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Abstract 

Sodium/glucose cotransporter-2 inhibitors (SGLT2i) are a new type of glucose-lowering drug that can reduce blood 
glucose by inhibiting its reabsorption in proximal tubules and by promoting urinary glucose excretion. SGLT2i are 
widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). In recent studies, SGLT2i were found to 
not only reduce blood glucose but also protect the heart and kidney, which can significantly reduce cardiovascu-
lar events, delay the progression of renal failure, greatly improve the quality of life of patients, and reduce medical 
expenses for families and society. As adverse cardiac and renal events are the most common and serious complica-
tions of T2DM, it is very important to understand the cardio- and renoprotective mechanisms of SGLT2i. This article 
reviews the historical development, pharmacological mechanism, heart and kidney protection and safety of SGLT2i. 
The information presented provides a theoretical basis for the clinical prevention and treatment of diabetes and its 
complications and for the development of new glucose-lowering drugs.
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Background
Type 2 diabetes (T2DM) is a metabolic disease that is 
commonly associated with obesity, dyslipidemia, hyper-
tension, heart failure, hyperuricemia, renal failure and 
hyperuricemia and affects individuals worldwide [1–3]. 
In addition, patients with T2DM have an increased risk of 
cardiovascular or renal complications, which are leading 
causes of morbidity and mortality [4, 5]. Although several 
oral and intravenous glucose-control drugs have been 
widely used, concerns about cardiorenal complications in 
these populations still attract considerable attention [6]. 
Therefore, a more comprehensive approach to cardiovas-
cular and renal risk management in T2DM has emerged. 
Sodium/glucose cotransporter-2 inhibitors (SGLT2i) 
block SGLT2 located in the early proximal renal tubule, 

which leads to increased urinary glucose excretion and 
subsequently decreased serum glucose concentrations 
[7, 8]. These glucose-lowering effects are independent of 
insulin action. To date, SGLT2i has been demonstrated 
to reduce major adverse cardiovascular events and hos-
pitalization for heart failure [9, 10]. In addition, these 
drugs showed surprising effects on the progression of 
renal complications, such as lowering serum creatinine, 
reducing albuminuria, and decreasing death due to renal 
disease [11, 12]. Interestingly, these cardiorenal protec-
tive effects appear to be independent of glucose-control 
efficacy. Considering these encouraging findings, SGLT2i 
are highly recommended for patients with T2DM with 
high cardiovascular or renal risks. Therefore, the mecha-
nisms that drive the cardiorenal protection of SGLT2i 
should be elucidated. This review aims to provide an 
update on the extraglycemic effects of SGLT2i that may 
contribute to cardiorenal protection.

The discovery and development of SGLT2i
In 1835, French chemists isolated a natural substance 
called phloridzin from the root bark of apple trees, 
which was first used to treat infectious malaria [13]. 
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Further study found that the chemical can hinder 
the reabsorption of glucose in the kidney, increase 
glucose excretion in urine, reduce blood sugar lev-
els and improve insulin resistance [13, 14]. However, 
phloridzin is a kind of nonselective SGLTi (it inhib-
its both SGLT1 and SGLT2), which can be hydro-
lyzed by β-glucosidase in the small intestine with low 
bioavailability (only 15%), and SGLT1i are prone to 
cause diarrhea, dehydration and other adverse reac-
tions [15]. Therefore, the research and development 
of drugs with high selectivity, high bioavailability and 
safety have become an urgent problem to be solved. In 
recent years, with the development of medical science 
and technology, scientists have chemically modified 
the structure of phloridzin and gradually developed 
many new derivatives, including O-glucoside, C-gluco-
side, N-glucoside and nonglucoside, and named these 
derivatives SGLT2i. C-glucosides have been widely 
used in the clinic because of their high SGLT2 selec-
tivity and safety. At present, there are four kinds of 
SGLT2i approved by the US Food and Drug Admin-
istration (empagliflozin, canagliflozin, dapagliflozin, 
and ertugliflozin), as shown in Table 1. In March 2017, 
dapagliflozin became the first SGLT2i approved for 
use in China. Additionally, sotagliflozin, the first dual 
SGLT2/1 inhibitor, improves glycated hemoglobin in 
adults with diabetes, with beneficial effects on body 
weight and blood pressure [16].

