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Abstract

Interpreting and integrating results from omics studies typically requires a comprehensive and time consuming survey of extant literature.
GeneCup is a literature mining web service that retrieves sentences containing user-provided gene symbols and keywords from PubMed
abstracts. The keywords are organized into an ontology and can be extended to include results from human genome-wide association
studies. We provide a drug addiction keyword ontology that contains over 300 keywords as an example. The literature search is conducted
by querying the PubMed server using a programming interface, which is followed by retrieving abstracts from a local copy of the PubMed
archive. The main results presented to the user are sentences where gene symbol and keywords co-occur. These sentences are presented
through an interactive graphical interface or as tables. All results are linked to the original abstract in PubMed. In addition, a convolutional
neural network is employed to distinguish sentences describing systemic stress from those describing cellular stress. The automated
and comprehensive search strategy provided by GeneCup facilitates the integration of new discoveries from omic studies with existing
literature. GeneCup is free and open source software. The source code of GeneCup and the link to a running instance is available
at https://github.com/hakangunturkun/GeneCup.

Keywords: literature mining; PubMed; web service; addiction; custom ontology

Introduction
We describe a web service and application—Mining gene relation-
ships using custom ontology from PubMed (GeneCup) (http://gene
cup.org)—that automatically extracts information from PubMed
on the relationship of any gene with a list of user-provided key-
words that are hierarchically organized into an ontology. In addi-
tion, genetic associations related to the keywords are retrieved
from the NHGRI-EBI GWAS catalog. As an example, we created
an ontology for drug addiction-related concepts containing 7 cat-
egories and over 300 keywords. We describe the details of
GeneCup by using this ontology.

Omic studies are becoming the main driving force for discov-
ering molecular mechanisms of human diseases. Over 5,000
genome-wide association studies (GWAS) have mapped over
71,000 associations between genetic variants and diseases/traits
(Buniello et al. 2019). For example, 1 recent survey identified 1,223
genome-wide significant SNPs associated with psychiatric pheno-
types (Horwitz et al. 2019). Specialized databases, such as the
GWAS catalog (Buniello et al. 2019), are available for searching
the association between genetic variants and phenotypes.
Transcriptome (Farris et al. 2015b; Lo Iacono et al. 2016; Zhang
et al. 2016; Cates et al. 2019; Kapoor et al. 2019; Huggett and
Stallings 2020) or epigenome (Ponomarev et al. 2012; Farris et al.

2015a; De Sa Nogueira et al. 2019) profiling using bulk tissue or

single cells (Avey et al. 2018; Karagiannis et al. 2020) have also dis-
covered the involvement of many genes in response to drugs of
abuse, stress, or other psychiatric related conditions. Studies us-

ing model organisms, such as worms, flies, mice, and rats, have
also identified many associations between genetic variants and
drug abuse-related phenotypes (Engleman et al. 2016; Adkins et al.

2017; Highfill et al. 2019; Zhou et al. 2019).
In these omics studies, understanding the function of genes is a

challenging task that requires thorough integration of existing knowl-
edge. Statistics-driven gene ontology, or pathway analysis, are often

employed for this purpose. However, an extensive review of the pri-
mary literature is ultimately needed to provide a comprehensive and
nuanced narrative of these mechanisms. For many scientists, this

starts with searches of PubMed based on their domain knowledge.
These ad hoc searches often miss important information not only be-
cause of the inherent complexity of the biology, but also because of

the amount of time required for designing a search strategy, conduct-
ing the searches, reading the texts, extracting relevant facts, and or-
ganizing them into categories. The task of literature searches is

especially daunting when many genes are identified in a single study.
Many applications and software were designed for text

