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Large-scale brain dynamics are characterized by repeating spatio-
temporal connectivity patterns that reflect a range of putative
different brain states that underlie the dynamic repertoire of brain
functions. The role of transition between brain networks is poorly
understood, and whether switching between these states is
important for behavior has been little studied. Our aim was to
model switching between functional brain networks using multi-
layer network methods and test for associations between model
parameters and behavioral measures. We calculated time-resolved
fMRI connectivity in 1,003 healthy human adults from the Human
Connectome Project. The time-resolved fMRI connectivity data
were used to generate a spatiotemporal multilayer modularity
model enabling us to quantify network switching, whichwe define
as the rate at which each brain region transits between different
networks. We found (i) an inverse relationship between network
switching and connectivity dynamics, where the latter was defined
in terms of time-resolved fMRI connections with variance in time
that significantly exceeded phase-randomized surrogate data; (ii)
brain connectivity was lower during intervals of network switching;
(iii) brain areas with frequent network switching had greater tem-
poral complexity; (iv) brain areas with high network switching were
located in association cortices; and (v) using cross-validated elastic
net regression, network switching predicted intersubject variation in
working memory performance, planning/reasoning, and amount
of sleep. Our findings shed light on the importance of brain dynam-
ics predicting task performance and amount of sleep. The ability
to switch between network configurations thus appears to be a
fundamental feature of optimal brain function.
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Functional MRI (fMRI) has significantly enhanced our
knowledge about human brain function (1–3), especially in

recent years when it has been used to quantify the brain as a
complex functional network (4, 5). Although fMRI-based net-
work analyses have led to several new insights into the spatial
and temporal nature of large-scale brain network activity (6, 7),
many early fMRI network studies treat spatial and temporal
information as separate entities, assuming that brain regions are
not interconnected across time and space.
Multilayer network analysis (8, 9) is a novel graph-theoretic

model of networks where nodes are connected across time and
space. Multilayer networks can be decomposed into modules
that span time and space using a multilayer modularity algorithm
(10) that estimates the spatiotemporal segregation of nodes
forming a subset of nonoverlapping modules or networks. This
approach has a major advantage over other time-resolved fMRI
connectivity methods as it also provides a “temporal link” or
connectivity between adjacent time points. In other words, the
multilayer modularity model allows us to track and quantify
temporal changes of each node and also when they switch be-
tween different module or network assignments (11). Network
switching is defined as the rate at which a brain region transitions

between different functional networks. Note that this measure
has previously been called “node flexibility,” as proposed by
Bassett and others (11, 12); however, we prefer the term “node
switching” (13). Despite multilayer modularity being a relatively
new technique, a series of studies suggest that network switching
is associated with learning of simple motor tasks (12), attention
(14), executive function (15), fatigue (16), and depression (17).
These studies suggest that multilayer modularity has an un-
derlying neurobiological basis; however, it remains unknown
whether network switching is correlated with the dynamics, or
variance, of fMRI connectivity time series, and whether
network switching occurs during time periods of high or low
network connectivity and complexity. It is important to enhance
our understanding of switching and dynamics of fMRI connec-
tivity to reconcile how state changes and switching of networks
(topological analysis) may relate to statistical dynamics theory
(signal analysis). In an attempt to address these nontrivial
questions and gaps in the literature, we investigate network
switching in a multilayer modularity model using time-resolved
fMRI connectivity data from 1,003 healthy adults provided by
the Human Connectome Project (18). We hypothesize that
fMRI-based network switching and connectivity dynamics are
intrinsically correlated. Given that network switching is likely to
be a potentially “strenuous” and metabolically costly event for
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the brain, we also hypothesize that network switching is associated
with changes in fMRI complexity and connectivity. Finally, we
hypothesize that network switching is correlated with cognitively
demanding behavioral tasks.