Expression and pharmacological action of SGLT2i
In healthy people, approximately 160  g–180  g glucose 
is filtered from the glomerulus and reabsorbed into the 
blood circulation every day, so healthy people have 
almost no urinary sugar; in people with diabetes, the 
concentration of glucose undergoing glomerular filtra-
tion is increased significantly and can reach 180 g–240 g. 
This level is much higher than the renal glucose thresh-
old, leading to an increase in urinary sugar. The entry of 
glucose into eukaryotic cells requires two membrane-
associated transporters: SGLT (SGLT1 and SGLT2) 
and glucose transporter (GLUT) [17]. SGLT transports 
glucose against the concentration gradient by active 
transport, while GLUT transports glucose along the 
concentration gradient in a way that facilitates diffusion. 
Familial renal glucosuria (FRG), a rare disease, is charac-
terized as persistent glucosuria despite normal concen-
trations of serum glucose [18, 19]. In general, FRG has 
been considered a benign condition that does not require 
any specific treatment. Mutations in the SGLT2 gene 
have recently been confirmed as responsible for most 
FRGs [20–22], leading to isolated glucosuria. Therefore, 
the study of SGLT has become a research target for glu-
cose-lowering therapy.

There are 6 subtypes of SGLTs [19], and their main 
distribution and functions are shown in Table  2. The 
two most important members, SGLT1 and SGLT2, are 
related to glucose transport and are the focus of cur-
rent research. SGLT1 is mainly expressed in the small 

Table 1 Brief introduction to the features of SGLT2i

BP blood pressure

Trade name ①Empagliflozin ②Canagliflozin ③Dapagliflozin ④Ertugliflozin

Target organ Proximal tubule of kidney

Favorable aspects ①Lower blood glucose

②Lower blood pressure (reduce systolic BP by 2.46 mmHg and diastolic BP by 1.46 mmHg)

③Lower body weight (3 kg–4 kg reduction)

④Lower glycosylated hemoglobin (0.7%–1% reduction)

⑤Increase high-density lipoprotein (HDL) cholesterol, and decrease triglycerides.

⑥Reduce albuminuria

⑦Reduce uric acid (10%–15% reduction)

⑧Increase hematocrit (2–4% increase)

Unfavorable aspects ①Urinary tract infection

②Genital fungal infection

③Ketoacidosis

④Fracture

⑤Malignant tumor

⑥Hypotension

⑦Dehydration

⑧Hypoglycemia

⑨Lower limb amputation
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intestine and renal proximal tubule (S3 segment) and is 
a high-affinity, low-volume membrane transporter, while 
almost all SGLT2, which is a low-affinity, high-volume 
membrane transporter, is expressed in the S1 segment of 
the renal proximal tubule [23]. Ninety percent of glucose 
reabsorption is performed by SGLT2, and the remaining 
10% is performed by SGLT1 [23]. SGLT1 has multiple 
organ targets but does not target the kidney; thus, further 
study of highly selective SGLT2i is of great significance.

The aglycones of SGLT2i can competitively bind to 
glucose transporters, effectively inhibiting the activity 
of SGLT2 in renal proximal convoluted tubules, reduc-
ing glucose reabsorption by renal tubular epithelial 
cells, promoting urinary glucose excretion and exert-
ing glucose-lowering effects. SGLT2i can also inhibit 
sodium reabsorption in renal tubules, increasing urinary 
sodium concentration in the distal end of the proximal 
convoluted tubule and proximal end of the distal tubule, 
improving renal tubuloglomerular feedback, reduc-
ing renal hyperfiltration, and reducing sodium and glu-
cose toxicity in the proximal tubule [24]. Interestingly, 
SGLT2i do not rely on insulin or islet β-cells in  vivo to 
exert pharmacological effects. These inhibitors can not 
only reduce blood glucose and glycosylated hemoglobin 
but also improve the function of islet β-cells and reduce 
insulin levels in the body [25]. However, Bonner et  al. 

