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Abstract
As their name implies, cation channels allow the regulated flow of cations such
as sodium, potassium, calcium, and magnesium across cellular and
intracellular membranes. Cation channels have long been known for their
fundamental roles in controlling membrane potential and excitability in neurons
and muscle. In this review, we provide an update on the recent advances in our
understanding of the structure–function relationship and the physiological and
pathophysiological role of cation channels. The most exciting developments in
the last two years, in our opinion, have been the insights that cryoelectron
microscopy has provided into the inner life and the gating of not only
voltage-gated channels but also mechanosensitive and calcium- or
sodium-activated channels. The mechanosensitive Piezo channels especially
have delighted the field not only with a fascinating new type of structure but with
important roles in blood pressure regulation and lung function.
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Introduction
Cation channels mediate the flow of cations (Na+, K+, Ca2+, 
and Mg2+) across hydrophobic lipid membrane barriers, allowing 
both excitable cells such as neurons or muscle and non-excitable 
cells such as lymphocytes and endothelial cells to regulate 
membrane potential, Ca2+ signaling, and various other cellular 
processes1. Based on the International Union of Basic and 
Clinical Pharmacology (IUPHAR) Guide to Pharmacology2, the 
human genome contains 145 voltage-gated-like channels3, 55 
ligand-gated channels4, and 27 “so-called” other channels5, such 
as connexins or Piezo and store-operated channels, that conduct 
cations. All of these channels play specific physiological roles, 
which can make them attractive drug targets for the treatment of 
disease. Conversely, mutations in cation channel genes or genes 
encoding associated β-subunits or scaffolding proteins can cause 
so-called channelopathies such as cystic fibrosis, long or short 
QT syndrome, and various forms of epilepsy. In this review, we 
provide an update on what, in our opinion, constitutes the most 
exciting new findings concerning cation channels during the 
last two years, namely our increased understanding of gating 
mechanisms of more unusual, non-voltage-gated channels such as 
Slack (K

Na
1.1), K

Ca
3.1 (SK4), ENaC, TCP1, or Piezo1. We would 

like to apologize upfront to the many scientists whose fascinat-
ing work we cannot mention due to space constraints or because, 
as one of our colleagues once so fittingly put it, “we play in a 
different sand box” and are biased by what we find interesting.

Advances in understanding cation channel 
structures
The recent increase in the number of solved ion channel structures 
is largely due to technological advances in cryoelectron micro-
scopy (cryo-EM), such as improvements in microscope design 
and imaging hardware, as well as enhanced image processing 
which allows the reconstruction of 3D structures from a large 
number of single-particle 2D images even if they are conforma-
tionally heterogeneous6. Cryo-EM is thus increasingly being used 
to obtain near-atomic resolution structures6 of membrane proteins 
such as G protein–coupled receptors (GPCRs) and ion channels 
that have traditionally been difficult to obtain with x-ray crystal-
lography or nuclear magnetic resonance spectroscopy. (See Table 1 
for the Protein Data Base ID numbers of the structures mentioned 
in this article.) Overall, the most impressive effort in channel 
structure–function studies within the last couple of years has come 
from the laboratory of Roderick MacKinnon, whose group solved 
the first ion channel structure, the bacterial K+ channel KcsA, in 
19987. Since the latter part of 2016, his group has elucidated the 
structure of Eag1 (KK

V
10.1)8, which unlike previously solved K

V
 

channel structures was not domain-swapped; hERG (K
V
11.1)9; 

KCNQ1 (K
V
7.1)10; HCN111; Slack (Slo2.2, K

Na
1.1)12; Kir6.2 in 

complex with SUR113; BK (K
Ca

1.1) in the presence and absence 
of calcium14,15; as well as the human K

Ca
3.1 (SK4) channel in 

complex with calmodulin16. All of these structures provided 
new and often unexpected insights into the gating mechanisms 
of the respective channels and showcase the power of cryo-EM.

