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Wnts are highly-conserved lipid-modified secreted proteins that activate multiple
signaling pathways. These pathways regulate crucial processes during various stages
of development and maintain tissue homeostasis in adults. One of the most fascinating
aspects of Wnt protein is that despite being hydrophobic, they are known to travel
several cell distances in the extracellular space. Research on Wnts in the past four
decades has identified several factors and uncovered mechanisms regulating their
expression, secretion, and mode of extracellular travel. More recently, analyses on
the importance of Wnt protein gradients in the growth and patterning of developing
tissues have recognized the complex interplay of signaling mechanisms that help in
maintaining tissue homeostasis. This review aims to present an overview of the evidence
for the various modes of Wnt protein secretion and signaling and discuss mechanisms
providing precision and robustness to the developing tissues.
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INTRODUCTION

Wnt proteins are secreted signaling molecules present in all metazoans. Signaling pathways
activated by Wnt proteins play a crucial role in governing various aspects of development, including
cell fate determination, body axis patterning, cell migration, cell proliferation, tissue maintenance
and tissue regeneration (Logan and Nusse, 2004; Steinhart and Angers, 2018). Dysregulation of
Wnt signaling pathways leads to developmental disorders such as bone density defects (Gong
et al., 2001; Little et al., 2002; Ugur and Tolun, 2008; Baron and Kneissel, 2013), defective stem
cells homeostasis (Ring et al., 2014; Nalapareddy et al., 2017) and progression of several diseases
such as colorectal, pancreatic and breast cancers (Nusse and Clevers, 2017; Zhan et al., 2017).
Hence, Wnt signaling has been a focus of intensive investigation over decades in the area of
biomedical research.

Analysis of Wnt-mediated processes during development have revealed Wnt proteins to
possess morphogen-like activity. According to the classical definition, morphogens are diffusible
molecules, which form a gradient across a field of cells and activate the target gene expression
in a concentration-dependent manner, thereby establishing tissue patterns via differential
gene expression (Turing, 1952; Wolpert, 1969, 1971; Gierer and Meinhardt, 1972). However,
Wnt proteins are hydrophobic in nature due to lipid-modification (Willert et al., 2003;
Takada et al., 2006; Janda et al., 2012). This creates an intriguing problem to understand their mode
of travel in the aqueous extracellular space. Studies on Wnt proteins in recent years have made
considerable advancements in uncovering: (1) the intracellular route of Wnt protein trafficking,
(2) the possible modes via which Wnt proteins travel in the extracellular environment, (3) the
mechanisms of signaling in developing tissues, (4) the feedback mechanisms modulating pathway
activation levels. Our current understanding of these processes is built upon the pioneering work
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on genetically amenable model organisms, such as Drosophila
melanogaster. Here, we aim to review the progress made
in understanding the mechanisms of Wnt protein secretion,
spreading and the mechanisms of signaling in developing tissues.

Wnt PROTEINS AND THEIR DISCOVERY

Identification of developmental phenotypes associated with Wnts
preceded the characterization of their gene sequences and loci.
Initially, the pioneering work of T. H. Morgan in Drosophila
led to the identification of an X-ray-induced dominant mutation
called Glazed, which showed a narrow and smooth eyed
phenotype (Morgan et al., 1936). Several decades later, an ethyl
methanesulfonate (EMS) induced mutant called wingless1 (wg1)
was identified, which as the name suggests, showed a loss of adult
Drosophila wing structures (Sharma, 1973; Sharma and Chopra,
1976). Subsequently, other loss-of-function alleles of wg were also
identified in a large-scale mutagenesis screen that showed early
embryonic patterning defects and lethality (Nüsslein-Volhard
and Wieschaus, 1980; Baker, 1987). Complementation analysis
and cloning of the wg locus linked all the mutations to the same
gene, where wg1 was shown to be a loss-of-function deletion
in the 3′ UTR of the wg gene (Baker, 1987; Van den Heuvel
et al., 1993; Schubiger et al., 2010), whereas Glazed was shown
to be a gain-of-function mutation caused due to the insertion
of a retrotransposon upstream of the wg gene (Brunner et al.,
1999). The vertebrate homolog of the Drosophila wg gene was
initially identified in mice as an oncogenic integration site for a
retrovirus- mouse mammary tumor virus (MMTV) called int-1
(Nusse and Varmus, 1982; Rijsewijk et al., 1987) and was later
renamed as wnt (Nusse et al., 1991). Further analysis of the wnt
(int1) encoded protein showed a cysteine-rich domain (CRD)
and a signal sequence, indicating that Wnts are secreted proteins
(van Ooyen and Nusse, 1984; Fung et al., 1985). Since then,
several members of the Wnt family have been discovered across
the metazoans. For instance, to date, 19 different mammalian and
7 different Drosophila Wnt proteins have been identified (Wnt
homepage1), all of which share a common signature of 23-24
highly conserved cysteine residues at the N-terminus of their
peptide (Nusse and Varmus, 1992).

OVERVIEW OF Wnt SIGNALING

Once released by the producing cells, Wnt proteins travel in
the extracellular space, to reach their target cells by mechanisms
discussed below. In the target cells, Wnt proteins activate
signaling by interacting with the extracellular CRD of the cell
surface GPCR receptors called Frizzled (Fz) (Bhanot et al., 1996;
Strutt et al., 2012). However, in many organisms the complexity
of signal activation increases significantly due to the presence
of multiple Fz receptors, interacting with a repertoire of Wnt
ligands (Niehrs, 2012). A combinatorial interaction of different
Wnt proteins with Fz receptors leads to the activation of multiple
downstream pathways (Figure 1), which are classified into two

1http://wnt.stanford.edu

broad categories based on the involvement of β-catenin: the
β-catenin dependent canonical Wnt pathway and the β-catenin
independent non-canonical Wnt pathways.