mining in PubMed (Wei et al. 2016). For example, PubTator
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Central (Wei et al. 2019) is a web-based system that makes auto-
matic annotations (i.e. color code genes, diseases, chemicals, etc.)
in PubMed for biomedical concepts. Similarly, Thalia (Soto et al.
2019) is a semantic search tool that automatically tags concepts
occurring in articles indexed in PubMed. We developed Chilibot
(Chen and Sharp 2004), which extracts gene–gene or gene–key-
word relationships from PubMed. NCBI also maintains GeneRIF
(Jimeno-Yepes et al. 2013), a database of sentences that describes
gene functions. GeneCup fills the void as a web service that
extracts relationships between genes and a list of keywords from
the entire collection of PubMed abstracts, as well as gene to phe-
notype associations from the GWAS catalog. GeneCup was
designed to meet our own needs of understanding the results
from GWAS on addiction-related traits but our web service also
allows users to create their own keyword ontologies for a field of
interest.

GeneCup relies mostly on keyword matching to select relevant
sentences. However, as in the example of addiction ontology the
same keyword can have multiple meanings. In particular, stress
promotes initial drug use, escalates continued drug use, precipi-
tates relapse and is a major factor contributing to drug addiction
(Koob and Schulkin 2019). Stress in this context refers to the
body’s response to internal and external challenges and is medi-
ated by activating the hypothalamic–pituitary–adrenal axis. In
addition, stress can also refer to the responses of cells to pertur-
bations of their environment, such as extreme temperature, me-
chanical damage, or accumulation of metabolites, etc. These
responses often involve the activation of specific molecular path-
ways. Both systemic and cellular stress have a large collection of
literature and it is useful to automatically group sentences con-
taining the word stress according to their exact meaning. There
are many machine learning methods that have been applied to
this type of natural language processing (NLP) tasks. Young et al.
(2018) compared some of the deep learning-related algorithms
employed in NLP tasks. Among them, convolutional neural net-
work (CNN) has been shown to be efficient in many sentence-
level classification projects (dos Santos et al. 2015; Francis-
Landau et al. 2016; Lopez and Kalita 2017; Gehring et al. 2017;
Wang and Gang 2018). CNN was initially designed for 2D image
processing (Lecun et al. 1998). It uses a linear operation called
convolution besides the regular neural network components, and
explores the important patterns in a data by identifying both lo-
cal and global features of the data. The ability to detect nonlinear
relationships among the features effectively is one of the key
advantages of deep learning architectures. We therefore devel-
oped a CNN to separate sentences describing cellular stress from
those that describe system stress.

GeneCup is available as a free web-service. In addition, its
source code is available for those interested in setting up a ser-
vice of their own or modifying the code to better suit their needs.

Methods
System overview
GeneCup is a free and open source web application (Fig. 1). The
source code and URL of a running instance is available at https://
github.com/hakangunturkun/GeneCup. The main user interface
contains a search box that accepts up to 200 gene symbols from
the user. Because GeneCup does not search for relationships be-
tween gene symbols provided by the user, lists with more genes
can be broken into multiple searches without affecting the
results. Each gene symbol is paired with each one of the custom
ontological categories to query PubMed. The title and abstract of

these records are then obtained from a mirrored copy of PubMed
on the local server. Sentences containing at least 1 gene symbol
and 1 keyword are retained. A local copy of NHGRI-EBI GWAS cat-
alog is also searched for associations between the queried genes
and phenotypes related to the ontology. The results are available
as an interactive graph or a table that provides links to key sen-
tences from the abstracts, which in turn, are linked to PubMed. In
the example of addiction keywords, sentences that contain the
keyword “stress” are further classified into 2 types (i.e. systemic
vs cellular) before presented to the user, by using a 1D CNN.

We have setup a demonstration server at https://genecup.org.
The server is a 28 core Penguin Computing Relion 2600GT system
with NVIDIA Tesla K80 GPU. We also tested the software on com-
puters with an Intel i7 CPU with 8 cores and did not notice signifi-
cant differences in performance. Disk usage is about 122 GB.
Most of it is occupied by the local copy of PubMed. Peak memory
usage, as estimated by the Resource package in Python, was ap-
proximately 420–440 MB during searching, 360 MB for generating
the table view, and 440 MB for producing the graphic view.
Memory usage during the classification of stress-related senten-
ces using the deep learning module was approximately 4 GB.