Results
Time-resolved fMRI connectivity was estimated with correlation-
based sliding-window analysis (19) from N = 25 brain nodes (de-
rived from an independent components analysis across all sub-
jects; SI Appendix, Fig. S1) and 4,800 time points (∼1 h of data
concatenating 4 × 14.4-min sessions of fMRI data). We used a
window length of 100 s (139 time points). Each window was
shifted 0.72 s (one time point) across the whole scan, resulting in
a total of 4,661 time windows (W). We then formed a 3D matrix
of correlation coefficients of size N ×N ×W, composed of 2D
N ×N matrices for every time window W. These time-resolved
fMRI connectivity data were used as an input to the multilayer
modularity model, which was an iterative Louvain community de-
tection algorithm with uniform ordinal temporal coupling between
adjacent time points (10). The temporal coupling strength of this
model is governed by its parameter ω, whereas the topological
resolution of modules is governed by its parameter γ. Low/high ω
provides weak/strong temporal coupling between adjacent time
points, whereas low/high γ gives few/many spatial modules. The
most commonly used parameters in this multilayer modularity
algorithm are ω = γ = 1. However, to ensure that our results are
not affected by a specific spatial and temporal parameter, we
calculated multilayer modularity across a range of parameter sets
including γ = [0.9, 1, 1.1]; ω = [0.5, 0.75, 1], previously found to
have strong spatiotemporal modularity (11). For each pair of
parameters (ω, γ) the multilayer modularity model was a 2D array
of size N ×W containing integer values defining spatiotemporal
nodal network assignments. We then calculated nodal network
switching as the proportion of layers (time windows) in which a
node’s network assignment changes (see Fig. 1 for an overview).

Nodes That Switch Networks More Often Fluctuate Less Strongly.
First, we assessed whether network switching was related to dy-
namic connectivity. A connection was deemed dynamic if the SD of
its time-resolved functional connectivity was significantly greater
than the SD of time-resolved functional connectivity measured in
500 phase-randomized surrogates (20). Connections that did not
significantly differ from this surrogate data were consistent with the
null hypothesis of a process that was stationary and approximately
Gaussian. These connections could still change over time, but more
randomly than connections deemed to be dynamic. It is important
to remark that the core definition of connectivity dynamics is still

under debate (21), and failure to reject the above null hypothesis
does not imply that a connection is necessarily static in time.
An uncorrected P value was assigned to the SD value of each

fMRI sliding-window connection corresponding to its relative rank
compared with the 500 randomized surrogates. This is a one-tailed
test that considers whether a connection has stronger, but not
weaker, variance than the surrogate data. For example, an fMRI
connection will have an uncorrected P value of 0.002 if it has a
greater SD value than 499 of the 500 randomized surrogates
(calculated as 1 − rank/total number of variables, where rank= 500
out of 501 total variables). Statistical significance of connectivity
dynamics was then determined using a false discovery rate (22)
correction with threshold of q= 0.05, over all uncorrected P values.
To reduce dynamic connectivity information from the level of
connections ([N(N−1)]/2) = 300) to nodes (N = 25), we calculated
the binary sum of all significant dynamic connections associated
with each node. This resulted in a nodal degree metric quantifying
the number of dynamic connections associated with each node.
We found that network switching was inversely correlated with

fMRI-based connectivity dynamics. Averaged over all 25 brain
nodes, Spearman’s correlation between network switching and dy-
namic connectivity ranged between ρ= −0.49 and −0.52, across all ω
and γ parameters (Fig. 2A, ω and γ = 1 shown). Across over all 1,003
individuals, Spearman’s correlation between network switching and
dynamic connectivity ranged between ρ = −0.51 and −0.55, across
all ω and γ parameters (Fig. 2B, ω and γ = 1 shown). We also
replicated this finding in two additional analyses where we increased
the spatial resolution while down-sampling the temporal resolution
by decreasing the overlap between sliding windows (N = 50 and
W = 2,330, where each window was shifted in two time-point in-
crements;N = 100 andW = 1,165 where each window was shifted in
four time-point increments; SI Appendix, Fig. S2). Temporal reso-
lution was down-sampled to ensure computational tractability.
In line with our prior hypothesis, topological switching and

connectional dynamics of networks are (inversely) correlated.
Next, we aimed to test whether the switching brain is associated
with changes in overall global network connectivity, compared
with the nonswitching brain. To this end, we calculated the av-
erage correlation coefficient of each sliding-window correlation
matrix corresponding to time windows when brain regions switch
between networks versus time windows when brain regions do
not switch between networks. Given that variation in ω and γ had
a negligible impact, we henceforth only consider ω and γ = 1.