In the most recently solved structure of the intermediated- 
conductance calcium-activated potassium channel K

Ca
3.1 

(SK4), the channel-CaM complex is captured at 3.4- and 3.5-Å 

resolution in what is suggested to be the closed and two different, 
activated states. K

Ca
3.1 is widely expressed in the immune sys-

tem, whereas the closely related small-conductance K
Ca

2 (SK1-3) 
channels are found mostly in neurons. The K

Ca
3.1 structure 

shows that the channel is non-domain-swapped16. In the absence 
of calcium, calmodulin is bound to the calmodulin-binding 
domain (CaM-BD) in the C-terminus with its C-lobe while the 
N-lobe is poorly resolved. However, the true game changer for 
our understanding of K

Ca
 channel gating—and possibly its drug 

development efforts—are the two open structures, where the 
N-lobe of calmodulin has “swung over” to the S4-S5 linker of 
another subunit and pulls it down, causing S6 to move outward 
and to expand the cytoplasmic pore entry. The structure thus solves 
the long-standing problem of the gating symmetry and shows 
that K

Ca
 channels in fact gate with fourfold symmetry and not 

with twofold symmetry as previously suggested17. A very inter-
esting technical aspect of this article is how the heterogenic-
ity of the particles with the “floppy” N-lobe in the absence of 
calcium was dealt with and how the two different open states 
were sorted out. We therefore highly recommend the online meth-
ods of the article16 to interested readers. Another powerful illus-
tration of the advances of cryo-EM is the Hite et al. study18, in 
which the MacKinnon group captured the sodium-activated 
potassium channel Slack (K

Na
1.1, Slo2.2) in multiple conforma-

tions by titrating increasing concentrations of sodium. Slack is 
expressed in neurons, where it is activated by high concentra-
tions of intracellular Na+ that can occur following repeated 
action potential firing. Together with the previously solved closed 
Slack structure12, the Hite and MacKinnon article, which col-
lected images at five different Na+ concentrations, shows that 
Slack exists in multiple closed conformations from which an 
open conformation emerges in a highly Na+-dependent manner12, 
suggesting that opening of this ligand-gated channel is a highly 
concerted, switch-like process.

In another effort from the MacKinnon laboratory, the struc-
ture of the hyperpolarization-activated cyclic nucleotide-gated 
(HCN) channel member 1 was elucidated11. HCN channels are 
non-selective cation channels that are permeant to both sodium 
and potassium and underlie pace making both in the heart and 
in the central nervous system. All four members of this family 
are voltage-gated but also are modulated by the endogenous lig-
and cyclic adenosine monophosphate (cAMP). The structure, 
which was solved at 3.5-Å resolution in the presence and absence 
of cAMP, explains the 4:1 potassium-to-sodium permeability 
ratio of HCN and shows an unusually long S4 helix that extends 
in the cytoplasm to stabilize a closed pore in the presence of a 
depolarized voltage sensor. These structural features suggest a 
gating mechanism in which downward displacement of the S4 
helix during membrane hyperpolarization disrupts these 
stabilizing interactions to open the channel, thus explaining 
HCN’s reversed polarity of voltage dependence. Binding of 
cAMP induces a rotation of the gate-forming inner helices, thus 
favoring channel opening11.

Transient receptor potential (TRP) channels act as sensors in 
a variety of physiological processes. They are a diverse group 
of cation channels that are often relatively non-selective and 
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Table 1. Ion Channel Structures.