[26] demonstrated that SGLT2 is expressed in glucagon-
secreting α cells of the pancreatic islets; SGLT2i treat-
ment by dapagliflozin promotes glucagon secretion 
and hepatic gluconeogenesis in healthy mice, limiting 
the decrease in serum glucose induced by fasting. They 
believed that SGLT2 was an endocrine regulator. This 
opinion was further supported by Sargent et  al. [27]. 
Therefore, SGLT2i is also promising for patients with 
insulin resistance and islet insufficiency.

Protective effect of SGLT2i on the cardiovascular 
system
Cardiovascular events are one of the most common and 
serious complications in patients with diabetes. Epide-
miological studies in the UK have found that the mortal-
ity rate of cardiovascular events in patients with diabetes 
is 3.25-fold higher than that in nondiabetic patients [28]. 
Chinese data show that 30% of diabetic patients also have 
cardiovascular events [29], and these events account for 
20% of diabetes mortality in China [30]. Therefore, it is 
very important to actively prevent and treat the cardio-
vascular complications of diabetes.

Many clinical studies have found that SGLT2i have a 
protective effect on the cardiovascular system and can 
significantly reduce the risk of cardiovascular events. 
The results of the high-profile EMPA-REG OUTCOMES 

Table 2 Distribution and function of various SGLTs

Protein Major sites of expression Function

SGLT1 Small intestine Transmembrane transport of glucose
and galactose through sodium-glucose 

cotransport proteins
in the brush margin of the small intestine and 

proximal convoluted tubules of the kidney

Trachea

Heart

Proximal tubule of the kidney (segment S3)

SGLT2 Proximal tubules of kidney (segment S1 and S2) Cotransport of sodium and glucose in the S1 
segment of the renal proximal convoluted 
tubule

SGLT3 Small intestine Transport of sodium (not transport of glucose)

Lungs

Uterus

Thyroid

Testicles

SGLT4 Small intestine Transport of glucose and mannose

Kidneys

Liver

Lungs

Stomach

SGLT5 Renal cortex Unknown

SGLT6 Spinal cord Transport of inositol and glucose

Brain

Small intestine

Kidney
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(Empagliflozin Cardiovascular Outcome Event Trial in 
Type 2 Diabetes Mellitus Patients) study, which included 
7020 patients with T2DM complicated with cardio-
vascular diseases who were followed up for 192  weeks, 
were published in 2015 [31]. The study showed that the 
number of MACE (major adverse cardiovascular events, 
including cardiovascular-related death, nonfatal cerebral 
infarction, and nonfatal myocardial infarction) decreased 
by 14%, the number of cardiovascular-related deaths 
decreased by 38%, the number of hospitalized cases of 
heart failure decreased by 35%, and the mortality rate 
decreased by 32% in the empagliflozin treatment group 
compared with the placebo group. A follow-up study 
also found that empagliflozin showed a cardiovascular 
protective effect from the first month to the third month 
of treatment, and with the extension of treatment time, 
the cardiovascular protective effect was still significantly 
different from that of the placebo group. Later, the Cana-
gliflozin Cardiovascular Assessment Study (CANVAS) 
program [32] and the Dapagliflozin effect on Cardio-
vascular Events-Thrombolysis in Myocardial Infarction 
58 (DECLARE-TIMI58) trial [33] showed similar trends 
(reduction in cardiovascular death and hospitalization 
for heart failure).

Interestingly, the recently published DAPA-HF trial 
[34] demonstrated that dapagliflozin significantly reduces 
cardiovascular death and hospitalization for heart failure 
in patients with heart failure with reduced ejection frac-
tion. More importantly, these benefits were observed 
both in the presence or absence of diabetes and were 
consistent in relation to background heart failure therapy 
[35]. Sezai et  al. pointed out that canagliflozin was also 
effective in patients with diabetes and chronic heart fail-
ure [36]. Petrie et  al. observed that dapagliflozin could 
reduce the risk of worsening heart failure and cardiovas-
cular events in patients with heart failure independently 
of diabetes status [37]. However, no change in cardiac 
function parameters was estimated by impedance cardi-
ography in diabetes patients who received dapagliflozin 
versus placebo for 12  weeks [38], which may have been 

related to the small sample size, short duration treat-
ment, and limited correlation of impedance cardiography 
parameters with the gold standard examination of car-
diac function.