Switching Is Frequent When Global Network Connectivity Is Low. The
absolute average sliding-window correlation coefficient of all
possible pairwise correlations between nodes was significantly

Fig. 1. An overview of network switching within a multilayer modularity network with six nodes and three time windows (window 1, window 2, and window
3) and two modularity partitions (red = network 1; blue = network 2). This example shows two switching events exemplified when node changes between red
and blue colors between time points (solid black line between time points). Solid gray lines correspond to within-layer, or topological, connectivity. Dashed
gray lines correspond to between layer, or temporal, connectivity.
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lower during time windows when nodes switch between networks
(i.e., between two neighboring layers when the switch occurred),
compared with time windows when nodes do not switch between
networks (Hedges’ g effect size = 1.46, 95th percentile confidence
interval = 1.22–1.67, df = 2004, P < 0.0001; Fig. 2C). Note that we
calculated absolute correlation values to avoid positive and negative
correlation values cancelling out, resulting in a global network
connectivity value close to zero. This result suggests that network
switching occurs during periods of low global network connectivity.
Given that this analysis was conducted in the topological domain,
we next wanted to elucidate whether temporal complexity was also
affected by network switching. To this end, we calculated entropy
(signal complexity) of brain nodes that switch networks most fre-
quently versus brain nodes that switch networks least frequently.

Association Between Signal Complexity and Switching. We found
significantly higher sample entropy (23) (parameter values were
M = 2, r = 0.2 times the SD of fMRI connectivity signals) values
of sliding-window correlation time series in the five brain regions
with highest rate of network switching (on a group level these

brain regions were superior parietal lobule, precuneus, left
frontoparietal lobe and right frontoparietal lobe, and right
intraparietal sulcus), compared with the five brain regions with
lowest rate of network switching (on a group level these brain
regions were secondary visual cortex, superior temporal lobe,
primary motor cortex, and left cerebellum and right cerebellum)
(Hedges’ g effect size = 1.32, 95th percentile confidence in-
terval = 1.11–1.53, df = 2,004, P ≤ 0.0001; Fig. 2D). This finding
suggests that network switching is associated with temporally
complex fMRI connectivity signals.
Our results suggest that (i) switching and dynamic connectivity

are negatively correlated, (ii) switching time windows have lower
correlations in the topological domain, and (iii) frequently switching
nodes have greater complexity in the temporal domain. Following
this, we next sought to localize which cortical and subcortical re-
gions switch the most.

Switching Is Most Frequent in Association Cortex. We observed a
divergent spatial pattern between network switching and func-
tional dynamics in the case of N = 25 nodes. Higher switching
was observed in association cortex compared with primary cortex
(hot colors in Fig. 2E), whereas the converse pattern was evident
for connectivity dynamics (hot colors in Fig. 2F). Parcellations
comprising N = 50 and N = 100 nodes showed comparable
patterns (SI Appendix, Fig. S3). In Fig. 2G, we report results from
a paired t test outlining nodal differences between switching and
dynamic connectivity. In total, 24 of 25 brain nodes were statis-
tically different between switching and connectivity dynamics
after correcting for multiple comparisons (false discovery rate,
q = 0.05). The only brain region not statistically significant be-
tween switching and dynamic connectivity was the secondary
visual cortex (node 4 in SI Appendix, Fig. S1).
In light of these spatial network findings (Fig. 2 E and F), we

next aimed to confirm that the multilayer modularity algorithm
delineated spatial modules conforming to well-known resting-
state networks. A module consensus map was generated using
a group-averaged agreement matrix that contains probability
values [0, 1] denoting the number of times node pairs share the
same module divided by the number of possible times two nodes
can share the same module. By computing a Louvain clustering
algorithm of the group-averaged agreement matrix (see ref. 24
for more details about consensus partitioning of modularity
data), we obtained five modules common to all subjects including
(i) default mode network, (ii) sensory networks, (iii) frontoparietal
network, (iv) dorsal attention network, and (v) ventral attention
network. The first three networks have a strong spatial overlap,
whereas the last two networks have a moderate spatial overlap, with
resting-state networks delineated using alternative methods of Yeo
et al. (25) (SI Appendix, Fig. S4).
We also calculated average network switching within our five

modules and confirmed that association cortices (default mode,
frontoparietal and attention networks) showed significantly higher
switching rates, compared with sensory cortices (SI Appendix,
Fig. S5).