Protein Data 
Base ID

Channel Species Method Resolution Conformation

6CNM KCa3.1 (SK4, IK) Human Cryo-EM 3.4 Å Closed state

6CNN KCa3.1 (SK4, IK) Human Cryo-EM 3.5 Å Ca2+-bound open state I

6CNO KCa3.1 (SK4, IK) Human Cryo-EM 4.7 Å Ca2+-bound open state II

5VA1 KV11.1/hERG Human Cryo-EM 3.7 Å Open state

5VA2 KV11.1/hERG Human Cryo-EM 3.8 Å Open state

5VA3 Kv11.1/hERG Human Cryo-EM 4.0 Å Open state

5U70 KNa1.1 (Slack, Slo2.2) Chicken Cryo-EM 3.8 Å Open state

5U76 KNa1.1 (Slack, Slo2.2) Chicken Cryo-EM 3.8 Å Closed state

6BQN ENaC Human Cryo-EM 3.9 Å Uncleaved state

6C96 TPC1 Mouse Cryo-EM 3.4 Å Closed state

6C9A TPC1 Mouse Cryo-EM 3.2 Å Open state

5Z10 Piezo1 Mouse Cryo-EM 4.0 Å Closed state

6B3R Piezo1 Mouse Cryo-EM 3.7 Å Closed state

6BPZ Piezo1 Mouse Cryo-EM 3.8 Å Closed state

5K7L KV10.1 (Eag1) Rat Cryo-EM 3.8 Å CaM-bound state

5TJ6 KCa1.1 (Slo1, BK) Aplysia Cryo-EM 3.5 Å Open state

5TJI KCa1.1 (Slo1, BK) Aplysia Cryo-EM 3.8 Å Ca2+-free state

5U6O HCN1 Human Cryo-EM 3.5 Å Human HCN1 in cAMP-free closed state

5U6P HCN1 Human Cryo-EM 3.5 Å Human HCN1 in cAMP-bound open state

6C3O KATP (KIR6.2-SUR1) Human Cryo-EM 3.9 Å Quatrefoil form

6C3P KATP (KIR6.2-SUR1) Human Cryo-EM 5.6 Å Propeller form

6DVW TRPV3 Mouse Cryo-EM 4.3 Å Closed apo state

6DVY TRPV3 Mouse Cryo-EM 4.0 Å 2-APB–bound closed state

6DVY TRPV3 Mouse Cryo-EM 4.2 Å 2-APB–bound open state

6MHO TRPV3 Human Cryo-EM 3.4 Å Closed apo state

6MHS TRPV3 Human Cryo-EM 3.2 Å Sensitized state

6BPQ TRPM8 Collared 
flycatcher Cryo-EM 4.1 Å

6DJR TRPC3 Human Cryo-EM 5.8 Å Apo state

6DJS TRPC3 Human Cryo-EM 5.8 Å Apo state

6A70 PKD1/PKD2 Human Cryo-EM 3.6 Å Closed state

5XSY NaV1.4-β1 Electric eel Cryo-EM 4.0 Å VSDs in “up” conformation

6AGF NaV1.4-β1 Human Cryo-EM 3.2 Å VSDs in “up” conformation

5X0M NaVPaS Cockroach Cryo-EM 3.8 Å Closed pore

6A90 NaVPaS Cockroach Cryo-EM 2.8 Å With Dc1a

6A95 NaVPaS Cockroach Cryo-EM 2.6 Å With tetrodotoxin and Dc1a

6A91 NaVPaS Cockroach Cryo-EM 3.2 Å With saxitoxin and Dc1a

IK4C KcsA Escherichia coli X-ray 2.0 Å Closed, ready to open

IK4D KcsA E. coli X-ray 2.3 Å Closed, inactivated state

5VK6 KcsA(E71A) E. coli X-ray 2.3 Å Open conductive state

5VKE KcsA(Y82A) E. coli X-ray 2.4 Å C-type inactivated state
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Protein Data 
Base ID

Channel Species Method Resolution Conformation

5GJV CaV1.1 Rabbit Cryo-EM 3.6 Å Inactivated state

6C1P NaVAb(R2G) Arcobacter 
butzleri X-ray 2.9 Å VSD mutation inducing a pathogenic gating 

pore

6C1M NaVAb(R2G) A. butzleri X-ray 2.5 Å With methylguanidinum

6C1K NaVAb(R2G) A. butzleri X-ray 2.7 Å With guanidnium

6C1E NaVAb(R3G) A. butzleri X-ray 2.9 Å VSD mutation inducing a pathogenic gating 
pore

2-APB, 2-aminoethoxy-diphenyl borate; CaM, calmodulin; cAMP, cyclic adenosine monophosphate; cryo-EM, cryoelectron microscopy; VSD, voltage sensor 
domain.