The basic characteristics of the main clinical studies of 
SGLT2i regarding the cardiovascular system are summa-
rized in Table 3. At present, SGLT2i have been included 
in the first-level prevention guidelines of the 2019ACC/
AHA for cardiovascular disease, and metformin com-
bined with dapagliflozin is recommended as the pre-
ferred treatment regimen for glucose-lowering drug 
treatment of diabetes [39].

The protective mechanism of SGLT2i on the cardiovas-
cular system involves many aspects, including direct and 
indirect effects on the heart, which are summarized as 
follows (Table 4) [40–45].

Direct effects: (1) SGLT2i inhibit myocardial  Na+/H+ 
exchange (NHE). By inhibiting cardiac  Na+/H+ exchange 
activity, SGLT2i increase the concentration of sodium 
ions in mitochondria and reverse electrolyte disorders 
in patients with heart failure. (2) SGLT2i improve myo-
cardial metabolism. These inhibitors can improve myo-
cardial energy metabolism, increase myocardial oxygen 
supply, promote ATP energy storage, increase oxygen 
uptake and transformation at the mitochondrial level, 
increase ketone bodies, lower the insulin-to-glucagon 
ratio, inhibit myocardial fibrosis, switch from glucose 
to ketone utilization during myocardial metabolism and 
reverse myocardial remodeling. (3) SGLT2i reduce car-
diac preload. They can reduce cardiac preload and myo-
cardial oxygen consumption by osmotic diuresis. More 
importantly, osmotic diuresis induced by SGLT2i, a diu-
retic mechanism that is distinctly different from that of 
other diuretic classes, leads to greater electrolyte-free 
water clearance and subsequently greater fluid clearance 
from the interstitial fluid space than from the circula-
tion, resulting in congestion relief with minimal impact 
on blood volume, arterial filling, and organ perfusion 
[46]. (4) SGLT2i reduce afterload. They can lower blood 
pressure by osmotic diuresis and increase urinary sodium 

Table 3 Basic characteristics of the main clinical studies of SGLT2i in the cardiovascular system

CV cardiovascular, MI myocardial infarction, NT-proBNP N-terminal of the prohormone brain natriuretic peptide, HF heart failure

EMPA-REG OUTCOME [31] CANVAS Program [32] DECLARE-TIMI58 [33] DAPA-HF Trial [34]

Inclusion criteria Type 2 diabetes and high cardio-
vascular risk

Inadequately controlled type 2 
diabetes with a history or high 
risk of CV events

Type 2 diabetes, CV risk 
factors and moder-
ately impaired renal 
function

Chronic heart failure, left ventricu-
lar ejection fraction ≤ 0.40% and 
elevated NT-proBNP

