associated with PFS, we selected an initial set of 95 genes (see appendix 

pp 4, 10 for selection criteria). The expression levels of these 95 manually curated genes and 

four housekeeping genes were then measured using NanoString in a subset of 53 FFPE 

samples from the training cohort to assess the technical replication between the two 

technologies. Genes with a correlation coefficient >0.75 were retained in an L2-penalized 

(Ridge) Cox model adjusted for rituximab maintenance to build a multigene score predicting 

PFS independently of the effect of the maintenance treatment. The choice of Ridge 

penalization was guided by the multicollinearity between the predictors. The global 

performance of the model was determined by means of the concordance statistic (C-

statistic).19 An optimal threshold on the score to separate patients into low- and high-risk 

groups was determined using the MaxStat package20 to select the cutoff value producing the 

maximal log-rank score in the training cohort.
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The locked model, including the multigene score and the threshold, was first evaluated in the 

three validation groups separately. The three groups were subsequently pooled for additional 

analyses. Sensitivity and specificity of the score for the prediction of the risk of lymphoma 

progression at two years were assessed on the combined validation cohorts (appendix p 6). 

All statistical analyses, model training and testing were conducted using R. Detailed 

descriptions on statistical methods are provided in the appendix p 4.

Unsupervised clustering and functional enrichment analyses—Gene clustering 

was performed on microarray expression data from the training cohort by means of an 

independent component analysis (ICA).21 In contrast with PFS-supervised analysis, this 

unsupervised analysis was performed on all patients from the training cohort (n=148 passing 

QC). Briefly, ICA identifies expression signatures (“components”) capturing major 

underlying sources of variation in the data. Permutations were applied to determine the 

maximal number of non-random components. For each component, the most influential 

genes, i.e. those with highest weights (“leading genes”) were retrieved using a standard 

deviation threshold of 3. To infer the potential biological relevance of ICA components, we 

compared their leading genes with gene sets of the Molecular Signature Database (MSigDB) 

v5.0 and Leukemia/Lymphoma Molecular Profiling Project (LLMPP) collections 

(SignatureDB)22 (appendix p 5).

Role of the funding source

The funding sources had no involvement in study design, collection, analysis, and 

interpretation of the data, and in writing of the report or decision to submit this paper for 

publication. SHu, BT, JPJ, ET, MC, SB, AV, and GS had access to the raw Affymetrix 

microarray expression data. SHu, BT, JPJ, BA, CR, DG, and GS had access to the raw 

Nanostring data. The LYSARC (Lymphoma Study Academic Research organisation) 

provided access to raw clinical data of PRIMA patients to SHu, BT, JPJ, CH, PF, HT, PB, 

FJ, and GS. LM, ALG and EC had access to raw clinical data of BCN patients. ALF, SMA, 

BKL, FO, and JRC had access to raw clinical data of UIMC patients. BT and JPJ conducted 

the final bioinformatics and statistical analyses. The corresponding author had full access to 

all the data in the study and the final responsibility for the decision to submit for publication.

Results

Predictive model of progression-free survival

In the PFS-supervised analysis, differential expression of 395 genes (list in appendix p 24) 

was significantly associated with outcome in the training cohort. Higher expression levels 

were associated with longer PFS for 228 genes and with shorter PFS for 167 genes 

(appendix p 11). Of those 395 genes, 95 were selected by manually curating for each gene to 

integrate technical, statistical and biological aspects. To build a PFS predictive model 

applicable to FFPE samples, the expression of those 95 curated genes was measured using 

NanoString technology on 53 FFPE tissues derived from the same biopsies as in the training 

set. Twenty-three genes with correlation coefficients >0.75 between the two technologies 

and sample types (microarray on FFT versus NanoString on FFPE samples) were retained 

(appendix p 12). This panel included genes previously described to be involved in B-cell 
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development (VPREB1, FOXO1, FCRL2, AFF3, TCF4), apoptosis, and DNA damage 

response (RASSF6, GADD45A), cell cycle (E2F5, USP44), cell migration (CXCR4, 
SEMA4B, EML6, DCAF12, VCL, RGS10), immune regulation (CXCR4, KIAA0040, 
TAGAP, ORAI2, KIAA0040, METRNL), and other processes (PRDM15, ABCB1, ALDH2, 
SHISA8) although some of these genes are involved in multiple additional pathways.