permeable to sodium, calcium, and magnesium. Recently, a 
series of TRP channel structures have been solved. The full-length 
mouse vanilloid subfamily member 3 (TRPV3) was obtained 
in both the closed state and in the open state with the agonist 
2-aminoethoxy-diphenyl borate (2-APB)19. 2-APB was found 
to bind at three allosteric sites, and channel opening was shown 
to induce conformational changes in both the outer pore and 
the intracellular gate19. Understanding TRPV3 activation at the 
molecular level is important because the channel constitutes a 
potential target for the treatment of inflammatory skin conditions,  
itch, and pain. TRP melastatin cation channel member 8 
(TRPM8) is the primary cold and menthol sensor in humans. Its 
structure was recently solved by Yin et al. at 4.1-Å resolution20. 
Whereas the channel shares the same overall homotetrameric 
structure that is characteristic of other TRP channels, TRPM8 
has a unique N-terminal domain fold pattern. The structure 
shows that the menthol-binding site is located within the voltage 
sensor–like domain20. Another recently elucidated TRP channel  
is TRPC3, the TRP cation channel subfamily C member 3, 
a calcium-permeant channel in which genetic mutations have been 
associated with neurodegenerative and cardiovascular diseases.  
The cryo-EM structures for the full-length human TRPC3 and its 
cytoplasmic domain (CPD) showed that the TRPC3 transmembrane  
domain resembles other TRP channels and that the CPD 
is a stable module involved in channel assembly and gating21. The 
structure of TRPC3 is important for understanding TRP channel  
gating since it was observed that horizontal helices in the  
cytoplasmic domain transition into a coiled-coil bundle. These  
helices are coupled to the transmembrane domain via loops and 
these transitions facilitate gating. Completing the recent insights 
into TRP channel structures is the 3.6-Å resolution structure of 
a truncated human polycystic kidney disease (PKD)1-PKD2  
complex in a 1:3 PKD1-to-PKD2 stoichiometry22. Mutations  
in PKD1 and PKD2 account for most cases of autosomal  
dominant PKD, rendering this structure very important because of  
the potential insights it can provide into PKD disease mechanisms  
by finally affording the opportunity to map a large number of 
disease mutations onto a structure. PKD1 exhibits a typical  
voltage-gated ion channel fold that interacts with PKD2 to form 
a domain-swapped, non-canonical TRP channel. However, many 
questions remain about this mysterious complex. For example, the 
S6 segment of PKD1 is broken in the middle, and the extracellular 
half, S6a, resembles a typical pore helix, whereas the intracellular 
parts are disordered. The structure further shows three positively 

charged residues protruding into the putative ion-conducting 
path, suggesting that the structure is of non-conductive state22.

The membrane protein, Piezo1, encoded by the piezo gene is a 
38-transmembrane domain mechanosensitive ion channel that 
functions as a trimer. Piezo1 is expressed in blood vessels and is 
crucial for sensing blood flow–associated shear stress. Following 
up on an earlier, lower-resolution structure23 that showed a trimeric 
propeller-like protein with a central cap suggesting that Piezo1 
uses its peripheral blades as force sensors to gate the central  
ion-conducting pore, Zhao et al. recently solved Piezo1 with an 
overall resolution of 3.97 Å based on the analysis of close to three 
million particles24. The new structure shows a central, 90 Å–long  
intracellular beam, which undergoes a lever-like motion to 
connect a set of transmembrane helical units to the pore. This 
structure provides the basis for mechanical activation of Piezo1, 
in which a lever-like mechanogating mechanism involving the 
curved blades of Piezo transmits a conformational change to the 
pore that allows ion permeation. The overall structure and the 
suggested gating mechanism are unlike those of any other ion 
channel. The unique features of Piezo1 add breadth and depth 
to the ways in which ion channels gate and conduct ions.

Another recently solved cryo-EM structure is that of the epithelial  
sodium channel (ENaC), which regulates Na+ and water 
homeostasis25. Whereas most sodium channels are voltage-gated  
and generally consist of a large α subunit with four repeat 
domains, ENaC assembles as a heterotrimeric channel that con-
tains protease-sensitive domains critical for gating. The structure 
revealed that ENaC assembles with a 1:1:1 stoichiometry of α:
β:γ subunits arranged in a counter-clockwise fashion with the 
protease-sensitive inhibitory domains wedged between the  
subunits. Solving the structure of ENaC has allowed for the exact 
definition of subunit arrangement and stoichiometry and for the 
elucidation of the mechanism of inhibition. The sodium channel 
field has been further enriched by two new Na

V
 channel  

structures, both of which could be very useful for drug design: 
(1) the first human Na

V
 channel in the Na

V
1.4-beta1 complex at 

3.2-Å resolution26 and (2) the insect NaVPaS channel bound to a  
gating modifier toxin at 2.8-Å resolution and in the presence of 
tetrodotoxin at 2.6 Å27.