Total number (n) 7020 10,142 16,170 4744

Primary outcomes CV death, nonfatal MI and nonfa-
tal stroke

CV death, nonfatal MI and nonfa-
tal stroke

CV death, nonfatal MI, 
nonfatal stroke, or 
hospitalization for HF

CV death or hospitalization for 
HF or an urgent heart failure 
clinic visit
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excretion, improve cardiovascular function by reducing 
oxidative stress and endothelial cell inflammation, and 
then reduce cardiac afterload. (5) SGLT2i reduce car-
diomyocyte apoptosis and improve myocardial fibrosis. 
SGLT2i leads to progression or inhibition of apoptosis 
[47]. SGLT2i could attenuate cardiac fibrosis by alleviat-
ing oxidative stress and TGF-β production and regulating 
macrophage polarization [48, 49]. Interestingly, several 
studies have demonstrated the relationship between NHE 
and cardiomyocyte apoptosis [50] and myocardial fibrosis 
[51, 52]. Active NHE-1 (a predominant isoform of NHE 
in cardiomyocytes) leads to the accumulation of intracel-
lular sodium, further increasing intracellular  Ca2+, which 
triggers myocardial apoptosis in addition to necrosis [50]. 
A possible link between NHE-1 activity and fibrosis may 
be based on the fact that NHE-1 is a downstream effec-
tor of several fibrosis-related signaling systems [51]. (6) 
SGLT2i reduce the synthesis of adipokines, cytokines 
and epicardial adipose tissue. The alteration of adipokine 
production and/or action has been proposed as a com-
mon mechanism of cardiovascular disease [53]. Ectopic 
fat deposition in the form of epicardial fat could lead to 
the genesis of heart failure [54]. SGLT2i could restore the 
balance between pro- and anti-inflammatory adipokines. 
(7) SGLT2i attenuate sympathetic nerve activity [55]. 
Activation of the sympathetic nervous system is closely 
related to the onset and progression of heart failure, and 
the mechanism by which SGLT2i suppress sympathetic 
nerve activity is not yet fully understood. One possi-
ble explanation is described by mediating ketone body 
metabolism.

Indirect effects: (1) SGLT2i improve blood glucose. 
Studies have confirmed that hyperglycosylated hemo-
globin and hypoglycemia events are risk factors for 
cardiovascular events, but SGLT2i can reduce glyco-
sylated hemoglobin and reduce the risk of hypoglycemia, 

resulting in cardiovascular benefits. (2) SGLT2i promote 
weight loss. Obesity is an independent risk factor for car-
diovascular disease. SGLT2i cause glycosuria and nega-
tive energy balance, thereby leading to body weight loss 
[56]. SGLT2i can reduce the occurrence of cardiovascu-
lar events by promoting weight loss. (3) SGLT2i lower 
blood pressure [57]. It is well known that hypertension is 
a common complication of diabetes and one of the risk 
factors for cardiovascular disease. SGLT2i reduce sys-
tolic BP by 2.46 mmHg and diastolic BP by 1.46 mmHg, 
while they reduce 24-h ambulatory systolic and diastolic 
BP by 3.76 mmHg and 1.83 mmHg, respectively [58, 59]. 
SGLT2i can exert antihypertensive effects in many ways 
(such as decreased uric acid levels, metabolic fuel switch-
ing (ketogenic) activity, reduced body weight, hemo-
dynamic mechanisms secondary to volume depletion 
caused by diuresis and natriuresis, and so on [57]) and 
thus play a role in cardiovascular protection. (4) SGLT2i 
reduce proteinuria, delaying the progression of renal 
disease. Proteinuria and renal insufficiency are risk fac-
tors for cardiovascular events in patients with diabetes. 
SGLT2i can reduce proteinuria by reducing glomeru-
lar hyperfiltration. In addition, SGLT2i also have a good 
renal protective effect (described in more detail below), 
delaying the progressive damage of diabetic nephropathy.

The beneficial effects of SGLT2i in preventing cardio-
vascular events have been widely recognized in the clinic. 
We anticipate that further insight into the underlying 
mechanisms will be needed in the future.

Protective effect of SGLT2i on the kidney
Diabetic nephropathy is a leading cause of end-stage 
kidney disease in China, specifically ranking second in 
China. Worldwide, the incidence of diabetic microalbu-
minuria is 39%, and the annual incidence of albuminuria 
is 3.1% [60]. In China, 30% of T1DM and 20% of T2DM 

Table 4 Protective effects of SGLT2i on the cardiovascular system

Action Mechanism

Direct effects Inhibit myocardial  Na+/H+ exchange

Improve myocardial metabolism

Reduce cardiac preload

Reduce afterload

Reduce cardiomyocyte apoptosis and improve myocardial fibrosis

Reduce the synthesis of adipokines, cytokines and epicardial adipose tissue

Attenuate sympathetic nerve activity

Indirect effects Improve blood glucose

Promote weight loss

Lower blood pressure

Reduce proteinuria, delaying the progression of renal disease
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patients eventually progress to diabetic nephropathy [61]. 
Diabetic nephropathy is one of the most serious chronic 
complications in patients with diabetes, and it is also the 
main cause of death. Therefore, it is of great significance 
to actively prevent and treat diabetic renal complications.