The 23-gene expression signature scores ranged from 0.621 to 1.504 in the training cohort. 

The C-statistic was 0.709 (95% confidence interval [CI]: 0.644-0.773), outperforming 

FLIPI-1 (0.578, 95%CI: 0.501-0.655). A score of 1.075 was determined as the optimal 

threshold (appendix p 13) to separate patients into high- (n=47, 35%) and low-risk (n=87, 

65%) groups (p<0.0001, log-rank test) (Figure 2). In a multivariate Cox model for PFS 

adjusted on rituximab maintenance treatment and FLIPI-1, this predictor was found to 

independently predict progression (adjusted hazard ratio (HR) of the high-risk compared to 

the low-risk group: 3.68; 95%CI: 2.19-6.17; p<0.0001). The 5-year PFS rates were 26% 

(95%CI: 16-43) and 73% (95%CI: 64-83) for the high- and low-risk groups, respectively. 

Gene coefficients and score thresholds allowing score calculation from either Affymetrix or 

Nanostring values are given in appendix p 44.

Validation of the model in independent cohorts

The 23-gene expression model was then tested in three independent cohorts (Figure 3). The 

digital gene expression data met quality criteria for 460/488 FFPE samples, achieving an 

overall success rate of 94%, with similar performances across the three cohorts (cohort 1: 

172/178, 97%; cohort 2:186/201, 93%; cohort 3: 102/109, 94%). When the model was first 

assessed separately in each cohort, similar performances to those obtained in the training 

cohort were observed, with C-statistic values of 0.650 (95%CI: 0.587-0.712), 0.619 (95%CI: 

0.558-0.681) and 0.614 (95%CI: 0.509-0.720) in cohorts 1, 2, and 3, respectively. The score 

threshold applied the high-risk group classification to 34% (59/172, cohort 1), 23% (42/186, 

cohort 2), and 21% (21/102, cohort 3) of patients, and all these groups had a significantly 

worse outcome than their low-risk counterparts (Figure 4A-C). In a multivariate Cox model 

adjusted on maintenance treatment and FLIPI-1, the score was an independent predictor of 

PFS in each validation cohort (adjusted HR [95%CI] comparing high risk to low risk groups: 

cohort 1, 2.57 [1.65-4.01]; cohort 2, 2.12 [1.32-3.39]; cohort 3, 2.11 [1.01-4.41]).

These results allowed us to pool the three cohorts for a combined analysis (n=460, median 

follow-up of the combined cohort: 6.6 years, IQR: 4.9-7.2). The C-statistic in the combined 

cohort was 0.628 (95%CI: 0.587-0.668), showing similar performances to FLIPI (n=453 

patients evaluable, C-statistic 0.621, 95%CI: 0.583-0.659; appendix p 14). The median PFS 

values of the overall validation cohort were 3.1 (95%CI: 2.4-4.8) and 10.8 (95%CI: 10.1-not 

reached) years in the high- and low-risk groups, respectively (p<0.0001) (Figure 4D). The 

prognostic impact of the predictor was maintained in each group of induction chemotherapy 

(appendix p 15).

Early relapse within 2 years after diagnosis (POD24) has recently been shown to define a 

group of patients at high risk of death.7 We confirmed the impact of POD24 status on overall 

survival in the combined validation cohort (n=438 patients evaluable, appendix p 16). As the 

POD24 is not defined at the time of diagnosis, it is of critical importance to identify, as soon 
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as the time of diagnosis, the patients who will experience early progression. In the combined 

validation cohort, the 2-year progression rate was 19% (95%CI: 15%–24%) in patients with 

a low predictor score (low-risk group) but rose to 38% (95%CI: 29%-46%) in patients with a 

high predictor score (high-risk group), showing the model’s ability to predict early relapse. 