The canonical Wnt pathway is activated by the stabilization
and nuclear import of β-catenin which leads to the expression
of Wnt target genes. Several components of the Wnt/β-catenin
signaling pathway have been identified by studies using powerful
genetic model organisms (Jenny and Basler, 2014). It is now
well-established that in the Wnt-Off state (Figure 1), levels
of β-catenin are kept low in the cytoplasm by a “destruction
complex” comprising of serine-threonine kinases, Glycogen
synthase kinase 3 (GSK3 also known as Zeste-white 3), Casein
kinase α1 (CK1), scaffolding proteins Axin and Adenomatous
Polyposis Coli (APC) (Siegfried et al., 1990, 1992; Peifer et al.,
1994a,b; Liu et al., 2002). Once phosphorylated by GSK3 and
CK1, β-catenin is ubiquitinated and degraded via proteasome
(Aberle et al., 1997; Kitagawa et al., 1999). Activation of the
canonical signaling pathway by the binding of Wnt ligands
to the Fz receptors further recruits the co-receptors LRP5/6
(Arrow in Drosophila) (Bhanot et al., 1996; Cadigan et al., 1998;
Zhang and Carthew, 1998; Tamai et al., 2000; Wehrli et al.,
2000; Dann et al., 2001; Piddini, 2005; Figure 1). These receptor
complexes aggregate at the membrane to form a signalosome by
the recruitment of a cytoplasmic protein Dishevelled (Dsh) to
the membrane (Bilic et al., 2007; Gammons et al., 2016). This in
turn sequesters the destruction complex to the plasma membrane
resulting in β-catenin stabilization followed by its nuclear import
and activation of Wnt target genes (van de Wetering et al., 1997).

Wnt proteins can also activate pathways independent of
β-catenin which are categorized as non-canonical Wnt signaling
pathways. One of the best-studied examples of non-canonical
Wnt signaling is the planar cell polarity (PCP) pathway. Initially
identified in Drosophila, the PCP pathway consists of six
core components; Fz, Dsh, Prickle (Pk), Strabismus/Van Gogh
(Vang) or Vang-like (Vangl) in vertebrates, Flamingo (Fmi)
and Diego (Dgo), which are conserved amongst the metazoans
(Eaton, 1997; Seifert and Mlodzik, 2007; Hale and Strutt, 2015;
Butler and Wallingford, 2017; Humphries and Mlodzik, 2018).
In various tissues, the pathway is governed by asymmetric
localization of the core components as two separate complexes
consisting of Vang-Fmi-Pk and Fz-Fmi-Dsh-Dgo (Usui et al.,
1999; Axelrod, 2001; Feiguin et al., 2001; Shimada et al.,
2001; Strutt, 2001; Tree et al., 2002; Bastock et al., 2003), at
the opposite ends of the cell (reviewed in Harrison et al.,
2020). These complexes activate downstream signaling which
determines various polarized cellular outputs such as cell shape
regulation, the orientation of primary cilia in the vertebrate
inner ear, directed cell migration and the directional organization
of tissues (Yang and Mlodzik, 2015; Humphries and Mlodzik,
2018). For example, the receptor complex initiates the Rho
family GTPase cascade leading to the cytoskeletal rearrangements
(Strutt et al., 1997; Winter et al., 2001; Marlow et al., 2002;
Tanegashima et al., 2008). Moreover, the receptor complex,
along with the co-receptors of receptor tyrosine kinase family
(Ror or Ryk) can also activate c-Jun N-terminal kinase (JNK)
signaling via Rac1, which further leads to c-Jun/activator protein
1 (AP1)-mediated expression of the JNK target genes (Eaton et al.,
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FIGURE 1 | Wnt signaling pathways: Canonical Signaling- Wnt-Off: In absence of the ligand (Wnt), the receptor (Frizzled/Fz) and co-receptor LRP5/6 (Arrow)
remain in an inactive state at the plasma membrane. In the cytoplasm, components of the destruction complex (GSK-3β, APC, CK-1, Axin) bind and phosphorylate
the nuclear effector β-catenin, followed by its ubiquitination and proteasomal degradation. In the nucleus, transcriptional repressor Groucho (Gro) binds to the
co-factor TCF and keeps Wnt target gene expression off. Canonical signaling- Wnt-On: Binding of Wnt to the Fz receptor recruits LRP5/6 forming an active
receptor complex, which leads to Dishevelled (Dsh)-mediated inactivation of the destruction complex. The consequential accumulation of β-catenin in the cytoplasm
enables its nuclear import. The nuclear β-catenin replaces Gro from TCF forming a transcriptional activator complex leading to Wnt target gene expression.
Non-canonical Wnt/PCP pathway: The binding of Wnt to the Fz receptor leads to the recruitment of Dsh. This complex along with the co-receptors, for example,
receptor tyrosine kinase-like orphan receptor (Ror) and tyrosine-protein kinase (Ryk) can activate effector kinases like RhoA/ROCK, which leads to actin
polymerization. Wnt proteins can also induce the activation of the c-Jun N-terminal kinase (JNK) pathway through both Fz-Dsh-Ror/Ryk and Vangl-Ror/Ryk protein
complexes. Non-canonical Wnt/Ca2+ pathway: Fz receptor recruits the co-receptors Ror/Ryk upon binding of Wnt ligands which activates Dsh and G-proteins
(α,β) at the membrane forming an active cluster. This results in the activation of phospholipase-C (PLC) leading to the release of intracellular calcium ions. Increased
calcium levels further activate different pathways mediated by downstream effectors namely Calcineurin (Cn), Calmodulin dependent protein Kinase II (CAMK II) and
Protein Kinase C (PKC).

1995; Boutros et al., 1998; Fanto et al., 2000; Oishi et al., 2003;
Schambony and Wedlich, 2007; Green et al., 2014; Figure 1).

The role of Wnt proteins in the regulation of PCP has been
studied in several model organisms. For example, gradients of
Wnt proteins have been shown to regulate global polarization
of PCP in the developing vertebrate tissues (Parr et al., 1993;
Yamaguchi et al., 1999; Fisher et al., 2008; Gao et al., 2011,
2018; Chu and Sokol, 2016; Minegishi et al., 2017) and providing
directional cues for the elongation of myocytes in chicken (Gros
et al., 2009). However, while the function of the PCP pathway
in tissue patterning is well-established in Drosophila, the role
of Wnt ligands in the activation of PCP remains controversial.
A previous study showed that localized mis-expression of

Wnts in the developing fly wing epithelium can modulate the
global orientation of the cellular asymmetry (Wu et al., 2013).
However, in contrast, two independent recent studies showed
that removal of endogenous Wnts did not affect the PCP pathway
(Ewen-Campen et al., 2020; Yu et al., 2020).