Sources of data: PubMed and GWAS catalog
We created a copy of the entire PubMed abstract on our server
following instructions provided by the NCBI (Kans 2020). This
allows us to rapidly retrieve the abstracts and bypass the limits
imposed by NCBI on automated retrievals to prevent system
overload. This local copy is updated automatically every week on
our server. Downloading the PubMed archive took approximately
106 min over an Internet2 connection. The time required for
PubMed synchronization, which is made once a month by a util-
ity of NCBI, is minimal (usually less than 5 min).

We also store a local copy of the GWAS catalog database
(Buniello et al. 2019) (i.e. all associations v1.0.2 from https://www.
ebi.ac.uk/gwas/docs/file-downloads). More specifically, we ex-
tract the following fields from the GWAS catalog: PUBMEDID,
DISEASE/TRAIT, MAPPED_TRAIT, REPORTED GENES,
MAPPED_GENE, SNPS, P-VALUE. The trait fields and gene fields
are included in GeneCup searches. All extracted fields are in-
cluded in the search results. This file is updated manually upon
every new release of the catalog.

User-defined ontologies
The custom ontology has 3 levels. The top level is the name
of the categories, which can be used to decide whether its
sub-categories are included in a new search. The second level is
concepts that are displayed in the results (i.e. interactive graphs
and tables). The third level contains the actual keywords used in
PubMed queries and finding matching sentences. For example,
the top level “cells” can contain second level concepts such as
“neurons” and “glial cells,” with “glial cells” further containing
keywords such as “astrocytes,” “microglia,” etc. The matching
keywords at the third level are highlighted using bold font when
the sentences are displayed. A special top level keyword “GWAS”
is reserved for searching the GWAS catalog. Any keyword under
this branch is used to search the GWAS catalog database. This is
a flexible structure that allows the user to freely organize a large
collection of keywords to fit their needs. A free user account is
needed for creating and editing custom ontologies.

As an example, we created a mini-ontology for addiction-
related concepts (Supplementary Table 1). The top level has the
following 7 categories: addiction stage, drugs, brain region, CNS
cell type, stress, psychiatric diseases, and molecular function.
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The second level is composed of relevant keywords and the third
level includes subconcepts of the keywords or commonly used
spelling or acronyms for the keywords. Users have the option to
omit any category from the search.

Query processing and user interfaces
We wrote the web-service in the Python programming language
and used the Flask library as the web application framework.
Users of the web service have the option of creating an account
to save search results for later reviews. Query terms provided by
the user are first paired with all the keywords. Keywords belong-
ing to the same second level ontology terms are combined using
the boolean OR operator before joining with the gene symbol us-
ing the AND operator. The E-utilities provided by the NCBI Entrez
system (Kans 2020) are used to send the query to the PubMed
database (using Esearch) and to retrieve PMIDs (using Efetch).
Corresponding records for each PMID are obtained from the local
copy of PubMed and the xtract tool is used to parse the titles and
abstracts. The Python NLTK library (Bird et al. 2009) is then used
to tokenize the abstracts into sentences. Python regular expres-
sions are used to find sentences that contain at least one in-
stance of a query gene and 1 instance of a keyword. The number
of abstracts containing such sentences are then counted. The
gene is also searched in the GWAS catalog for phenotypic associ-
ations. The number of associations is counted. A network graph
is constructed using the Cytoscape Javascript library (Shannon
et al. 2003), where all genes, keywords, and GWAS terms are used
as nodes, and a connection is made between nodes describing a
gene and a keyword. The number of abstracts is used as the
weight of the edge. This interactive graph allows a user to click

on the edge to review the corresponding sentences. All sentences
are linked to their original PubMed abstract. The user can also
click on a gene to see its synonyms. These synonyms are
obtained from the NCBI gene database but are not included in
the original search. This is because they often do not appear in
the literature or have other meanings and thus provide inaccu-
rate results. However, the web interface allows these synonyms
to be included in a new search to retrieve additional information
that is potentially relevant.