The score predicted POD24 with a sensitivity of 43% and a specificity of 79%, resulting 

respectively in positive predictive value of 38% and a negative predictive value of 82%. 

However, this signature score was not associated with either OS from the time of diagnosis 

(appendix p 17) or lymphoma-specific survival (appendix p 18).

Patients in the high-risk group presented with a significantly higher frequency of B-

symptoms, bone marrow involvement, and Ann Arbor stages III-IV as well as higher FLIPI 

scores but were also significantly younger and had lower histological grades (Table 2). The 

score predicted PFS in the combined cohort independently of maintenance treatment and 

FLIPI-1 score (adjusted HR of the high-risk compared to the low-risk group: 2.30 

[1.72-3.07]). When the patients were grouped according to their FLIPI-1 risk category, the 

score significantly predicted PFS in all subgroups (Figure 4E-G and Table 3). In particular, 

the model stratified patients with high-risk FLIPI into groups differing by more than four 

years in median PFS (2.1 versus 6.6 years) and 50% of those with high-risk FLIPI and high-

risk score experienced progression within two years, thus meeting criteria of high risk of 

early death by POD24.

The biological basis and prognostic significance of gene-expression signatures

Expression data previously generated from FL tumors and reactive lymph nodes or tonsils23 

were used as an appraisal for evaluating which cell types (lymphoma cells and/or tumor 

microenvironment) expressed the 23 genes included in the model (appendix p 19). Most 

genes were more highly expressed in B cells compared to the microenvironment (except for 

GADD45A, ABCB1, RGS10). A differential intensity of expression between tumor and 

non-tumor B cells was observed for a few genes whose expression was associated with 

either longer (ABCB1, SHISA8, ALDH2, VCL) or shorter (FOXO1, PRDM15, EML6, 
SEMA4B) time to progression.

As a previous GEP study reported a negative impact of the macrophage part on outcome in 

patients treated in the pre-rituximab era,10 we then evaluated the previously described IR1 

(T-cells and macrophages signature) and IR2 (macrophages and dendritic cells) signatures in 

the training cohort (n=134 randomized patients, appendix p 4). When combined into a 

composite score using the weights specified as originally described, this score did not 

predict PFS in our series. When evaluated separately, both signatures were associated with a 

longer PFS (IR1: p=0.0056, IR2: p=0.0018, log-rank test; appendix p 20).

To further investigate the biological basis of expression patterns acting in FL tumors, we 

performed an exploratory unsupervised analysis of the gene-expression data generated in the 

training cohort (including randomized and non-randomized patients, n=148) using 

independent component analysis (ICA). After discarding those potentially associated with 

experimental batches (appendix p 5), we identified 19 independent gene signatures 

(appendix p 21). One of these signatures, ICA13, was highly associated with patient 

outcomes, patients with a high ICA13 score (ie, higher expression of the main genes 
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contributing to ICA13 signature, appendix p 45) having a shorter PFS (p=0.00091) 

(appendix p 21). It comprised genes expressed by germinal-center (GC) B-cells such as 

AICDA, BACH2, TCF4, ORAI2, E2F5, CXCR4 or POU2AF1 (appendix p 45). A 

significant overlap was observed between leading genes of this component (n=133) and the 

167 bad-prognosis genes in the initial supervised analysis (24 genes in overlap indicated in 

appendix p 45, p<0.0001). This ICA13 was also highly correlated with our 23-gene 

predictor score (p<0.0001; appendix p 21). Enrichment analyses revealed that this signature 

also overlapped with B-cell progenitor signatures as well as with genes overexpressed in 

Burkitt lymphoma compared to diffuse large B-cell lymphoma (DLBCL) (appendix p 46). 

Comparison with other datasets obtained from normal and malignant B-cell subsets 

(appendix p 7) showed that ICA13 was highly expressed in centroblasts located in the GC 

dark zone and was particularly enriched in Burkitt lymphomas and, to a lesser extent, in 

normal pre-B cells (appendix p 22).