Relationship Between Switching and Behavior. Finally, we aimed
to test whether switching predicted interindividual variation in
behavior and task performance. Given that the Human Con-
nectome Project offers a wealth of behavioral information (26),
we wanted to use a data-driven regression approach without any
prior bias. To this end, we included 50 behavioral variables com-
prising behavioral domains such as cognition (working memory,
attention, executive functioning, planning, reasoning, and gam-
bling), social functioning, personality traits, physical function,
and sleep. Although we used a data-driven regression approach,
we hypothesized that the subset of tasks important for higher-
order or frontal lobe function would be most important for effi-
cient brain network switching. These cognitive tasks include

Fig. 2. Scatterplot between network switching and connectivity dynamics.
(A) Each data point denotes a single node, averaged across all subjects. (B)
Each data point denotes a single subject, averaged across all nodes. (C)
During time windows with network switching (cyan color), nodes display
significantly lower absolute sliding-window correlations than time windows
with no switching (magenta color). (D) Average sample entropy in the five
nodes with most network switching (cyan color) was significantly higher
than the five brain nodes with lowest network switching (magenta color).
(E) Network switching was high in association cortices and low in primary
cortices. (F) Dynamic connectivity was high in primary cortices and low in
association cortices. (G) Paired t test difference between the 25 nodes in E and
F. Data for all 25 brain nodes were normalized into z-scores so ensure both
connectivity dynamics and switching values were scaled equally and appro-
priate for univariate t test analysis. Network switching is the rate at which a
brain region transits between different networks (in percent); dynamic con-
nectivity is the number of connections with significantly stronger fluctuations.
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(i) the Flanker task (cognitive inhibition), (ii) card-sorting task
(cognitive flexibility), (iii) processing speed (general cognitive
ability), (iv) N-back task (working memory), and (v) relational task
(planning and reasoning).
We used elastic net regression (27) to test whether any of the

50 behavioral domains (independent variables) predicted whole-
brain averaged network switching (dependent variable). Elastic
net regression is well suited to data-driven regression analysis
as it provides a sparse output by removing all behavioral data
deemed to be unrelated to network switching. Elastic net is
governed a regularization parameter λ that alters the sparsity and
variability of the regression model. The regularization parameter
was determined with 10-fold cross-validation (28). The minimum
mean square error (0.028) was achieved with a regularization
parameter λ = 0.023 (SI Appendix, Fig. S6). At this value, be-
havioral data accounted for ∼3% of the total variance of fMRI
network switching data (r2 = 0.029, defined as 1 − [residual sum
of squares/total sum of squares] of the regression model). This r2
value was significantly higher than expected due to chance (P <
0.001, compared with r2 estimates from 500 randomly generated
elastic net regressions).
The elastic net regression result at λ of 0.023 showed that 3 of

50 behavioral domains were weakly, but significantly, related to
network switching (note that elastic net regression β values
were zero for all other 47 measures): i) number of hours of
sleep the night before the MRI scan (Spearman’s correlation
between switching and hours of sleep was ρ = 0.14, P < 0.0001;
elastic net regression β was 0.071; the Spearman’s correlation be-
tween original and predicted data was ρ = 0.86; Fig. 3, Left)—as
hypothesized, higher-order functions were also correlated with
switching; ii) accuracy of N-back task using the average accuracy
score from the 0- and 2-back task, important for working memory
(Spearman’s correlation between switching and N-back task was
ρ = 0.11, P < 0.0001; elastic net regression β was 0.036; the
Spearman’s correlation between original and predicted data was
ρ = 0.54; Fig. 3, Middle); and iii) relational task involved in
planning and reasoning (Spearman’s correlation between switch-
ing and relational task was ρ = 0.11, P < 0.0001; elastic net re-
gression β was 0.017; the Spearman’s correlation between original
and predicted data was ρ = 0.46; Fig. 3, Right).