Organellar two-pore channels (TPCs) are an interesting type 
of channel that, as the name suggests, has two pores. Recently, 
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the structure of the murine sodium-selective TPC1, a channel 
expressed on endosomes and fulfilling a critical role in 
regulating the physiological functions of these acidic organelles, 
was solved28. Not to be confused with the two-pore potassium-
selective channels (K

2P
), TPC1 is a homodimer consisting of two 

six-transmembrane (6-TM) subunits with the N- and C-termini 
located on the cytoplasmic side of the membrane. The channel 
is voltage-dependent but can also be activated by phosphatidyli-
nositol 3,5-bisphosphate binding in one 6-TM domain with the 
other 6-TM domain sensing voltage28. This mechanism of  
activation is very important since it has recently become clear 
that phospholipids play an integral role in the activation and 
regulation of some ion channels.

Lastly, Cuello et al. significantly contributed to the field’s  
understanding of gating by providing a series of structural  
snapshots showing the gating cycle of KcsA by using traditional 
x-ray crystallography and a set of cleverly cross-linked consti-
tutively open-channel mutants that capture KcsA in the closed 
inactivated state and an open-conductive and a deep C-type 
inactivated state29. These roughly 2-Å structures of KcsA provide 
unprecedented insight into how the selectivity filter backbone 
changes as a channel progresses through its gating cycle29.

Advances in understanding cation channel 
physiology and pathophysiology
As mentioned in the Introduction, cation channels are best 
known for their control of membrane potential1 and were 
traditionally classified into voltage-gated3 and ligand-gated4. 
However, research in the past decade has started to shed light on 
the physiological role of channels gated by other mechanisms 
such as mechanical force30–32, and we recently have learned 
about the important roles of Piezo channels in blood pressure  
regulation and breathing. Furthermore, the field is gaining more  
and more insights in the role of “silent” channel subunits and  
cation channels in mitochondria.

Mechanotransduction is a crucial physiological process that is 
evolutionarily conserved across many species of vertebrate and 
invertebrate animals down to plants and single-cell protozoans. 
Despite their long-recognized role in the conversion of mechanical  
stimuli into biological signals that drive many physiological  
processes, including itch and pain sensation in vertebrate  
mammals33,34, root formation in plants35, and direction changes 
in ciliates36, it was not until 2010 that the first mechanosensitive 
cation channels, Piezo1 and Piezo2, were identified37. Since their 
discovery, the Piezos have not only provided us with fascinat-
ing channel structures and channel-gating mechanisms23,24 but 
also helped advance our understanding of many physiologi-
cal processes. Blood pressure regulation is one such process in 
which mechanosensitive channels are important. Physical activi-
ties such as exercise require increased delivery of oxygen-rich 
blood to the body as oxygen consumption is increased.  
Vasoconstriction can elevate blood pressure to maximize blood 
distribution, but it is not clear how changes in blood flow elicit 
this vascular response. Using a conditional gene knockout (KO) 
model of Piezo138, which is abundantly expressed in the vascular  
endothelium, Rode et al. identified this mechanosensitive  

channel as the missing link between blood flow and vasocon-
striction38. Flow-associated mechanical force changes activate 
Piezo1 to depolarize the endothelium and the adjacent vascular 
smooth muscle cells, leading to vasoconstriction induced by the 
calcium increase via voltage-gated Ca2+ channels38.

Atherosclerosis is a risk factor in stroke and myocardial inf-
arction and occurs selectively in regions where blood flow in 
the arterial system is disturbed. Interestingly, Piezo1 is also 
involved in enabling endothelial cells to distinguish differ-
ent flow patterns39. Both laminar and disturbed flow activate a 
common regulatory cascade consisting of the mechanosensi-
tive Piezo1 channel, the purinergic P2Y7 receptor, and the  
Gq/G11-mediated signaling pathway. It turns out, however, that  
only disturbed flow results in Piezo1- and Gq/G11-mediated 
integrin activation. Subsequently, the resulting downstream acti-
vation of the nuclear factor-kappa B (NF-κB) transcription factor 
is a key factor underlying the flow-specific regulation of endothe-
lial inflammation in vascular disorders such as atherosclerosis39. 
Mechanotransduction also plays a crucial role in the respira-
tory system, in which dysfunction can cause perinatal mortality 
and adult sleep apnea. Piezo2 is expressed in airway sensory 
neurons and recently was revealed to be the main sensor behind 
the transduction of stretch signals associated with breathing. 
Nonomura et al. demonstrated that gene silencing of the Piezo2 
channel, both globally and conditionally in airway sensory  
neurons, led to respiratory distress and mortality40. Conversely, 
opto-activation of Piezo2 in vagal neurons causes apnea in adult 
mice, suggesting that Piezo2 is the stretch sensor responsible 
for mechanotransduction within various airway-innervating 
sensory neurons40.