The GeneCup source code is distributed as free and open
source software and can therefore easily be installed on other
systems. We have tested our code in commonly used Linux distri-
butions (Debian, GNU Guix, Ubuntu, Arch Linux). The whole ser-
vice with dependencies is described as a byte reproducible GNU
Guix software package (Wurmus et al. 2018).

Convolutional neural network to classify
sentences describing stress
We trained a 1D CNN to classify sentences describing stress to ei-
ther cellular stress or system stress (Fig. 2). To create a training
corpus, we used a word2vec embeddings library based on
PubMed and PubMedCentral data (Moen and Ananiadou 2013) by
retrieving words that are similar to examples of systemic stress
and cellular stress (e.g. restraint, corticosterone, CRH, and oxida-
tive stress respectively). We then manually crafted 2 PubMed
queries to retrieve abstracts related to systemic or cellular stress:

1) (CRF OR AVP OR urocortin OR vasopressin OR CRH OR re-
straint OR stressor OR tail-shock OR (social AND defeat) OR
(foot AND shock) OR immobilization OR (predator AND
odor) OR intruder OR unescapable OR inescapable OR CORT

Fig. 1. Overview of the workflow of GeneCup. GeneCup allows users to query the relationship of any gene with a list of keywords hierarchically
organized into a custom ontology. This information is automatically extracted from PubMed and NHGRI-EBI GWAS catalog. The users have an option
to choose keyword categories during the search. Searches are conducted using EUtils against the PubMed database but abstracts are retrieved from a
locally mirrored copy of PubMed. The results are displayed as a cytoscape graph (Fig. 3) and a table. The graph and the table have many interactive
elements, including displaying sentences that include the gene symbols and the keywords. Custom ontologies and search results are archived on the
server if the user chooses to log in. When the default addiction ontology is used, sentences containing the keyword stress are classified using a CNN into
1 of 2 classes: systemic stress or cellular stress (Figs. 2 and 4). Dashed lines: Server operations invoked as needed. Solid lines: Server operations for
default queries.
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OR corticosterone OR cortisol or ACTH OR prolactin OR PRL
OR adrenocorticotropin OR adrenocorticotrophin) AND
stress NOT (ROS OR oxidative OR redox-regulation OR nitro-
sative OR nitrative OR hyperglycemia OR carbonyl OR lipox-
idative OR Nrf2-driven OR thiol-oxidative)

2) (ROS OR oxidative OR redox-regulation OR nitrosative OR
nitrative OR hyperglycemia OR carbonyl OR lipoxidative OR
Nrf2-driven OR thiol-oxidative) AND stress

We downloaded all the PubMed abstracts returned from these
2 queries. Manually examining some of the abstracts confirmed
the relevance of the results. We then extracted all sentences con-
taining the word stress from each set and kept 9,974 sentences
from the “systemic stress” class and 9,652 sentences from the
“cellular stress” class as our stress training/validation corpus. We
maintained another set of 10,000 sentences as the testing corpus,
5,000 sentences for each class.

To clean the data and prepare it for deep learning, we split
19,626 sentences into words, removed punctuation marks, fil-
tered the stop words, and stemmed the words (Brownlee 2017).
These words formed a vocabulary of size 23,153 and were toke-
nized by the Tokenizer library of Keras API. Then the tokenized
sentences were split randomly into training and validation sets
at 80% and 20%, respectively. We built a 1D CNN in Keras on top
of the Tensorflow framework (Abadi et al. 2016). The model
includes an embedding layer that projects each word to a 32 di-
mensional space; hence this layer produces a weight matrix with
23,153 � 32 dimensions. Sentences are padded to 64 words,
resulting in 64 � 32 sized matrices in the model. After that, a 1D
convolutional layer with 16 filters and a kernel size of 4 is imple-
mented and activated by the rectified linear unit (ReLU). This
layer produces a 4 � 32 � 16 weight matrix. Downsampling is per-
formed by max pooling with a window size of 2. Then a flattened
layer with 480 neurons is connected to 2 fully connected layers, 1
of which has 10 neurons activated with ReLU and the latter one is