Discussion
By leveraging the information-rich brain imaging dataset (ap-
proximately 1-h fMRI recordings from 1,003 subjects) provided
by the Human Connectome Project (18), we found that the
frequency of nodal switching is inversely related to the number of
significant dynamic connections (Fig. 2 A and B), with most
prominent network switching in association cortices (Fig. 2E).
Although it is likely that connections of high switching nodes in
association cortex (e.g., bilateral frontal and parietal cortex) also
exhibit dynamic activity, our results suggest their variability, as
measured with SD, is indistinguishable from phase-randomized
surrogate data. We also found that brain nodes switch between

networks during time windows with low global network connec-
tivity (Fig. 2C), and high-switching nodes were more “temporally
complex”—estimated with sample entropy—compared with low-
switching nodes (Fig. 2D). Switching is known to increase in sys-
tems with high entropy or information load (29). We consequently
hypothesize that our observed relationship between brain network
switching and high entropy/low global network connectivity may
be related to increased information load imposed on specific brain
regions, especially those located within the association cortex (e.g.,
bilateral fontal and parietal cortex) known to integrate informa-
tion between a range of different networks (30).
Network switching also predicted intersubject variation in

behavior, using data-driven elastic net regression (Fig. 3). Even
though we included a range of behavioral variables including
personality traits, physical performance, emotion, and well-
being, behaviors that tap into association cortex function were
predicted by network switching, including working memory and
planning/reasoning (31). We noted a resemblance between our
spatial network switching map displayed in Fig. 2D and pre-
vious task-based fMRI studies of working memory tasks (32),
with prominent bilateral frontal and parietal cortices impor-
tant for higher-order cognitive functions. This warrants inves-
tigation of the hypothesis that network switching can predict
severity of psychiatric and neurological diseases with pro-
nounced dysfunction of higher-order cognition, such as schizo-
phrenia and epilepsy.
Notably, network switching predicted the amount of sleep that

participants had the night before the MRI scan. As all partici-
pants were instructed to keep their eyes open during the whole
scan, falling asleep in the scanner cannot explain this finding.
Sleep impacts on the same domains of brain performance as seen
in this study (33), and findings by Betzel et al. (16) also suggest
that fatigue may be an important “driver” for network switching.
Taken together, this suggests that the impact of sleep deprivation
on cognitive performance may be mediated through its effect on
brain network switching.
The computational complexity of multilayer network analyses

was a limitation of our study, as high spatial and/or temporal
resolution of multilayer networks results in very large networks
as they are connected in both time and space ([(N ×W) (N ×W)] ≈
1010 data points per subjects in this study). Given that we needed
to include many time windows (here, 4,800 time windows) to
statistically detect fMRI dynamic connectivity—this was pre-
viously demonstrated by Hindriks et al. (34) and further vali-
dated in this study as seen in SI Appendix, Fig. S7—we needed to
keep the spatial resolution of fMRI data rather coarse (25 brain
nodes were used in our main analysis). Although we replicated our
original results when increasing the spatial resolution and de-
creasing the temporal resolution of fMRI networks (SI Appendix,
Figs. S2 and S3), development of more efficient computational
methods for multilayer network modularity detection in the
future may mitigate the need for temporal down-sampling.

Fig. 3. Scatterplots between elastic net predicted and rescaled behavioral variables (y axes) and original values (x axes). Each dot is a single subject, and
dashed lines denote the best linear fit between predicted and original values.
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It is worth noting that the main limitation of only having 25
network nodes is the so-called resolution limit of modularity al-
gorithms. This means that at some point there are an insufficient
number of nodes that can converge into segregated and non-
overlapping modules. The resolution limit did not appear to be
a problem in the current study as nodes were readily subdivided
into well-known “resting-state networks” across subjects asso-
ciated with relatively high modularity scores (Q = ∼0.6) serving
as a quality function of the obtained multilayer modularity parti-
tions (SI Appendix, Fig. S4).