According to a large clinical trial by Wanner et al. [62], 
compared with the placebo control group, the empagli-
flozin treatment group showed a significantly reduced 
incidence of kidney disease, risk of kidney deterioration, 
and risk of renal replacement therapy. The relative risk of 
doubling the ratio of urinary albumin to creatinine was 
also significantly reduced. The 2019 ADA guidelines [63] 
recommend the use of SGLT2i (class C), which have been 
shown to reduce the risk of kidney progression and car-
diovascular events, in patients with T2DM complicated 
with chronic kidney disease. In 2019, the Chinese Clini-
cal Guide for the Prevention and Treatment of Diabetic 
Renal Disease clearly stated [64] that SGLT2i have reno-
protective effects in addition to hypoglycemic effects. 
SGLT2i (grade A) are preferred when patients with dia-
betic nephropathy cannot control hyperglycemia with 
metformin.

The possible mechanisms by which SGLT2i protect the 
kidney, including the direct and indirect effects on the 
kidney, are summarized as follows (Table 5) [23, 65, 66].

Direct effects: (1) SGLT2i improve glomerular hyper-
filtration. Under physiological conditions, renal tubule-
glomerular feedback can regulate the tension of entering 
glomerular arterioles and maintain the stability of renal 
function; however, under the condition of hyperglyce-
mia, the reabsorption of SGLT2-mediated sodium and 
glucose in renal proximal tubules increased, the mecha-
nism of tubule feedback was damaged, the tension of 
entering glomerular arterioles was abnormal, renal blood 
perfusion increased, vascular wall pressure increased, 
the basement membrane thickened, and glomeruli were 

injured. SGLT2i can block the reabsorption of sodium 
and glucose in the proximal tubules, regulate renal 
tubule-glomerular feedback and reduce glomerular ultra-
filtration. (2) SGLT2i reduce renal oxygen consumption. 
SGLT2i can inhibit the active reabsorption of sodium in 
proximal tubules, thus reducing renal energy consump-
tion and protecting the kidney. (3) SGLT2i reduce renal 
inflammatory reactions. Under high glucose conditions, 
the expression of proinflammatory factors, growth fac-
tors, profibrotic mediators, advanced glycation end prod-
ucts and reactive oxygen species in the proximal tubules 
of the kidney increased, and the renal cortex thickened. 
SGLT2i can inhibit the expression of inflammatory fac-
tors and reduce the infiltration of inflammatory factors 
to reduce renal inflammation and delay changes in struc-
ture and function and the progression of fibrosis in the 
process of diabetic nephropathy. (4) SGLT2i restore the 
mode of cellular energy metabolism. They can improve 
renal energy metabolism and increase oxygen uptake and 
transformation at the level of mitochondria.

Indirect effects: (1) SGLT2i improve blood glucose. 
Hyperglycemia causes glucotoxic damage to the kidney. 
SGLT2i lower blood glucose and reduce the renal hyper-
trophy, injury and inflammation caused by glucotoxicity. 
(2) SGLT2i improve blood pressure. When the body is 
in a state of hypertension for a long time, the self-regu-
lating ability of renal vessels decreases, leading to renal 
dysfunction and proteinuria. SGLT2i can slightly lower 
blood pressure and indirectly affect renal function. In 
addition, a previous study proved that improved morning 
home systolic BP with dapagliflozin was independently 
related to alleviation in albuminuria in patients with 
diabetic nephropathy [67]. Additionally, SGLT2i may 
reduce body weight and blood pressure in nondiabetic 
patients [68]. (3) SGLT2i decrease uric acid levels. High 
levels of uric acid can form crystals and deposit in the 
kidney, reducing the glomerular filtration rate. In addi-
tion, other studies have confirmed that serum uric acid 
may promote the occurrence and development of dia-
betic nephropathy by mediating endothelial dysfunction, 
RAAS overactivation and the inflammatory response. 
SGLT2i promote osmotic diuresis and uric acid excre-
tion, thus reducing the burden on the kidney. (4) SGLT2i 
promote weight loss. On the one hand, obesity results 
in mechanical pressure on the kidney, causing renal 
hypoxia; on the other hand, obesity affects renal hemody-
namics (including increased renal blood flow, glomerular 
hyperfiltration and renal tubule sodium retention) and 
increases glomerular filtration rate and glomerular vol-
ume. SGLT2i can reduce abdominal and peripheral fat 
and body weight through glycosuria-related calorie loss 
and osmotic diuresis, thus improving renal hypoxia and 
hemodynamics and protecting the kidney. (5) SGLT2i 