Another important non-canonical pathway is the
Wnt/Ca2+pathway. In this case, the binding of Wnt ligands to
the Fz receptors and co-receptor Ror/Ryk leads to G-protein-
mediated activation of phospholipase C (Figure 1). This further
leads to an increase in the intracellular Ca2+concentration
and concomitant activation of the Calmodulin-dependent
kinase or protein kinase C (PKC) pathway (Kühl et al., 2000;
Kohn and Moon, 2005). Wnt/Ca2+ pathway is involved

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 August 2021 | Volume 9 | Article 714746

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-714746 August 12, 2021 Time: 12:10 # 4

Mehta et al. Wnt Signaling in Development

in several developmental processes such as ventral fate
determination in Xenopus embryos and axonal guidance in
mammals (De, 2011; Ng et al., 2019).

SYNTHESIS AND INTRACELLULAR
TRANSPORT OF Wnt PROTEINS

Post translation, all the Wnt proteins, except for Drosophila
WntD (Wnt inhibitor of Dorsal), are lipid-modified in the lumen

of the endoplasmic reticulum (ER) (Figure 2). This occurs via
palmitoylation by an ER-membrane-bound-O-acyl-transferase
called Porcupine (Van den Heuvel et al., 1993; Kadowaki et al.,
1996; Willert et al., 2003; Figure 2). Earlier studies reported two
palmitoylation sites on Wnt proteins at a conserved serine and
a cysteine residue (Willert et al., 2003; Takada et al., 2006; Janda
et al., 2012). However, structural analysis of Xenopus Wnt8, by
a later study, showed that Wnt proteins are mono-palmitoylated
at the conserved serine residue, whereas the conserved cysteine
residue is involved in a disulfide bond (Willert et al., 2003;

FIGURE 2 | Wnt secretion pathway. Anterograde route of Wnt secretion (black arrows): Newly synthesized Wnt proteins are transferred to the lumen of RER where
they are palmitoylated by an acyltransferase (Porcupine). This is followed by the binding of lipid-modified Wnts to their cargo receptor, Evenness interrupted (Evi). The
Wnt-Evi complex is then transported from ER to Golgi by Sec22/COP-II vesicles, aided by various members of the P24 family of proteins, Sec12 and Sar1 proteins.
Golgi to membrane transport of Wnt protein is mediated by Rab8a and a multi-protein exocyst complex further mediates the apical release of Wnts from the
polarized epithelial cells. Wnt proteins can also be internalized and the internalized Wnts are either recycled and secreted apically via Rab4 endosomes (green
arrows) or transcytosed (red arrow) to the basolateral side of the producing cell via an E3 ubiquitin ligase (Godzilla). The kinesin motor Klp98A is also involved in
apical to basolateral transcytosis of Wnts. Retrograde route of Evi trafficking (Blue arrows): The Wnt-unbound Evi is transported back to the Golgi and RER with the
help of retromer complex/SNX3 and COP-I vesicle, respectively. In the absence of the retromer function, Evi is degraded in the lysosomes.
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Takada et al., 2006; Janda et al., 2012). Palmitoylation is essential
for the secretion of Wnt proteins, and therefore, mutation in
the conserved serine residue or loss of Porcupine activity leads
to retention of Wnt proteins in the ER (Takada et al., 2006;
Barrott et al., 2011; Biechele et al., 2011). Besides lipidation,
Wnt proteins are also glycosylated at several residues (Smolich
et al., 1993). The pattern of glycosylation varies between different
Wnt proteins, which was shown to regulate apical or basolateral
sorting of Wnt protein in polarized cells (Yamamoto et al.,
2013). However, unlike palmitoylation, the role of glycosylation
is poorly understood.

Following the transport and modification of Wnt proteins
in the ER, they are transferred to a cargo-receptor protein
Wntless (also known as Sprinter/Evenness interrupted
(Evi)/MIG-14/Gpr177, referred to as Evi hereafter), a multipass
transmembrane protein which is an essential component of
the Wnt secretory pathway (Bartscherer et al., 2006; Bänziger
et al., 2006; Goodman et al., 2006). Recent structural analysis
of the Wnt-Evi complex revealed that post palmitoylation,
Wnt proteins are loaded on Evi through direct lateral transfer
from Porcupine (Nygaard et al., 2021). Furthermore, the
lipidation of Wnt protein is also essential for binding with Evi
(Coombs et al., 2010; Herr and Basler, 2012). This provides an
understanding of why defects in palmitoylation cause Wnts to
accumulate in the ER.

The next step in Wnt protein secretion requires members
of the highly conserved p24 family proteins, which mediate the
transport of cargo from ER to Golgi via COPII coated vesicles
(Castillon et al., 2011). For example, CHOp24, Eclair, Opm, p24-1
proteins were identified from two independent Wg secretion-
related RNAi screens in cultured Drosophila cells (Buechling
et al., 2011; Port et al., 2011). A later study identified another
member of this family, Baiser, which was shown to be involved
in Wg secretion (Li et al., 2015). Baiser is suggested to form a
complex with a conserved v-SNARE, Sec22 which aids in the
fusion of Wg containing vesicles with t-SNARE on the Golgi
membrane (Lewis et al., 1997). Besides this, the Wnt-Evi complex
has been shown to interact with Sec12 and Sar1 proteins in
the ER, which further assist in the formation of COPII vesicles
(Sun et al., 2017). Altogether, these studies suggest that the
exit of Wnt proteins from the ER follows a tightly regulated
pathway requiring specific proteins. The route taken by the
Wnt-Evi complex beyond Golgi is poorly understood. However,
studies using human cell lines and mouse intestinal Paneth cells
have identified Rab8a as a regulator of post-Golgi transport of
Wnt proteins to the cell membrane (Figure 2, black arrow)
(Das et al., 2015).