Discussion

We have developed a gene-expression-based predictor of PFS in high-tumor-burden FL that 

identifies, at diagnosis, those patients who have an increased risk of progression when 

treated initially with rituximab-chemotherapy. The model was tested in three independent 

cohorts of patients, where it confirmed its ability to accurately identify a high-risk 

population independently of the FLIPI score and maintenance by rituximab. These results 

argue that our model relies on biologically relevant features of tumor cells involved in 

disease progression, and not merely associates with known clinical predictors. The 

proportion of high-risk patients slightly differed between the validation cohorts (34%, 23%, 

and 21% of patients in cohorts 1, 2, and 3, respectively), which might be explained by the 

specific selection for high-tumor burden patients in the PRIMA trial.

The predictor was developed to be used on the NanoString platform,24 which enables 

accurate and reproducible quantification of RNA obtained from FFPE samples25 (or even on 

core biopsies). The NanoString platform is now present in many clinical laboratories that 

can apply the score calculation exactly as described in our manuscript. Despite the variable 

geographic origin and the age of FFPE blocks used in this study, sufficient quality of gene 

expression was obtained in 94% of samples, confirming that this technology represents a 

promising option for a gene-expression-based clinical test.

In our study, the genes of the 23-gene model were selected based on several experimental 

criteria, but were also manually curated for their biologic significance, which could 

introduce potential bias. Nevertheless, our process identified a robust model that was 

externally validated. Limitations of our study include the lack of patients having received 

bendamustine-rituximab, and the fact the 23-gene model could not predict patients overall 

survival or the risk of transformation, given the few events observed in those cohorts. 

Another validation cohort would also have been helpful to confirm the unsupervised 

clustering analyses, but those were exploratory to investigate potential links between 

lymphoma biology and the predictive model. Furthermore, while it reflects multiple aspects 

of the biology of the tumor including lymphoma cells as well as their microenvironment, it 

would be premature to use its results in order to identify patients with specific biological 
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characteristics that would benefit from particular targeted therapies. Finally, spatial 

heterogeneity has been shown to greatly influence mutation detection in FL. It is uncertain 

whether the same limitation would be observed with gene-expression profiling of the 

tumors.

Other predictors of FL outcome have been recently proposed that combine mutation data 

with FLIPI,8,9 and our score showed similar performances (sensitivity, specificity, positive 

and negative predictive values) to predict PFS or POD24.9 Although the GEP-based 

predictor might be combined together with gene mutations to improve patient stratification, 

we aimed at using a single and highly reproducible technique that would be easily applied in 

the clinical setting.

Outcome prediction by gene-expression signatures has been previously reported in FL in the 

pre-rituximab era by the LLMPP, which emphasized the role of non-malignant tumor-

infiltrating cells. When applying the LLMPP algorithm10 in our training cohort, we found 

that both IR1 and IR2 signatures were associated with longer PFS. The lack of association of 

the IR2 signature with a poor outcome here is in agreement with immunohistochemistry 

studies performed in the rituximab era.14,26,27 The correlation of macrophage infiltration 

with patients prognosis is still controversial, but may vary according to the use of rituximab 

or different chemotherapeutic regimens.14 In particular, it has been recently suggested that 

doxorubicin-containing regimen may abrogate the negative impact of CD163+ TAMs.14

We also investigated the biological processes acting in FL tumors at diagnosis using an 

unsupervised analysis. We identified in an exploratory analysis a gene signature (ICA13) 

that was strongly associated with poor prognosis. Although the two analyses were performed 

independently, nine out of the 23 genes retained in the predictor (CXCR4, DCAF12, E2F5, 
ORAI2, PRDM15, RASSF6, TAGAP, TCF4, USP44) were part of the ICA13 signature 

whose score was highly correlated with our predictor. We also observed that some of the 23 

genes had a distinct expression pattern between FL tumor B-cells and normal B-cells. 