Table 5 Protective effects of SGLT2i on the kidney

Action Mechanism

Direct effects Improve glomerular hyperfiltration

Reduce renal oxygen consumption

Reduce renal inflammatory reactions

Restore the mode of cellular energy metabolism

Indirect effects Improve blood glucose

Improve blood pressure

Decrease uric acid levels

Promote weight loss

Increase the level of glucagon

Reduce the level of insulin

Promote diuresis
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increase the level of glucagon. Glucagon can dilate blood 
vessels and increase renal blood flow, renal filtration and 
electrolyte excretion, thereby maintaining renal func-
tion. SGLT2i can protect the kidney by lowering blood 
glucose and increasing glucagon. (6) SGLT2i reduce the 
level of insulin. Insulin can promote the proliferation of 
renal cells and the extracellular matrix and damage renal 
function. SGLT2i can reduce the level of blood glucose, 
reduce insulin secretion and decrease the burden on the 
kidney. (7) SGLT2i promote diuresis. The synergistic 
effect of SGLT2i and proximal tubule  Na+/H+ can pro-
duce diuresis and blood pressure reduction, decreasing 
the burden of the kidney.

It should be emphasized that SGLT2i can significantly 
delay the progression of renal failure but cannot treat dia-
betic nephropathy. Some studies have found that SGLT2i 
can also cause a transient decline in renal function and 
return to normal within a few weeks [69, 70]. Clinical 
attention should be paid to this issue.

Safety evaluation of SGLT2i
SGLT2i have a unique glucose-lowering effect, which 
plays a protective role in many organs, but adverse 
reactions also need to be highlighted. The more com-
mon complications include adverse reactions related to 
glucose-lowering therapy and urinary glucose (such as 
genitourinary infection and ketoacidosis) and off-target 
adverse reactions (including fracture, lower limb amputa-
tion risk and tumor).

Statistically, the incidence of reproductive tract infec-
tion, generally mild-to-moderate infection, after treat-
ment with SGLT2i is 4.8% [71]. Due to differences in 
anatomical structure, the incidence rate of females is 
higher than that of males. The mechanism through 
which SGLT2i increase the incidence of reproductive 
tract infection may be by promoting glucose excretion 
through urine, increasing the concentration of glucose in 
the genitourinary tract, and increasing the risk of bacte-
rial and fungal infection. Therefore, attention should be 
paid to genitourinary tract hygiene when using SGLT2i. 
For genitourinary tract infection or recurrent infection 
within half a year, SGLT2i should be used cautiously or 
not recommended. However, some major outcome trials 
suggest that SGLT2i are not associated with an increased 
risk of urinary tract infections (UTIs) [31–33]. Wilding 
et al. suggested that it might be the disease that increases 
the chances of infection, not the drug, and that the ben-
efits of the SGLT2i seem to outweigh these risks of infec-
tion [72].

The incidence of ketoacidosis caused by SGLT2i is 
relatively rare, approximately 0.1% [31]. The mechanism 
may be related to the effect of SGLT2i on the levels of 

insulin and glucagon in the body, the promotion of fat 
decomposition and the β-oxidation of fatty acids, and 
the increase in ketone body production in the liver [73]. 
It should be noted that the number of cases of diabetic 
ketoacidosis has been increasing, especially the eugly-
cemic manifestation associated with SGLT2i treatment 
[73]. Many have postulated possible mechanisms for 
SGLT2i-associated diabetic ketoacidosis [74, 75], which 
make diabetic ketoacidosis a legitimate, small risk asso-
ciated with SGLT2i administration. Therefore, during 
use, we need to pay attention to the serum ketone body 
levels and pH values.