the final layer activated with a sigmoid function. We validate the
model using 3,924 sentences, 1,997 of them belong to the
“systemic stress” class, 1,927 sentences belong to the “cellular
stress” class. These were selected randomly before training. To
minimize the value of the loss function and update the parame-
ters, Adamax optimization algorithm (Kingma and Ba 2014) was
used with the parameters of learning rate¼ 0.002, beta1¼ 0.9,
beta2¼ 0.999. The binary cross entropy loss function is used for
this binary classification task. These hyperparameters were opti-
mized using the training corpus.

We used the confusion matrix to evaluate the performance of
the classification and summarize the results for the test dataset
(Table 1). The rows and the columns of the matrix represent the
values for the actual class and predicted class, respectively. The
measures of accuracy in the table were calculated by using the
values in the table; the number of true positives (TP), false nega-
tives (FN), false positives (FP), and true negatives (TN). Sensitivity,
i.e. the ratio of TP to TPþFN, is the proportion of the systemic
stress sentences correctly identified. Specificity, i.e. the ratio of
TN to TNþFP, is the ability of the model to identify the cellular
stress sentences correctly. Precision is the proportion of the cor-
rect systemic stress sentences in the predicted class of systemic
stress sentences, and is calculated as the ratio of TP to TPþFP.
Accuracy of the model is the proportion of the total number of
predictions that are correct, and is calculated as the ratio of
TPþTN to all. The performance measures including the area un-
der the ROC curve (sensitivity vs 1-specificity) produced by these
values are given in the Results section.

Results
We have written a graphical interface for searching the role genes
play in biological systems. One running instance is available at
http://genecup.org. A query of 3 terms can be completed in about
20–30 s. The query time increases linearly by the number of

Fig. 2. Pipeline for training the CNN that classifies sentences containing the word “stress.” Terms specific to “system stress” or “cellular stress” were
obtained by using the cosine similarity tool in Python’s Gensim library against the word2vec embeddings derived from PubMed and PMC text. Abstracts
including these terms were fetched from PubMed. These words were then “tokenized” and were splitted into training and validation sets. Input layer of
the model passed the training data to the embedding layer. After a 1D convolutional layer, downsampling is implemented by a maximum pooling
layer. Output is flattened and connected to 2 fully connected layers. We use the rectifier unit function to activate the neurons in the convolution layer
and the dense layer. Last dense layer is activated by the sigmoid function. The final weights of the model classify input sentences into either system
stress or cellular stress.

4 | G3, 2022, Vol. 12, No. 5

http://genecup.org


terms. Thus a search of 20 genes can be completed in about
2–3 min. Most of the time is spent on interacting with PubMed to
obtain PMIDs. The time required to form a customized ontology
for a new subject area is dependent on the familiarity of the sub-
ject area. However, entering it into the system requires a minimal
amount of time using the custom ontology editor.

In addition, queries can also be initiated by placing the terms
in the URL. For example, to start a search for CHRNA5 and BDNF
genes against the keyword categories drug, stress, addiction, and
GWAS, the following hyperlink can be used: https://genecup.org/
progress?type=drug&type=stress&type=GWAS&type=addiction
&query=CHRNA5+BDNF

This allows links to GeneCup queries to be embedded into
other websites. When the hyperlink above is clicked, the results
in graphical format will appear in a separate window.