Ion channel research is often assumed to be synonymous with 
patch-clamp electrophysiology because much of our under-
standing of ion channels comes from studies measuring cur-
rent flowing through channels. Thus, non-conducting or “silent” 
channel subunits are often ignored. In most cases, silent channels  
share high structural and sequence homology with their 
canonical ion-conducting partners and, when interacting within 
a macromolecular complex, can fine-tune the biophysical gating  
properties of their binding partners. The K

V
8.2 channel is 

one such non-conducting channel that has recently been shown 
to be not so “silent”. Human carriers of K

V
8.2 mutations suffer 

severe visual impairment, and the underlying channelopathology  
was unmasked to involve altered interactions between K

V
8.2 

and the K
V
2.1 channel that regulates the excitability of rods 

and cones41.

The ion channel field has also recently been looking deep 
below the plasma membrane where cation channels are increas-
ingly being recognized for their importance in intracellular 
organelles. One such intracellular location, where ion channels are 
functionally relevant, is the metabolic powerhouse of the cell, 
the mitochondria. It was of course known for a long time that 
mitochondrial K+ (mitoK) channels exist and can exert cardio-
protective functions, even though their exact molecular identity 
was unclear. K

Na
1.2 (Slick, Slo2.1) is one of the mitoK  

channels that had been linked to a cardioprotective role but its 
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expression in mitochondria had never been functionally confirmed 
by electrophysiology. Through single-channel patch clamp on 
mitoplasts prepared from cardiomyocytes, Smith et al. identified 
six channels with biophysical and pharmacological properties 
matching the biophysical characteristic of K

Na
1.2 in wild-type 

(WT) but not in K
Na

1.2-KO mice42. The authors further demon-
strated that the K

Na
 opener bithionol uncoupled respiration in 

WT but not KO cardiomyocytes and that KO mice had elevated 
body fat and that their hearts were less responsive to increases 
in energy demand, thus confirming a role of K

Na
1.2 in the 

regulation of energy consumption and fat metabolism42.

Last, but certainly not least, the cation field recently was 
afforded an atomic-level view into the pathogenic mechanisms of 
periodic paralysis, a channelopathy with episodes of flaccid 
muscle weakness, which is caused by point mutations in the S4 
segment of the voltage sensor domain of either the voltage-gated 
sodium channel Na

V
1.4 or the voltage-gated calcium channel  

Ca
V
1.1. These mutations, which affect the arginine residues 

(R1, R2, or R3) in S4 that act as gating charges, create a “leaky” 
voltage sensor through which cations can permeate. By introducing  
these mutations into the bacterial Na

V
Ab channel and  

solving its structure at 2.7-Å resolution by x-ray crystallography, the 
Catterall laboratory43 visualized the pathway for this cation leak 
and identified a possible binding site for the design of drugs to 
possibly treat hypokalemic and normokalemic periodic paralysis.

Conclusions
With the recent advances in cryo-EM techniques, the cation 
channel field has gained a new understanding of ion channel  
structure–function relationships with never-seen-before molecular  
details during the last two years. Although it has often been 

pointed out that the conditions under which cryo-EM is performed 
are very unphysiological, we believe that the field is getting 
closer to understanding the full gating cycle of both voltage- 
and ligand-gated channels at the atomistic level as they progress 
from the resting to the open and the inactivated state. Of course, 
ion channel function is inherently dynamic, and a complete 
understanding of the mechanisms of gating44 and permeation and 
selectivity45 as well as the visualization of ion flow at the atomistic 
level44 will only be possible with the aid of molecular dynamics 
(MD) simulations.

Whether these structures will truly enable structure-based drug 
design and accelerate ion channel drug discovery is a different 
question in our opinion. Drug development has many aspects: 
first and foremost, target validation, which is why it is crucial  
to gain what is often termed “deep” understanding of the 
biology of ion channels. As the last two years have again 
demonstrated, we are still learning new biology, as revealed by 
the unexpected role of the Piezo channels in blood pressure reg-
ulation and breathing or the importance of mitochondrial K

Na
1.2 

channels in energy consumption and fat metabolism.
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