Altogether, these data support that our 23-gene expression-based model recovers 

biologically meaningful attributes of lymphoma cells that are truly associated with the risk 

of disease progression. The ICA13 component revealed characteristics of “Burkitt-like” cells 

and/or dark zone centroblastes and/or immature pre-B cells. Although some progenitor-like 

transcriptional programs might be reactivated within GC during normal B-cell development, 

the adverse prognostic significance of such signature in FL is provocative, as is the strong 

negative impact of the expression of the surrogate light chain VPREB1 transcript. An 

Embryonic Stem Cell-like transcriptional program underlying histological transformation 

was described in FL patients,28 and the expression of the surrogate light chains was 

observed in some FL cases that transformed into B-lymphoblastic lymphomas.29 Altogether, 

one might hypothesize that (i) a subset of FL cells could arise from self-renewing ancestral 

cells and retain a partially active progenitor-like expression program, or may reacquire such 

program following re-entry cycles in the GC;30 and (ii) such features, also reminiscent of 

Burkitt cells and/or progenitor B cells, are related to disease aggressiveness in a subset of 

patients.
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In conclusion, we have established a 23-gene predictive score able to identify in routine 

practice two groups of patients with FL with markedly distinct outcomes when treated with 

immunochemotherapy. This predictor captures multiple aspects of the biology of the tumor 

and the heterogeneous composition of its microenvironment. Together with clinical 

parameters such as the FLIPI index, this score may already allow to better adjust current 

therapeutic options according to the patient risk category. For patients at low risk of 

progression, shorter treatments and with a low toxicity profile should be considered. For 

patients with high-risk FLIPI and a high 23-gene score, having a 50% risk estimate of 

lymphoma progression at 2 years, new options should be developed. This group represents 

an ideal target population to investigate innovative combinations aiming to improve their 

outcome. Further studies are required to determine whether this model is valid in low-tumor-

burden patients (currently managed with watchful waiting or single-agent rituximab) and in 

patients treated with novel agents that may interfere both with tumor B-cells and with their 

microenvironment.12 This 23-gene predictor may thus represent a promising tool to further 

develop personalized therapy in patients with FL.
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Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched PubMed on August 15, 2017, with no date restrictions, for all original 

publications (ie, review articles were excluded) with the search terms “follicular 

lymphoma” in the title, “gene expression OR expression signature” in the title or abstract, 

and “prognosis OR prognostic OR prediction OR predictive OR progression OR risk OR 

transformation OR survival” anywhere in the text. This search identified a total of 52 

original publications. The relevant publications addressing the impact of gene expression 

on outcome in FL patients were of two types: some studies used transcriptome-wide 

profiling to identify signatures predictive of progression, death or histologic 

transformation, whereas others focused on somatic alterations in single genes, impacting 

the global transcriptional profile and outcome. The seminal LLMPP study highlighted the 

role of non-malignant tumor-infiltrating cells on FL prognosis in the pre-rituximab era, 

enabling to build a molecular predictor of overall survival, based on two expression 

signatures of immune response (IR1 and IR2). Another study identified a T-cell signature 

of favorable prognosis and a proliferation signature associated with relapse. Other 

groups, using RT-PCR and/or immunohistochemistry to assess the expression levels of 

single genes, confirmed the influence of different immune subsets on the risk of disease 

progression or death, but sometimes with conflicting results and in heterogeneously 

treated patient cohorts.

Several other studies focused on molecular alterations driving histologic transformation. 

One study identified the role of an embryonic stem cell signature probably sustained by 

MYC activation in tFL. Another one pinpointed 6 signatures related to the NF-kB 

pathway, with high scores found in biopsies preceding transformation, although not 

necessarily detected at the time of diagnosis.

Finally, other studies identified the clinical significance of somatic alterations and/or 

expression pattern in single genes. Although not directly linked to our gene expression-

focused search, new clinico-genetic predictors (m7-FLIPI and POD24-PI), combining the 

mutation status of several genes with the FLIPI score, have been proposed to improve the 

identification of FL patients at high risk of progression.