After the anterograde transport of Wnts to the membrane,
it is believed that the Wnt-unbound Evi is internalized via the
clathrin-dependent pathway, and it is further recycled back to the
trans-Golgi network (TGN). The retrieval of Evi from endosomes
to the TGN is mediated by retromer complex proteins VPS26,
VPS29 and VPS35 (Coudreuse et al., 2006; Prasad and Clark,
2006; Belenkaya et al., 2008; Franch-Marro et al., 2008; Pan et al.,
2008; Port et al., 2008; Yang et al., 2008) and the associated sortin
nexin SNX3 (Harterink et al., 2011b; Zhang et al., 2011) (Figure 2,
blue arrows). In the absence of retromer, Evi protein is routed to

lysosomes which leads to its degradation and concomitant loss of
Wnt protein secretion. Studies in mammalian cells have shown
that the retrograde movement of Evi brings it to the ER where it
interacts with Porcupine and lipidated Wnts to continue the next
rounds of secretion (Yu et al., 2014).

An important and largely unresolved question in the process
of Wnt secretion is how and where Wnt proteins separate from
Evi. Studies on murine Wnt3a have shown that acidification
of secretory vesicles facilitates the dissociation of the Wnt-Evi
complex (Coombs et al., 2010; Herr and Basler, 2012). However,
interestingly, Wnt proteins are also internalized by the producing
cells (Pfeiffer et al., 2002; Yamazaki et al., 2016), and both Evi and
Wnts are found in the late endosomal compartments (Gross et al.,
2012). Furthermore, it is believed that internalized Wnt proteins
are recycled back to the membrane for secretion (Pfeiffer et al.,
2002; Yamazaki et al., 2016; Linnemannstöns et al., 2020; Witte
et al., 2020; Figure 2, red and green arrows). Therefore, whether
Evi and Wnt proteins separate during the anterograde route or if
they are internalized together and the separation occurs during
the retrograde or the recycling route is unclear and requires
deeper analysis of the process.

Wnt SECRETION AND SIGNALING
MECHANISMS IN POLARIZED CELLS

Wnt proteins also play an important role in the development
of tissues made of polarized epithelial cells. Generation of a
functional extracellular pool of the ligand by these cells requires
polarized secretion, either from the apical or basolateral side.
Studies have shown that Wnt proteins take a specific route
for secretion from the polarized cells, which is believed to
regulate their signaling abilities. For example, in polarized
Madin–Darby canine kidney (MDCK) epithelial cells Wnt11 and
Wnt3a are secreted preferentially from the apical or basolateral
side, respectively. This polarized sorting of Wnt11 and Wnt3a
is decided by their differential glycosylation patterns and the
complexity of the glycans (Yamamoto et al., 2013). Interestingly,
it was also shown that while both Wnt11 and Wnt3a needed
Evi to reach the Golgi complex, post-Golgi trafficking of
Wnt3a to the basolateral side, but not the apical trafficking
of Wnt11, appears to be Evi mediated. While the functional
significance of differential polarized secretion of Wnt11 and
Wnt3a remained unclear, this study highlights the fact that
polarized secretion of Wnt ligands is regulated by multiple
mechanisms. It will be interesting to further explore these
mechanisms in other organisms where polarized cells produce
multiple species of Wnt ligands.

Other important examples of polarized Wnt secretion are
from studies in Drosophila epithelial cells. For instance, analysis
of Wg in Drosophila embryonic epidermal cells showed that both
wg mRNA and Wg protein are localized apically (González et al.,
1991; Strigini and Cohen, 2000; Simmonds et al., 2001; Pfeiffer
et al., 2002). Mis-localization of wg mRNA causes defects in
Wg secretion and signaling, suggesting that apical secretion is
required for the proper functioning of Wg in the embryonic
epidermis. Apart from this, the development of Drosophila
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wing epithelium, which mostly contains tightly packed columnar
epithelial cells (Fristrom and Fristrom, 1993), is regulated by
Wg expressed by a narrow strip of cells at the dorsal-ventral
boundary. Similar to the embryonic epidermis, the intracellular
Wg protein is localized apically in the Wg producing cells of
wing discs. At the extracellular levels, a broad gradient of Wg is
observed mostly at the basolateral side (Strigini and Cohen, 2000;
Simmonds et al., 2001), however, a short-range extracellular Wg
is also reported at the apical side of the columnar cells (Gallet
et al., 2008). Which of these secretion routes is required for
proper signaling in the receiving cells is debatable. On one hand,
a study, using Wg fusion protein, showed that the basolateral
secretion of Wg occurs via apical-to-basolateral transcytosis in
the producing cells (Figure 2, red arrows). This process requires
an E3 ubiquitin ligase called Godzilla, which upon removal
showed a reduction in the Wg target gene expression (Yamazaki
et al., 2016). However, whether Godzilla is also required for
Wg signal transduction in the receiving cells is not known.
On the other hand, the rescue of Wg secretion defects in evi
homozygous mutants by a pulse of Evi expression via a transgene
showed that Wg was predominantly released apically by the
newly synthesized Evi protein (Chaudhary and Boutros, 2019).
It was also shown that the apical secretion of Wg was mediated
via an octameric exocyst complex (Figure 2, black dashed line)
and the apically secreted pool of Wg is functionally highly active
(Chaudhary and Boutros, 2019). Moreover, a recent study has
also shown that the apically internalized Wg could be recycled
back to the apical side in a Rab4-dependent manner (Figure 2,
green arrows) and that the apical to basolateral transcytosis
via the kinesin motor Klp98A may not be essential for high-
level signaling (Linnemannstöns et al., 2020; Witte et al., 2020;
Figure 2, red arrows).

An important question is whether the differential signaling
abilities of the apical and basolateral pool of Wg are determined
by the mechanisms in the receiving cells or the properties of the
ligand? Studies have shown that Wg is internalized largely from
the apical side of the receiving cells. These apically-derived Wg
containing vesicles are believed to fuse with the Fz2-containing
vesicles internalized from the basolateral side, leading to ligand-
receptor interaction and activation of the pathway (Marois et al.,
2006; Gallet et al., 2008; Hemalatha et al., 2016). Besides this,
the Fz1 receptor, which is redundant with Fz2 for canonical
signaling is also transported apically (Strutt, 2001; Wu et al.,
2004), however, if the Wg and Fz1 interaction also require similar
internalization remains unknown. Furthermore, other members
of the signaling pathway, for example, the co-receptor Arrow and
Wnt-binding protein Dlp are also transported apically (Marois
et al., 2006; Gallet et al., 2008; Hemalatha et al., 2016). Thus, the
differences in signaling abilities of apical and basolateral Wg may
be due to the polarized localization of signaling components.