The CANVAS study pointed out that canagliflozin 
can increase the rate of bone metastasis, reduce the 
bone mineral density of the hip, and increase the risk of 
fracture [32]. The mechanism underlying the increased 
risk of fracture may be related to the increased serum 
phosphate level, decreased vitamin D level, weight loss 
and so on [76]. Therefore, for people at high risk of 
fracture, SGLT2i need to be used in a cautious manner.

An approximately twofold increase in the risk of 
lower limb amputation associated with SGLT2i com-
pared with placebo was observed in clinical trials [32, 
33, 77]. However, the recent CREDENCE trial reported 
no significant difference in lower limb amputation risk 
between the canagliflozin and placebo groups [78]. 
Meta-analysis of 14 RCTs (N > 26,000) demonstrated 
that SGLT2i as a class was not significantly associated 
with amputation risk, but subgroup analysis showed an 
increased risk for canagliflozin compared with other 
oral antihyperglycemic agents. All patients with diabe-
tes have a higher risk of lower limb infections, ulcers 
and amputation [79]. However, it remains unclear 
whether SGLT2i increase this risk, suggesting that we 
need to evaluate patient foot health on a regular basis.

A previous study [80, 81] indicated that canagliflozin 
increased the risk of developing renal tubule tumors, 
pheochromocytomas and testicular Leydig cell tumors 
in rats. The mechanism may be related to the inhibi-
tion of intestinal carbohydrate absorption, the increase 
in calcium excretion in renal tubules and the synthesis 
of luteinizing hormone induced by canagliflozin. How-
ever, there are differences between animals and people, 
and animal models cannot completely replace clinical 
research. Further clinical trials showed that the risk of 
bladder cancer and breast cancer in the dapagliflozin 
treatment group was higher than that in the control 
group [82]. However, the study did not conduct tumor 
screening and could not determine whether the tumor 
was caused by dapagliflozin treatment. Therefore, there 
is still controversy about whether SGLT2i can induce 
tumorigenesis.
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Large-sample multicenter clinical trials and addi-
tional basic experimental verification are still needed. 
Additional adverse reactions reported clinically include 
hypotension, dehydration, hypoglycemia and so on [83]. 
However, the risk of hypoglycemia is low unless coad-
ministered with insulin and insulin secretagogues (e.g., 
sulfonylureas, glinides). Thus, consideration needs to be 
given to reducing the dose of either agent used in combi-
nation with an SGLT2i. Mechanistically, SGLT2i are not 
associated with increased hypoglycemia risk [84].

The above adverse reactions suggest that medical staff 
should prescribe drugs in a reasonable manner, with an 
understanding of the complications to properly avoid 
risks. At the same time, the research and development of 
safe glucose-lowering drugs with high selectivity is also a 
difficult problem that we urgently need to overcome.

Conclusion and prospect
The drug treatment model of diabetes is facing profound 
changes. SGLT2i are a new type of glucose-lowering drug 
that, because of their unique action mechanism, do not 
depend on insulin or islet β-cells in vivo to exert pharma-
cological effects. Not only can they reduce blood glucose 
and glycosylated hemoglobin, but they can also improve 
the function of islet β-cells and reduce the level of insulin 
in the body. Further study has gradually revealed addi-
tional roles of these inhibitors other than reducing blood 
sugar. At present, SGLT2i have shown good cardiorenal 
protective effects, but there are also some adverse reac-
tions. Only by understanding and paying attention to the 
pharmacological mechanism can we understand these 
limitations, use such drugs reasonably and take precau-
tions to avoid risks. To date, SGLT2i have shown bright 
prospects and are expected to become clinical first-line 
drugs for T2DM. Further study on the mechanism is still 
needed in the future. In addition to improving the ther-
apeutic effect, it is urgent to reduce adverse drug reac-
tions, including possible systemic and carcinogenic risks.
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