Added value of this study

To overcome the limitations of previous studies due to heterogeneous treatment cohorts, 

small size and/or no validation cohorts, we conducted a progression-free survival (PFS)-

supervised analysis on expression data obtained in a large cohort of patients in the setting 

of a clinical trial. Our study identified a 23-gene score able to predict the risk of 

progression in FL patients at diagnosis, independently of the FLIPI score and use of anti-

CD20 maintenance therapy. Importantly, we developed this predictor to be fully 

applicable to routinely available formalin-fixed, paraffin-embedded biopsies. Moreover, 

results were further validated in 3 independent international cohorts of patients 

homogeneously treated with immunochemotherapy. To the best of our knowledge, this is 

the largest study to date of gene-expression profiling able to predict the risk of 

progression of FL patients receiving first-line immunochemotherapy, confirmed in 3 
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independent cohorts. Furthermore, our study identified a gene signature characteristic of 

B-cell centroblasts that was prognostic, underlining that beside tumor microenvironment, 

tumor B-cell biology itself contributed to the clinical aggressiveness of the disease.

Implications of all the available evidence

Despite recent progress in the stratification and management of FL patients, a significant 

proportion are still underserved by current standard treatment and experience rapid 

progression of their disease. Our gene-expression predictor could be of valuable interest 

in the clinical setting to identify patients at high-risk but also low-risk of progression and 

consequently adjust the therapeutic strategy, including enrollment for innovative 

treatments.
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Figure 1. Outline of the overall study design
Fresh-frozen tissue (FFT) tumor biopsies were prospectively obtained from 160 untreated 

patients enrolled in the international PRIMA trial. RNA with sufficient quality (RIN>6.5) 

was obtained for 149/160 cases and gene-expression profiling was performed using 

Affymetrix U133 Plus 2.0 micro-arrays. A multivariate Cox regression analysis identified 

genes whose expression was associated with PFS independent of maintenance treatment in 

the subgroup of randomized patients. Expression levels from 95 curated genes were then 

determined by means of digital expression profiling (NanoString technology) in 53 FFPET 

samples of the training set, allowing assessment of the technical replication of expression 

levels for each gene between technologies. Genes with high correlation (>0.75) were 

included in a L2-penalized Cox model adjusted on rituximab maintenance to build a PFS-

predictive score. The model was further evaluated using NanoString technology in 488 

FFPET samples from 3 independent international cohorts of patients: a distinct validation set 

from the PRIMA trial (n=178), and two others obtained in large centers (respectively the 

Mayo Clinic/Iowa SPORE project, n=201 and the Barcelona Hospital Clinic, n=109). An 

unsupervised analysis of the gene-expression data generated in the training cohort was also 

performed independently.
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Abbreviations: FFT: fresh-frozen tissues; FFPE: formalin-fixed paraffin-embedded tissues; 

PFS: progression-free survival.
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Figure 2. Progression-free survival of patients from the training cohort, according to the 
predictor score
Kaplan-Meier estimates of progression-free survival in randomized patients of the training 

cohort, since the time of randomization in PRIMA trial. An optimal threshold was set to 

separate patients into high- (n=47, 35% of the patients, red curve) and low-risk (n=87, 65% 

of the patients, blue curve) groups with significantly different outcomes (p<0.0001, log rank 

test). The 5-year PFS rates were 26% (95%CI: 16-43) and 73% (95%CI: 64-83) for the high-

and low-risk groups, respectively. For each time point the number of patients at risk and 

(number of patients censored) are indicated.