However, another possibility is that the signaling variations in
Wnt ligands are due to their association with different interacting
molecules, which may be specifically released from the apical and
basolateral sides. These Wnt-binding molecules, besides aiding
in the release and spreading of hydrophobic Wnts (discussed
further below), may also bestow different signaling abilities to
the Wnt ligands.

MODES OF EXTRACELLULAR Wnt
TRANSPORT

Once released by the cells, Wnt proteins travel in the extracellular
space to activate signaling up to several cell distances. However,
the lipid-modification of Wnts renders them hydrophobic, which
makes it difficult to envisage their extracellular movement
with simple models such as free diffusion. Over the past two
decades, several modes for extracellular Wnt travel assisted by a
number of carrier molecules have been identified. These carriers
interact with Wnt proteins and mask their hydrophobic domains
aiding their travel in the aqueous extracellular space. Here, we
summarize some of the Wnt carriers, focusing mostly on studies
with Drosophila Wg (Figure 3). For further detailed information,
readers are directed to the following reviews: Takada et al. (2017)
and Routledge and Scholpp (2019).

One proposed mechanism for the extracellular transport of
Wnt is via their oligomerization (as micelles) which is also
observed for other secreted hydrophobic proteins, like Hedgehog
(Chen et al., 2004). This oligomerization is believed to shield
their hydrophobic regions. However, a recent study in flies using
a combination of GFP and Myc tagged Wg protein revealed
that blocking the movement of GFP labeled Wg did not affect
the spreading of Myc labeled-Wg suggesting that Wnts may
not travel in the extracellular space as oligomers or micelles
(McGough et al., 2020). This further supports the possibility that
Wnt proteins would require specific carrier molecules for their
extracellular travel.

In vitro studies in Drosophila identified a lipocalin family
protein known as Swim (Secreted Wingless Interacting
Molecule), which binds Wg (Figure 3A). Through this
interaction, Swim proteins not only aid the long-range
extracellular travel of Wg but also stabilize its signaling
activity by maintaining the solubility of Wg (Mulligan et al.,
2012). RNAi-mediated depletion of Swim expression in vivo
impedes the stability of Wg and hence its distribution over the
long-range. In contrast to this, the Swim mutant did not show
Wg spreading or signaling defects, indicating that Swim could
be dispensable for Wg transport (McGough et al., 2020). Thus,
further analysis is required to ascertain their role in Wg transport
and to identify possible redundancies between lipocalins.

Besides Swim, lipoprotein particles (LPP) can also interact
with lipid-modified Wnts and act as a vehicle for their
extracellular transport (Figure 3B). This has been best
demonstrated with the mammalian Wnt proteins. For instance,
an earlier study showed that active lipid-modified Wnt3a
molecules secreted by cultured mammalian cells are associated
with the LPP and Wnt3a secretion is regulated by high-density
lipoproteins (Neumann et al., 2009). Furthermore, an in vivo
study using mouse hindbrain showed that Wnt5A is released
and transported via LPP in the cerebrospinal fluid (Kaiser et al.,
2019). However, secretion of Drosophila Wg with LPP remains
controversial. On one hand, Wg was shown to colocalize with
lipophorins (similar to mammalian lipoprotein particles) in the
Drosophila wing epithelium, and depletion of lipophorins led
to the impaired spreading of Wg and concomitant defects in
long-range signaling (Panáková et al., 2005). On the other hand,
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FIGURE 3 | Modes of extracellular Wnt transport. The table shows a diagrammatic representation of different modes employed to facilitate the extracellular travel of
hydrophobic Wnt proteins and the tissues these mechanisms are observed. (A) Swim, an extracellular carrier protein that binds secreted Wg in Drosophila wing
epithelium and enables their transport to the receiving cells. (B) Lipoprotein particle, a complex of proteins, phospholipids and fats. Wnts are transferred to
lipoproteins from Evi, which increases the solubility of Wnts in the extracellular space and allows them to reach the receiving cells. (C) HSPGs, these
membrane-bound glypicans bind to lipid-modified Wnts and enable their transport by moving along the membrane and relaying Wnts to other HSPGs and finally to
Fz receptors present on receiving cells. (D) Exosomes, small vesicular structures loaded with Wnts both free and Evi bound form in the MVBs and released outside
cells, further carrying them to receiving cells. (E) Cytonemes, cell membrane extensions directed by the cytoskeletal reorganization that extend up to several cell
distances and carry Wnts along with them to the receiving cells. In some cases, the cytonemes extending from the receiving cells carrying Fz receptors bring
receptors to the Wnt-producing cells.
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restricting the spreading of GFP-tagged Wg did not affect the
distribution of lipophorins in the wing epithelium (McGough
et al., 2020), arguing against the movement of Wnt in association
with LPP. It is possible that the role of LPP in the extracellular
movement of Wnt proteins is context-dependent rather than a
universal mechanism.

An alternative mechanism for the transport of Wnt proteins
is through their interaction with heparan sulfate proteoglycans
(HSPGs) (Reichsman et al., 1996; Mii and Takada, 2020;
Figure 3C). For example, Dally, Dally-like proteins (Dlp) are
membrane-associated HSPGs that can interact and stabilize
Wnt/Wg (Baeg et al., 2001; Han et al., 2005; Yan et al., 2009).
Besides, secreted HSPG-Perlecan/Trol was also shown to stabilize
Wg in the extracellular space at the Drosophila neuromuscular
junctions (NMJ) (Kamimura et al., 2013). A recent structural
analysis of Wg and Dlp interactions identified regions in Dlp
where the Wg palmitoleate group can be accommodated, which
stabilizes Wg for extracellular movement (McGough et al.,
2020). Similar in function to Dlp, another conserved protein,
Reggie-1/Flotillin-2 has been reported to enhance long-range
spreading Wg and thus increasing its long-range signaling
activity (Katanaev et al., 2008).