For sentences containing the word “stress,” we designed a 1D
CNN with 4 hidden layers (Fig. 2) to differentiate them into 2 clas-
ses, namely systemic and cellular stress. The neural network was
optimized using the gradient-based optimization algorithm
Adamax. During training, model accuracy (Supplementary Fig.
1a) increased rapidly during the first 5 epochs to approximately
0.995, while validation accuracy peaked at 0.991 at epoch five. On
the other hand, model loss curve (Supplementary Fig. 1b) on the
training dataset continued to decline after the initial drop and
approached zero after 15 epochs. However, the loss on the valida-
tion data set started to increase after epoch five, indication model
overfitting. Therefore, we used the weights that maximized the
validation performance before overfitting (i.e. epoch five). By us-
ing these weights and parameters, our model has an AUC of
99.2% on the validation dataset.

Fig. 3. An interactive Cytoscape graph visualizing gene–keyword relationships. An interactive Cytoscape graph visualizing gene–keyword relationships.
Nodes (circles) represent either search terms (in red) or keywords (colored according to the mini ontology; GWAS results are in gray). Clicking the
keyword nodes displays the individual terms that are included in the search. Clicking the gene symbols displays their synonyms. The edges represent
relationships between nodes. The number of PubMed abstracts where the gene symbol and keyword co-occur in the same sentence are displayed on
the edges. The width of the edge is correlated with the number of abstracts. Clicking on the edges shows these sentences, which are linked back to
PubMed abstracts. Nodes can be moved about for better visibility of relationships. These genes were taken from a recent genome-wide association
study of opioid cessation (Cox et al. 2020).
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We tested the model on a new dataset consisting of 5,000 sys-
tem stress sentences and 5,000 cellular stress sentences. The
confusion matrix for the prediction of the test dataset is pre-
sented as Table 1. The sensitivity of the model (i.e. the proportion
of predicted systemic class sentences to all sentences observed in
this class) is 97%. The similar measure for cellular class senten-
ces, i.e. specificity is 94%. The prediction accuracy of the model
(i.e. the ability to distinguish 2 classes on the test dataset) is
95.4% and the AUC is 98.9% for the test dataset.

We also checked the distribution of the predicted probabilities
(Supplementary Fig. 2) of the test dataset. The model predicts a
probability of the class membership for each sentence. If the pre-
dicted probability of a sentence is more than 0.5, it is labeled as a
system stress sentence. Otherwise, the sentence is predicted to
be a member of the cellular stress class. Among the system stress
sentences in the test dataset, 88% of the sentences had predicted
probabilities greater than 0.9. This shows the model’s confidence
of its prediction on stress sentences. Likewise, 88% of the cellular
stress sentences had predicted probabilities less than 0.1.
Therefore the model is 90% confident about the classification of
88% of the cellular stress sentences.

The weights of the trained model are saved on the server and
are used to make predictions for each retrieved sentence when
the user clicks on the edge connecting the stress category and the
gene name (Fig. 4). As an example of run time performance, it
took approximately 12 s to classify 3,908 sentences on CRF and
stress.

As a demonstration of the utility of the web interface, we en-
tered the 9 genes that reached suggestive significance in a recent
genome-wide association study of opioid cessation (Cox et al.
2020). The graph view of the search results are shown in Fig. 3.
Genes and keywords are all shown as circles and lines connecting
them show the number of abstracts containing the 2 circles they
connect. Keywords under the same main category are shown
with the same color in the graphic output. Clicking on the lines
brings up a new page that displays all sentences containing the
keywords that line connects. An alternative tabular view of the
same results is also available, where genes, the keywords, and
number of abstracts are shown as separate columns.

Our results contained sentences in PubMed that described the
roles played by PTPRD, SNAP25, and MYOM2 in addiction, which
were all discussed in the original publication (Cox et al. 2020). In
addition, our results found sentences that indicated the potential
involvement of RIT2 and SYT4 in addiction. For example, RIT2 is
associated with smoking initiation (Liu et al. 2019) and autism
(Liu et al. 2016). Recent publications indicated that RIT2 is in-
volved in dopamine transporter trafficking (Fagan et al. 2020) and
plays a sex-specific role in acute cocaine response (Sweeney et al.
2020). SYT4 is expressed in the hippocampus and entorhinal cor-
tex (Crispino et al. 1999) and regulates synaptic growth (Harris
et al. 2016; Ó’L�eime et al. 2018). Further, SUCLA2P2 has been impli-
cated in the age of smoking initiation (Argos et al., 2014) and
Schizophrenia (Ikeda et al. 2019). This example demonstrated the
utility of GeneCup in rapidly finding information that links a

Table 1. Confusion matrix of CNN on test data.