Abbreviations: PFS: progression-free survival.
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Figure 3. The gene expression-based predictor for FL patients tested in the validation cohorts
The predictor is a linear combination of the log2-transformed normalized gene expression 

levels weighted by individual gene coefficients. A: The relative gene expression levels of the 

23 genes in the predictive model are presented in the form of a heat map. Each column 

represents a single patient from the combined validation cohorts, arranged according to the 

predictor score, with lowest score on the left. Each row represents a gene from the model, 

ordered by gene contribution to the score. B: The score from the predictor for patients in the 

validation cohorts. The patients are arranged as in panel A. The vertical red line separates 

patients into high- (n=122, 27% of the patients) and low-risk (n=338, 73% of the patients) 

groups according to the threshold (horizontal line) determined in the training cohort. The 

clinical and treatment characteristics of the patients are depicted. Cohort 1 included patients 

from the PRIMA trial, cohort 2 from the University of Iowa/Mayo Clinic Lymphoma 

SPORE and cohort 3 from the Hospital Clinic University of Barcelona. C: The relative 

contributions of each of the 23 genes to score variation. The X axis position of the boxes 

represents the absolute average contribution of the genes (calculated as the mean expression 

in a given cohort, multiplied by the coefficient assigned to the gene in the score). The width 

of the boxes shows the contribution of each gene to the score variation (calculated as the 

standard deviation of the gene in the cohort multiplied by its coefficient). Gene contributions 

are presented in both the training cohort (grey) and the combined validation cohort (black).
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Figure 4. Kaplan-Meier estimates of progression-free survival predicted by the 23-gene signature 
score among patients of the three validation cohorts and according to FLIPI score
The threshold set in the training cohort separated patients into high- and low-risk groups (red 

and blue curves, respectively). The 23-gene score significantly predicted PFS in patients 

from each validation cohort (A-C: Cohort 1, 2, and 3, respectively) as well as in the 

combined validation cohorts (D) and in each FLIPI subgroup (E-G: low, intermediate and 

high risk FLIPI scores, respectively). Logrank test p-values for each of the comparisons are 
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reported. FLIPI score was available for 453 patients. Abbreviations: PFS: progression-free 
survival; 95%CI: 95% confidence interval.
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Table 1
Demographics and clinical characteristics of patients in the training cohort and the three 
validation cohorts

The results obtained from the training set were further validated in three independent cohorts of patients drawn 

from a distinct validation set in the PRIMA study (cohort 1), the University of Iowa/Mayo Clinic Lymphoma 

SPORE (cohort 2) and the Hospital Clinic University of Barcelona (cohort 3).

Cohort
Number of patients

Training cohort
N=134

no./total no. (%)*

Validation cohort 1
N=172

no./total no. (%)*

Validation cohort 2
N=186

no./total no. (%)*

Validation cohort 3
N=102

no./total no. (%)*

Follow-up duration

median, IQR (yrs) 6.6 (6.0-7.0) 6.8 (6.5-7.1) 5.5 (3.9-7.8) 5.8 (4.1-8.7)

Time from biopsy to initial treatment

median, range (months) 1 (0-5) 1 (0-7) 0.8 (0-7.2) 0.7 (0-4)

Baseline characteristics

Age > 60 years 47/134 (35) 51/172 (30) 76/186 (41) 38/102 (37)

Male sex 68/134 (51) 84/172 (49) 109/186 (59) 44/102 (43)

Ann Arbor stage III/IV 123/134 (92) 158/172 (92) 149/184 (81) 77/102 (75)

ECOG PS ≥ 1 43/134 (32) 45/172 (26) 71/185 (38) 15/101 (15)

B symptoms present 30/134 (22) 54/172 (31) 38/184 (21) 16/101 (16)

Bone Marrow involvement 83/129 (64) 100/168 (60) 87/169 (51) 59/102 (58)

Elevated LDH 43/134 (32) 57/171 (33) 59/160 (37) 25/95 (26)

Hemoglobin level < 12 g/dL 29/134 (22) 32/172 (19) 33/169 (20) 18/94 (19)

Elevated β2-microglobulin 81/128 (63) 93/159 (58) 31/43 (72) 49/92 (53)

FLIPI score

0-1 risk factors 23/134 (17) 41/171 (24) 51/186 (27) 38/96 (40)

2 risk factors 53/134 (40) 56/171 (33) 62/186 (33) 32/96 (33)