A different carrier reported for extracellular Wg transport is
exosomes (Figure 3D). These are extracellular vesicles of 40–
100 nm diameter formed in the multivesicular bodies (MVB)
and released upon the fusion of MVBs with the plasma
membrane (Gross and Boutros, 2013; Hessvik and Llorente,
2018). Initial studies in the Drosophila wing epithelium suggested
that “argosomes,” which were believed to be extracellular
vesicles, could carry Wg in the extracellular space (Greco
et al., 2001). Later, Wg was shown to cross NMJ on Evi
positive exosomes (Korkut et al., 2009; Koles et al., 2012).
Further studies have shown that Wnt proteins are released
on exosomes in mammalian cells as well as in cultured
Drosophila cells and epithelial tissues (Gross et al., 2012; Beckett
et al., 2013). However, unlike the NMJ, Wg and Evi are not
released on the exosome together and most likely separate
in the late endosomal compartments of the producing cell
(Gross et al., 2012; Beckett et al., 2013).

Specialized cellular actin-rich filopodia like cell protrusions
called cytonemes (Ramírez-Weber and Kornberg, 1999) have
also been reported to assist in the long-range activity of Wnt
proteins (Stanganello et al., 2015), along with other signaling
ligands, for example, Dpp (Roy et al., 2014) and Hedgehog
(Bischoff et al., 2013; Figure 3E). However, the mechanisms
by which they mediate long-range Wnt signaling are context-
dependent. For example, in vertebrates, cytonemes have been
shown to carry Wnt ligands from the source to the target cell
(Holzer et al., 2012; Stanganello et al., 2015; Mattes et al., 2018).
Conversely, invertebrate tissue like Drosophila myoblasts extend
cytonemes from the receiving cells (bearing Fz receptors) to the
producing cells in order to trap Wg from the wing imaginal disc
(Huang and Kornberg, 2015).

In summary, the hydrophobic Wnt ligands employ multiple
carrier molecules and mechanisms for their long-range travel.
Interestingly, some of these mechanisms operate simultaneously
for a particular Wnt ligand in the same tissue, while others

are context-dependent (Figure 3). Consequently, an interesting
question is whether a proportion of Wnt ligands are released
using a particular carrier molecule and if the signaling
readouts are due to the combinatorial effect of their range
and signaling abilities. Furthermore, the regulatory mechanisms
which modulate Wnt trafficking for their loading on different
extracellular vehicles remain poorly understood.

RANGE OF Wnt PROTEIN ACTIVITY

Whether Wnts act as long-range signaling molecules has
been a long-debated question and the exact range of their
action is not known. In vertebrates, the evidence for a long-
range action of Wnt proteins is mainly indirect. This is
based largely on the observation of a broad expression of
Wnt target genes in developing tissues, generated by Wnt
proteins secreted from a localized source, for example, during
early embryogenesis and limb development (Gavin et al.,
1990; Kiecker and Niehrs, 2001; Aulehla et al., 2003, 2007;
Gao et al., 2011). Direct visualization of a few tagged Wnt
proteins also suggested a short-range mode of action. For
example, analysis of an exogenously tagged Xenopus Wnt8
in the embryo showed short-range and membrane-associated
distribution (Mii and Taira, 2009; Mii et al., 2017). The secreted
Wnt8 was associated either with the extracellular inhibitor
sFRP, forming a non-functional complex or with N-sulfo-rich
heparan sulfate as a signaling active complex (Mii et al., 2017).
Similar approaches to analyze Wnt3 in the mouse intestinal
crypts also showed a short-range distribution mediated via
lateral transcytosis (Farin et al., 2016). However, highly sensitive
and quantitative imaging techniques, for example, fluorescence
correlation spectroscopy (FCS) and fluorescence decay after
photoconversion (FDAP), which measure the rate of diffusion,
have allowed better analysis of the extracellular movement
of Wnt proteins. Employing these techniques to analyze the
dispersal dynamics of tagged XWnt8 protein, a recent study
showed that extracellular XWnt8 is bound to the cell surface
as well as exists in a freely diffusing form (Mii et al., 2021).
These two forms of XWnt8 were suggested to be exchangeable,
which could facilitate the long-range graded distribution of the
protein. Moreover, both short-range and long-range distribution
of fluorescently tagged zebrafish Wnt8a has been observed,
which was shown to be via cytonemes (Luz et al., 2014;
Stanganello et al., 2015).

Gradients of Wnts in invertebrates, such as C. elegans have also
been observed. Single-molecule fluorescence in situ hybridization
(smFISH) showed localized expression of several Wnt genes
in C. elegans (Harterink et al., 2011a). Later, analysis of an
endogenously tagged Wnt-homolog EGL-20, using fluorescence
recovery after photobleaching (FRAP), showed a long-range
spreading. Moreover, blocking the spreading of tagged Egl-
20, using morphotrap, led to defects in neuroblast migration,
indicating the functional importance of Wnt spreading (Pani
and Goldstein, 2018). Interestingly, this long-range dispersal
of Egl-20 is believed to be via free ligand diffusion and the
role of any extracellular carrier proteins is unclear. Besides,
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a recent study analyzed the gradient-dependent function of
another C. elegans Wnt, Lin-44. It was shown that while the
long-range Lin-44 gradient is required for neurite migration
and cell fate specification, it was dispensable for neurite
pruning, as it remained unaffected by tethering endogenous
Lin-44 to the membrane (Lu and Mizumoto, 2019). Thus,
the requirement of Wnt protein gradients in developmental
processes is context-dependent.

One of the best-known examples for long-range action of
Wnt protein, and interestingly also the strongest contradiction
has been observed with the Drosophila Wg protein, which is the
main ligand for canonical Wnt signaling. Using highly efficient
antibodies and a labeling method to detect the extracellular
proteins, earlier studies have demonstrated the presence of a
long-range extracellular Wg gradient in the wing imaginal discs,
extending on both sides of the stripe of secreting cells residing
at the dorsal-ventral (DV) boundary (Strigini and Cohen, 2000).
Besides this, a graded expression of Wg target genes, for example,
Distal-less (Dll) is also detected across the wing disc primordium
(Struhl and Basler, 1993; Zecca et al., 1996; Neumann and Cohen,
1997; Cadigan et al., 1998). Moreover, clonal expression of Wg,
but not a membrane-tethered Wg protein led to the activation
of signaling in cells located distally at a distance (Zecca et al.,
1996). Further analysis has shown that Wg can reach at least
till 11 cell distances from the DV boundary to directly activate
gene expression (Cadigan et al., 1998; Chaudhary et al., 2019),
highlighting a direct long-range action of Wg in the developing
wing epithelium. However, in the Drosophila embryo, the range
of Wg is restricted to only a few adjacent cells from the producing
cells (DiNardo et al., 1988; Martinez Arias et al., 1988; Vincent
and Lawrence, 1994), indicating that the functional range of
Wg is contextual.