Materials and Methods
Subjects, fMRI Data, and Processing. We used resting-state fMRI data from
1,003 healthy adults from the Human Connectome Project, accessible via
https://www.humanconnectome.org/study/hcp-young-adult/article/release-s1200-
extensively-processed-rfmri-data (18, 35) (female subjects = 534/1,003; male
subjects = 469/1,003), and Institutional Review Board approval was consid-
ered unnecessary for the current study. fMRI recon r177+r227 data were used
and subjects were between ages of 22 and 35 y. fMRI parameters included echo
time = 33.1 ms, field of view = 208 × 180mm2, number of slices = 72, voxel size =
2 mm3, and flip angle = 52°. We used four fMRI scans for each subject (14.4 min
per scans where subjects were instructed to keep their eyes open). At a repeti-
tion time of 0.72 s there were 1,200 time points in each scan; we concatenated
all four scans into continuous fMRI time series comprising 4,800 time points.

The fMRI data of each subject was preprocessed by the Human Con-
nectome Project team with echo planar imaging gradient distortion cor-
rection, motion correction, field bias correction, spatial transformation and
normalization into a commonMontreal Neurological Institute space (36), and
artifact removal using independent component analysis FIX (37). A group-
level independent component analysis was used to define the 25 brain
nodes of interest, common across all subjects. We additionally filtered the
fMRI data between frequencies of 0.01 and 0.1 Hz.

fMRI Correlation-Based Sliding-Windows Analysis. We used a Pearson’s
correlation-based sliding-window analysis to estimate time-resolved fMRI
connectivity. Pearson’s correlation coefficient of two resting-state fMRI time
series (38, 39) X½t� and Y ½t� is written as

r =

PT
t=1

�
X½t�− �X

��
Y ½t�− �Y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t=1

�
X½t�− �X

�2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t=1

�
Y ½t�− �Y

�2q ,

where �X and �Y are the sample means and r have a numerical range be-
tween −1 (anticorrelation) and 1 (correlation). Here, the pairwise correlation
coefficient between 25 brain regions of interest was calculated based on a
fixed window length consisting of 139 fMRI time points (100 s), which sat-
isfies the 1/f0 wavelength criterion for a minimum cutoff frequency of 0.01
Hz (19, 40, 41). Windows were shifted with a single time point, resulting in a
total number of 4,661 windows. We tapered each correlation-based window
with a Hamming function to mitigate edge artifacts of the windows and
attenuate potentially noisy signals.

Multilayer Modularity and Network Switching. To quantify spatiotemporal
network switching we used an iterative and ordinal Louvain algorithm to
track network function over time (10) [implemented with codes from Lucas
G. S. Jeub, Marya Bazzi, Inderjit S. Jutla, and Peter J. Mucha, “A generalized
Louvain method for community detection implemented in MATLAB,” netwiki.
amath.unc.edu/GenLouvain/GenLouvain (2011–2016)]. Modularity is quanti-
fied by Q ranging from 0 (low network segregation) to 1 (high network
segregation). This measure is governed by γ and ω parameters, which deter-
mine the strength of topological and temporal connectivity, respectively.
Multilayer modularity is written as follows:

Qðγ,ωÞ= 1
2μ

X
ijsr

��
Aijs − γs

kiskjs
2ms

�
δ
�
Mis,Mjs

�
+ δði, jÞ ·ωjrs

�
δ
�
Mis,Mjr

�
.

Aijs is the sliding-window correlation matrix between node i and j for time
point s, whereas kiskjs=2ms (k = node degree at time point s, m = sum degree
of all nodes at time point s) denotes the Newman–Girvan null model of
intranetwork connectivity. As this multilayer modularity algorithm only
allows positive matrix values, we removed all negative correlations in the
sliding-window matrices, A. γs is the topological resolution parameter of
time point, or layer, s and ωjrs is the temporal coupling parameter for node
j between time window r and s. Then, δðMis,MjsÞ and δðMis,MjrÞ are 1 if

nodes belong to in the same module and 0 if they do not belong to the
same module (M). This process was, on average, iterated five times before
the inherent heuristics of the multilayer modularity algorithm converged.
Networks had an average Q-value of 0.59 ± 0.012 SD and an average of
three modules per subject (range: two to six modules). The final output of
the multilayer modularity algorithm was a 2D array (N×W) with integer
values denoting modules with strong within-network connectivity. The
switching rate for each node was then estimated as the percentage of
time windows when a brain node transitions between different network
assignments. As discussed previously, it is a nontrivial issue to select ω and
γ parameters and we used a range of parameters including γ = [0.9, 1, 1.1] and
ω = [0.5, 0.75, 1]. As shown in SI Appendix, Fig. S8, the temporal ω parameter
appeared to alter spatiotemporal modularity more than the topological γ
parameter. Specifically, lower ω values led to increased network switching.
Nodes switched 1.61% of the time for ω = 0.5, 1.55% of the time for ω = 0.75,
and 1.48% of the time for ω = 1, at a constant γ-value of 1.