Predicted class

Systemic stress Cellular stress

Actual class Systemic stress 4,853 (TP) 147 (FN) Sensitivity: 97%
Cellular stress 310 (FP) 4,690 (TN) Specificity: 94%

Precision: 94% Negative predictive value: 97% Accuracy: 95%

Fig. 4. Steps for classifying sentences using a trained neural network. Steps for classifying sentences using a trained neural network. Abstracts are
fetched from the locally mirrored copy of PubMed and are parsed into sentences. Punctuation marks and stop words are removed and the remaining
words of the sentences are stemmed. The words are tokenized by using the Tokenizer library of the Keras API. The weight matrices of the trained
model are multiplied by the sentence matrix to predict whether the input sentences are related to system stress or cellular stress.
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gene to addiction and thus integrating new findings with previous
research findings.

Discussion
We present here a literature mining web application, GeneCup,
that extracts sentences from a locally mirrored copy of PubMed
abstracts containing user-provided gene symbols and the key-
words of the custom ontology. Associations between the genes
and various phenotypes from human GWAS results are also pro-
vided. The users can include up to 200 gene symbols in each
search. This cutoff number is chosen by considering the comple-
tion time of the search. GeneCup does not search the interactions
between genes, hence a larger number of terms can be queried in
more than 1 round without comprising the results. The results
are presented in a graphical or a tabular format, both provide
links to review individual sentences that contain the gene and at
least 1 keyword. Gene synonyms are also presented and can be
included in additional searches. As an example, we provide an
ontology containing approximately 300 predefined addiction-
related keywords organized into 7 categories. Our ontology editor
allows users to modify or create their own ontology to fit their
needs. Stress-related sentences are automatically classified into
system vs cellular stress if the addiction ontology is used.

Scientists using omics methods face a particularly challenging
task when trying to integrate new findings with existing knowl-
edge. The increasing number of genes contained in data sets, the
breadth of sciences, and the large amount of existing knowledge
captured in PubMed make systematic literature surveys daunting
tasks. Typically, scientists manually conduct more detailed
searches in areas where they have expertise and the queries are
much less thorough in other areas. The search strategies are of-
ten crafted ad hoc and likely different from 1 day to another.

Many software or web applications have been created to auto-
matically analyze PubMed abstracts. For example, PubMatrix
(Becker et al. 2003) reports the frequencies of co-occurrence be-
tween 2 lists of terms at the abstract level. Chilibot (Chen and
Sharp 2004), which we created, reports sentences that contain
gene or keyword relationships extracted from the latest 30–50
abstracts. GeneRIF (Jimeno-Yepes et al. 2013) provides sentences
on the function of genes but it does not provide an interface for
displaying the relationships between multiple query terms. In
contrast to these, GeneCup provides an interface that allows
comprehensive queries of the function of any gene using a set of
user-defined keywords. It searches the entire PubMed database
and extracts sentences describing the function of genes. In addi-
tion, GeneCup also queries the GWAS catalog, which contains
many genetic associations that are not reported in abstracts.
Although most of the functions provided by GeneCup can be car-
ried out manually, it will require several orders of magnitude
more time and effort. Even then, the manually collected results
will be difficult to review. In contrast, results provided by
GeneCup are automatically organized by the ontology. All the
genes and keywords can be seen in graphs or tables, with infor-
mative sentences and abstracts readily available.