The paradigm of long-range Wg signaling has been further
complicated by the dynamic changes in the Wg expression during
the development of wing discs. Studies have shown that Wg
expression pattern changes gradually from a broader expression
in the entire wing pouch region during early larval stages to a
narrow stripe of cells at the DV boundary, at later stages (Couso
et al., 1993; Williams et al., 1993; Ng et al., 1996; Rulifson et al.,
1996; García-García et al., 1999; Alexandre et al., 2014). This
led to the conception of a different model whereby the broader
expression of Wg rather than its secretion and the long-range
gradient is believed to generate the graded expression of the
target genes. This model has been also supported by studies
on vertebrate limb development, where a broad expression of
Wnt5a was shown to regulate mesodermal patterning and the
PCP pathway (Parr et al., 1993; Yamaguchi et al., 1999; Fisher
et al., 2008; Gao et al., 2011, 2018). The model was further
tested in flies by replacing the endogenous Wg with a membrane-
tethered Neurotactin tagged Wg (NRT-Wg) fusion protein,
which remained restricted on the surface of producing cells and
thus presumed to act in a juxtacrine manner. Surprisingly, the
NRT-wg flies emerged as normal appearing adults although with
smaller but normally patterned wings and with developmental
delay (Alexandre et al., 2014). Also, the expression pattern
of long-range target gene Dll and fz3 in NRT-wg discs was
comparable to that of the wildtype (Alexandre et al., 2014). This

indicates that the long-range Wg spreading may not be necessary
for broad expression of target genes, which once activated could
be further maintained in a ligand-independent manner. However,
the mode of action of NRT-Wg and Wg appears to be different,
as it was recently shown that downregulation of the early
broader expression of NRT-wg but not the endogenous wg led
to the reduction in target gene expression in the receiving cells
(Chaudhary et al., 2019). This suggests that a direct long-range
effect of Wg, rather than a prior expression in the receiving cell,
is required for a broad expression of target genes.

In any case, the observation of a broader gene expression
in the absence of a long-range gradient has revealed that there
are compensatory mechanisms that could allow maintenance
of target gene expression. This could provide developmental
robustness to the growing tissues. However, these mechanisms
may work in a tissue-specific manner. For instance, recent studies
have shown that the NRT-wg flies do have other defects, for
example in the proximo-distal patterning in the Drosophila renal
tube (Beaven and Denholm, 2018) and patterning of Drosophila
intestinal epithelial and muscle tissues (Tian et al., 2019), which
appears to be dependent on the long-range spreading of Wg.

FEEDBACK REGULATION FOR ROBUST
Wnt SIGNALING IN DEVELOPING
TISSUES

It is somewhat easier to envisage how a morphogen gradient
could directly pattern an unchanging field of cells, however,
in rapidly developing tissues, cells are rarely stationary. Thus,
a challenging problem in developing tissues is how cells
balance signaling levels, while experiencing a constant change
in the levels of extracellular ligands. It is now well-accepted
that numerous signaling pathways use positive and negative
feedback mechanisms to ensure balanced signaling and maintain
developmental robustness. Positive feedback is required for
the amplification of a weak signal whereas negative feedback
dampens signaling. Moreover, signaling pathways regulate the
expression of these feedback regulators, whereby the expression
of positive regulators is generally suppressed and negative
regulators are activated by high-level signaling (Figure 4).

The canonical Wnt signaling pathway has highly diverse
and complex feedback regulations, which allows it to modulate
signaling in various developmental contexts. For example, in
vertebrates, a Wnt signaling induced protein Axin2 acts as a
cytoplasmic inhibitor of Wnt signaling (Jho et al., 2002; Lustig
et al., 2002), which dampens excess signaling. Similarly, another
Wnt target Naked cuticle inhibits Wnt signaling by interacting
with the cytoplasmic protein Dsh. While Axin mediated feedback
regulation is not observed in organisms, for example, Drosophila,
Naked cuticle on the other hand is highly conserved (Rousset
et al., 2001; Wharton et al., 2001). Besides this, secreted inhibitors
of Wnt proteins are also expressed by Wnt signaling, for
example, a highly conserved extracellular protein Notum binds
and deacetylates Wnts which reduces their signaling activity
(Kakugawa et al., 2015).
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FIGURE 4 | Wnt gradient and feedback regulators. A graphical representation of feedback regulation of Wnt signaling. Green color represents secreted Wnt protein
gradient over the receiving cells. Blue color represents expression of negative feedback regulators which is higher in cells exposed to high Wnt levels, whereas
positive feedback regulators (red) are higher in cells with exposure to low-levels or no Wnt ligands. The signaling activity is regulated by a combinatorial effect of
direct ligand-mediated signaling, the dampening effect of the negative feedback regulators and enhancement of ligand or maintenance of signaling in the absence of
ligand by the positive feedback regulators.

A common mechanism of feedback regulation is by
modulating signaling at the level of surface receptors. For
example, in vertebrate a set of Wnt target genes, including
Dickkopf-1, Rnf43 and Znrf3 inhibits Wnt signaling at the
receptor level by either interacting with the co-receptor LRP5/6
(Glinka et al., 1998; Bafico et al., 2001; Semënov et al., 2001; Niida
et al., 2004) or reducing the receptor levels at the membrane
by increasing their ubiquitination-mediated internalization
(Hao et al., 2012; Koo et al., 2012). In Drosophila, the Fz
receptors are part of both positive and negative feedback
regulations. For instance, the expression of fz3 receptor is
activated by the canonical Wg signaling and loss of fz3 was
shown to rescue the morphological defects in wg hypomorphic
mutants, suggesting that it acts as a negative regulator of
the pathway (Sato et al., 1999). In contrast to Fz3, the Fz2
receptor acts redundantly with the Fz1 receptor to activate
canonical signaling and it is transcriptionally repressed by Wg
signaling (Bhat, 1998; Kennerdell and Carthew, 1998; Bhanot
et al., 1999; Chen and Struhl, 1999; Müller et al., 1999). In the
developing wing imaginal discs, the expression of Fz3 is graded
with higher levels near the DV boundary, whereas the Fz2
receptor is expressed in a reversely graded manner (Figure 4).
Similarly, the Fz co-receptor Arrow, which is required for
the canonical pathway is also transcriptionally repressed by
the signaling (Wehrli et al., 2000). Together, these receptors
can modulate the variations in the Wg signaling activities
and provide developmental robustness (Cadigan et al., 1998;
Chaudhary et al., 2019).