fMRI Dynamic Connectivity. The SD of fMRI sliding-windowed correlation time
series between node pairs was here used as a proxy of dynamic connectivity,
where high SD indicates greater signal dispersion from mean correlation-
based sliding-window time series. To determine whether our obtained SD
values of time-resolved fMRI connectivity likely reflect “true dynamics”
(meaning that we obtain information from this measure that cannot be
obtained in time-averaged, or static, analysis), we compared SD between
original and phase-randomized data where fMRI time series were phase
shuffled in the Fourier domain while preserving the power spectral magni-
tude and the correlational nature of the data (20). We obtained 500 phase-
randomized signals and used false discovery rate (q = 0.05) to reduce proba-
bility of type-I errors given that each subject has 300 unique comparisons. In
total, 28.9% of node pairs were deemed “dynamic” after correcting for
multiple comparisons. To convert the dynamic connectivity data from matrix
([(N(N − 1)/2)] = 300) to node (N = 25) space, we summarized the (binary)
number of significant connections for each node, resulting in a degree metric
summarizing how dynamic a node is.

Sample Entropy. For each subject, we used sample entropy to estimate the
difference in temporal complexity of time-resolved fMRI connectivity signals
between five nodes with most network switching and five nodes with least
network switching. We used a template length, M, of 2 and a tolerance
parameter, r, of 0.2× the SD of the signal (see ref. 23 for more information
about sample entropy). In brief, a low sample entropy score suggests that a
signal includes structured patterns, whereas a high sample entropy score
suggests that the signal is random or unpredictable.

Cross-Validated Elastic Net Regression. We used elastic net to test whether
whole-brain averaged network switching predicted 50 behavioral variables
across subjects. Elastic net enables data-driven regression analysis by enforcing
sparsity of regression output values (i.e., reducing the number of final β re-
gression values). In other words, it provides automatic variable selection by
removing all behavioral variables not predicted by network switching.

Given that network switching data and behavioral data had different
numerical scales, we normalized all input data, x, which denotes both
switching data and the 50 behavioral variables:

�x =
x −meanðxÞ

maxðxÞ−minðxÞ.

This resulted in variables, �x, with values between −1 and 1. The elastic net
equation is then written as

β̂0, β̂=arg min
β0 , β

8<
:
Xn
i=1

 
yi − β0 −

Xp
j=1

βjXij

!2

+ λ
Xp
j=1

�
1
2
ð1− αÞβ2j + α

		βj		
�9=
;,

where y is a vector of size 1 × 1,003 containing subject-specific information
from whole-brain averaged network switching data and X is a matrix of size
50 × 1,003 containing subject-specific information from 50 behavioral vari-
ables. This is a doubly penalized regression model using both LASSO re-
gression (α = 1; an l − 1 penalty resulting in a sparse but uncorrelated β
values) (42) and Ridge regression (α = 0; an l − 2 penalty resulting in a
variance-reducing, but nonsparse β values) (43). We set the α value to 0.5 to
take advantage of the relative strengths of the two above regression ap-
proaches, providing a nonsparse solution with low variance among several
correlated independent variables (SI Appendix, Fig. S9).

To select a λ threshold, which determines the overall sparsity of the re-
gression model, we calculated elastic net over a range of different λ values
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between 0 and 1 with increments of 0.001 (total of 1001 λ values) using 10-
fold cross-validation (∼900 people were trained and ∼100 people were left
out for testing, repeated 10 times until all subject have been left out once
for training). The “optimal” threshold had lowest mean square error over all
possible λs across the 10-folds. We found λ = 0.023 had the lowest mean
square error of 0.028 (SI Appendix, Fig. S6).

As reported in the text, our results showed network switching predicted 3
of 50 behavioral variables. We defined prediction as

Prediction=Xβ+ βo,

where X is the original values of our three behavioral variables and βo is the
intercept of the elastic net regression model.
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