GeneCup presents to the user sentences containing genes and
keywords of interest to the user. Compared to phrases or
abstracts, sentences are the most succinct semantic unit to con-
vey a fact. Ding et al. (2002) compared different text processing
units for text mining system design and found that the highest
precision of information retrieval is achieved when phrases are
used as the text unit, whereas using sentences are more effective
than both phrases and abstracts. Therefore, similar to Chilibot

(Chen and Sharp 2004), we continue to use sentences as the infor-
mation unit. Unlike the commonly used gene ontology enrich-
ment (Osborne et al. 2007) or gene set enrichment (Subramanian
et al. 2005) analysis, the literature analysis provided by GeneCup
does not evaluate any statistical significance. Instead, these key
sentences provide easy access to relevant prior research, where
the nuanced details can be easily obtained by following the link
from the sentence to the abstract and then to the full text article.

Stress plays key roles in addiction but the word stress has
multiple meanings. Using a convolutional network, we trained a
model that achieved 97% sensitivity and 94% specificity in classi-
fying sentences containing the word stress to either systemic
stress or cellular stress. Training such a model requires large
amounts of labeled data. Manually labeling these data are very
labor intensive. Using an approach that is similar to some recent
advances in automated data labeling (Ratner et al. 2020), we care-
fully crafted 2 PubMed queries to obtain over 30,000 sentences
that mostly belong to the correct category. This large corpus of
text allowed us to achieve peak classification performance with
less than 5 epochs of training (Supplementary Fig. 1).

Gene synonyms represent a large challenge to any text mining
approach. Not including synonyms will result in the loss of infor-
mation. However, many synonyms, especially those that are
short, have multiple meanings. For example, CNR is a synonym
for the CNR1 gene. However, CNR is also an acronym for contrast
noise ratio, frequently used in imaging analysis literature. For
user-supplied gene symbols, we do not include synonyms in the
initial search to prevent the noise from “drowning out” the signal.
Instead, we provide users an option to either search individual
synonyms or to conduct a combined search of all synonyms as a
secondary step. We think this middle-of-the-road approach is the
more efficient way to achieve a balance between computation
and performance. Future work can potentially use deep learning
to classify all PubMed abstracts for their relevance to the field of
interest and thus exclude many abstracts containing short words
that are not relevant.

Many future improvements for GeneCup are possible. For ex-
ample, GeneCup uses PubMed abstracts as the source of data,
rather than PubMed Central, which contains full-text articles. Lin
(2009) compared the effectiveness of information retrieval from
abstract vs full text search and found that full text search, when
indexed using paragraphs as the unit, is more effective than the
abstract-only search. Several groups have reported either using
full text search for curation (Van Auken et al. 2014; Müller et al.
2018) or using full text for analysis (Wei and Collier 2011;
Verspoor et al. 2012; Islamaj Do�gan et al. 2017). NCBI also provides
an API for PubMed Central. However, the majority of the articles
in PubMed Central are subject to traditional copyright restriction
and it is not feasible to establish a local mirror of the full-text col-
lection. Retrieving text via NCBI API is not feasible on the scale
we need (e.g. several thousand articles at a time). Further, we an-
ticipate full text may cause duplications of information and in-
crease the noise in results.

GeneCup currently does not retrieve relationships between
genes. There are several existing tools available for this purpose,
such as Chilibot (Chen and Sharp 2004), or GeneMania (Warde-
Farley et al. 2010). Instead, GeneCup focuses on the relationship
between genes and a set of keywords organized as an ontology.
The addiction ontology was developed based on the expertise of
the authors. It certainly contains biases and can be further im-
proved. For example, tight integration with community devel-
oped ontology for addiction or psychiatric disease, such as those
that are available from the Open Biological and Biomedical
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Ontology Foundry (www.obofoundry.org), or automated methods
for converting MESH headings can be tested in the future.

Data availability
GeneCup is a free and open source web application. The source
code of GeneCup and the link to a running instance is available
at https://github.com/hakangunturkun/GeneCup.

Supplemental material is available at G3 online.
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