Another mechanism to achieve this developmental robustness
could work at the level of target gene expression. While it

is commonly understood that the expression of target genes
depends on the signal activation directly by the ligand-receptor
complexes, studies have also suggested that once activated,
expression of certain target genes can persist in the absence of
the extracellular ligand, which is generally referred to as “cellular
memory.” For example, the expression of Wg target gene in
the Drosophila leg imaginal disc is activated by the transient
action of Wg and Dpp while at later stages of development
this expression is maintained in the absence of Wg via cis-
regulatory elements (Galindo et al., 2002; Estella et al., 2008).
Furthermore, in the Drosophila wing epithelium removal of Wg
at later stages of development showed persisted expression of
low-threshold targets, Dll and Vg (Piddini and Vincent, 2009).
As discussed above, in the wing imaginal discs expression of
these target genes could also be seen beyond the observable
range of membrane-tethered NRT-Wg (Alexandre et al., 2014).
However, unlike the leg discs, the cis-regulatory elements are not
believed to be involved in this maintenance in the wing discs
(Estella et al., 2008). Therefore, other alternative mechanisms
may also be involved in the maintenance of signaling in the
absence of the ligand.

For example, one possible mechanism could be via
ligand-independent signaling by the Frizzled receptors. A recent
study showed that the apparent normal appearing long-range
expression of Wg target genes in the membrane-tethered
NRT-Wg expressing wing imaginal discs, is mediated via the
Fz2 receptors (Alexandre et al., 2014; Chaudhary et al., 2019).
Therefore, loss of Fz2 in the NRT-Wg discs showed a reduction
in the range of low-threshold target gene expression and a
concomitant reduction in cell survival (Chaudhary et al., 2019).
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FIGURE 5 | Mechanisms of ligand-independent Wnt signaling. Canonical Wnt signaling is maintained in the absence of ligands via receptor internalization and
dimerization. (A) Internalization of the Frizzled receptors and co-receptor LRP5/6 could lead to inhibition of the destruction complex and therefore activation of the
downstream β-catenin signaling. (B) Higher levels of Frizzled receptor in absence of ligand allows the dimerization of Frizzleds which further recruits Dishevelled and
rest of the components of the destruction complex to stabilize β-catenin and activate the target gene expression.

MECHANISMS OF
LIGAND-INDEPENDENT SIGNALING BY
FRIZZLED RECEPTORS

While the mechanism of ligand-independent receptor activation
of canonical signaling remains poorly understood, some insight
came from the overexpression studies with vertebrate Fz
receptors. For example, the overexpression of rat and Xenopus
Fz receptors was shown to be sufficient for the activation
of Wnt target gene expression in Xenopus embryo (Yang-
Snyder et al., 1996; Umbhauer et al., 2000). Studies have
shown that the overexpression of Xenopus Fz3 receptor leads to
its dimerization, which can mediate ligand-independent signal
activation (Carron et al., 2003). Furthermore, as mentioned
above, the activation of canonical signaling is triggered by
the formation of signalosome complexes (Bilic et al., 2007;
Gammons et al., 2016) and Wnt proteins are believed to
act as a mediator of Fz and LRP5/6 oligomerization. In line
with this, the oligomerization of the Fz receptor and LRP5/6
to form signalosome and internalization was shown to be
sufficient to activate ligand-independent β-catenin signaling
in APC mutant prostate cancer cells (Hua et al., 2018;

Saito-Diaz et al., 2018). Therefore, an increase in the levels of the
Fz receptors may be sufficient for the formation of a signalosome
complex and the activation of signaling in a ligand-independent
manner (Figure 5).

The family of Frizzled receptors have several members
but do all the receptors possess the ability to maintain
canonical Wnt signaling? As mentioned above Fz2 acts
redundantly along with Fz1 to activate canonical Wg
signaling in Drosophila wing epithelium, but loss of Fz2
and not Fz1 affects the maintenance of target gene expression
(Chaudhary et al., 2019). Similarly, overexpression XFz3
but not the XFz7 was able to activate signaling without
Wnt ligand in Xenopus embryo (Yang-Snyder et al.,
1996; Umbhauer et al., 2000). These findings suggest
that maintenance of signaling is specific rather than
being a general characteristic of Fz receptors. A major
hindrance in understanding the mechanism is the lack
of structural information regarding the activation of
Fz receptors. Until now, less attention has been given
to Wnt-independent activation of Fz receptors and
the exact mechanism behind such activation remains
a mystery.
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CONCLUSION

The processes and mechanisms related to Wnts and their
signaling have been extensively studied due to their involvement
in numerous cellular processes covering various developmental
aspects. Using different model organisms, studies reviewed here
have shown that the mechanisms regulating steps like Wnt
protein expression and modification, their polarized secretion
and modes of extracellular transport, their reception and
signaling activity in the receiving cells, are diverse and context-
dependent. However, the identification of specific and well-
conserved regulatory proteins involved at various steps also
indicate that the Wnt-related processes are tightly regulated.

An unanswered question is how Wnt proteins utilize these
multiple non-redundant functional routes, to finally converge
at a particular signaling outcome and fate of the cell. Further,
fine dissection of each route will be necessary to ascertain its
functional specificity and to identify the regulatory processes
directing the Wnt protein toward a particular functional
route. In parallel to this, studies focusing on analyzing the
contribution of feedback regulations and ligand-independent
signaling mechanisms will provide a better understanding of the
processes facilitating developmental robustness.
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