3-5 risk factors 58/134 (43) 74/171 (43) 73/186 (39) 26/96 (27)

Histological grade

1-2 113/134 (84) 132/172 (77) 123/186 (66) 64/102 (63)

3A 12/134 (9) 22/172 (13) 63/186 (34) 28/102 (27)

Undetermined/other** 9/134 (7) 18/172 (10) 0 10/102 (10)

Induction regimen

R-CHOP 128/134 (96) 157/172 (91) 96/186 (52) 102/102 (100)

R-CVP 6/134 (4) 15/172 (9) 59/186 (32) 0

R-Bendamustine 0 0 29/186 (16) 0

other 0 0 2/186 (1) 0

Maintenance regimen

No 76/134 (57) 96/172 (56) 152/186 (82) 59/102 (58)

Yes 58/134 (43) 76/172 (55) 34/186 (18) 43/102 (42)
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Cohort
Number of patients

Training cohort
N=134

no./total no. (%)*

Validation cohort 1
N=172

no./total no. (%)*

Validation cohort 2
N=186

no./total no. (%)*

Validation cohort 3
N=102

no./total no. (%)*

Rituximab 58/58 (100) 76/76 (100) 34/34 (100) 41/43 (95)

Ibritumomab-tiotexan 0 0 0 2/43 (5)

*
Because of rounding, percentages may not total 100.

**
Undetermined/other included FL of undetermined grade (except 3b), FL with a very small component of DLBCL<10% and FL with diffuse area.

Abbreviations: BM, bone marrow; LDH, lactate dehydrogenase; R, rituximab; CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; 
CVP, cyclophosphamide, vincristine, prednisone; FCM, fludarabine, cyclophosphamide, mitoxantrone; NR, not reached.
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Table 2
Patient characteristics according to the prognostic group defined by the gene-expression 
predictor

Clinical and treatment characteristics were compared using Fisher’s exact test.

high-risk
N=122

no./total no. (%)*

low-risk
N=338

no./total no. (%)*
P-value

Cohort

1 = PRIMA trial 59/122 (48) 113/338 (33)

2 = UI/MC - SPORE cohort 42/122 (34) 144/338 (43)

3 = BCN 21/122 (17) 81/338 (24)

Baseline characteristics

Age > 60 years 31/122 (25) 134/338 (40) 0.0050

Male sex 69/122 (57) 168/338 (50) 0.194

Ann Arbor stage III/IV 111/120 (93) 273/338 (81) 0.0027

ECOG PS ≥ 1 45/121 (37) 86/337 (26) 0.015

B symptoms present 41/121 (34) 67/336 (20) 0.0080

Bone Marrow involvement 95/116 (82) 152/324 (47) <0.0001

Elevated LDH 42/111 (38) 99/315 (31) 0.217

Hemoglobin level < 12 g/dL 28/114 (25) 55/321 (17) 0.083

Elevated β2-microglobulin 53/80 (66) 120/214 (56) 0.115

FLIPI score

0-1 risk factors 19/120 (16) 111/333 (33)

2 risk factors 42/120 (35) 108/333 (32) 0.0006

3-5 risk factors 59/120 (49) 114/333 (34)

Histological grade

1-2 102/122 (84) 217/338 (64)

3A 16/122 (13) 97/338 (29) 0.0004

Undetermined/other** 4/122 (3) 24/338 (7)

Induction regimen

R-CHOP 90/122 (74) 265/338 (78)

R-CVP 21/122 (17) 53/338 (16) 0.596

R-Bendamustine 10/122 (8) 19/338 (6)

other 1/122 (1) 1/338 (0)

Maintenance regimen

No 79/122 (65) 228/338 (67)
0.587

Yes 43/122 (35) 110/338 (33)

*
Because of rounding, percentages may not total 100.

**
Undetermined/other included FL of undetermined grade (except 3B, n=16), FL with component DLBCL<10% (n=10) and FL with diffuse area 

(n=2).
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