
U-net model for brain extraction: Trained on humans for transfer 
to non-human primates

Xindi Wanga,*, Xin-Hui Lib, Jae Wook Chob, Brian E. Russc,d,e, Nanditha Rajamanib, 
Alisa Omelchenkob, Lei Aib, Annachiara Korchmarosb, Stephen Sawiakf, R. Austin Benng, 
Pamela Garcia-Saldivarh, Zheng Wangi,j, Ned H. Kalink, Charles E. Schroederc,l, R. Cameron 
Craddockm, Andrew S. Foxn, Alan C. Evansa, Adam Messingero, Michael P. Milhamb,c, Ting 
Xub,*

aMontreal Neurological Institute, McGill University, Montreal, Québec, Canada

bThe Child Mind Institute, 101 East 56th Street, New York, NY 10022, USA

cNathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, USA

dDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, USA

eDepartment of Psychiatry, New York University School of Medicine, New York City, NY, USA

fTranslational Neuroimaging Laboratory, Department of Physiology, Development and 
Neuroscience University of Cambridge, Cambridge CB2 3EG, UK

gCentro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain

hInstituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, 
Querétaro, México

iInstitute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence 
Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, 
Chinese Academy of Science, Shanghai, China

jUniversity of Chinese Academy of Science, China

This is an open access article under the CC BY-NC-ND license
*Corresponding authors: sandywang.rest@gmail.com (X. Wang), ting.xu@childmind.org (T. Xu).
Credit authorship contribution statement
Xindi Wang: Conceptualization, Methodology, Software, Formal analysis, Writing – original draft, Writing – review & editing. 
Xin-Hui Li: Formal analysis, Investigation, Visualization. Jae Wook Cho: Formal analysis, Investigation, Visualization. Brian E. 
Russ: Writing – review & editing. Nanditha Rajamani: Investigation. Alisa Omelchenko: Investigation. Lei Ai: Investigation. 
Annachiara Korchmaros: Investigation. Stephen Sawiak: Resources. R. Austin Benn: Resources. Pamela Garcia-Saldivar: 
Investigation. Zheng Wang: Resources. Ned H. Kalin: Resources. Charles E. Schroeder: Resources, Writing – review & editing. R. 
Cameron Craddock: Writing – review & editing. Andrew S. Fox: Resources, Writing – review & editing. Alan C. Evans: Writing 
– review & editing. Adam Messinger: Resources, Writing – review & editing, Funding acquisition. Michael P. Milham: Writing – 
review & editing, Funding acquisition. Ting Xu: Conceptualization, Methodology, Formal analysis, Writing – original draft, Writing – 
review & editing, Funding acquisition.

Data and Code Availability
The data are available through PRIMate Data Exchange (PRIME-DE: https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html,). Our 
model, code, and the skull-stripped mask repository are publicly available for unrestricted use by the neuroimaging community at 
https://github.com/HumanBrainED/NHP-BrainExtraction.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neuroimage.2021.118001.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 October 21.

Published in final edited form as:
Neuroimage. 2021 July 15; 235: 118001. doi:10.1016/j.neuroimage.2021.118001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
https://github.com/HumanBrainED/NHP-BrainExtraction


kDepartment of Psychiatry, University of Wisconsin School of Medicine and Public Health, 6001 
Research Park Blvd, Madison, WI 53719, USA

lDepartments of Psychiatry and Neurology, Columbia University College of Physicians and 
Surgeons, New York, NY 10032, USA

mDepartment of Diagnostic Medicine, The University of Texas at Austin Dell Medical School, USA

nDepartment of Psychology, and the California National Primate Research Center, University of 
California, Davis, One Shields Ave., Davis, CA 95616, USA

oLaboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, USA

Abstract

Brain extraction (a.k.a. skull stripping) is a fundamental step in the neuroimaging pipeline as it 

can affect the accuracy of downstream preprocess such as image registration, tissue classification, 

etc. Most brain extraction tools have been designed for and applied to human data and are often 

challenged by non-human primates (NHP) data. Amongst recent attempts to improve performance 

on NHP data, deep learning models appear to outperform the traditional tools. However, given 

the minimal sample size of most NHP studies and notable variations in data quality, the deep 

learning models are very rarely applied to multi-site samples in NHP imaging. To overcome this 

challenge, we used a transfer-learning framework that leverages a large human imaging dataset 

to pretrain a convolutional neural network (i.e. U-Net Model), and then transferred this to NHP 

data using a small NHP training sample. The resulting transfer-learning model converged faster 

and achieved more accurate performance than a similar U-Net Model trained exclusively on NHP 

samples. We improved the generalizability of the model by upgrading the transfer-learned model 

using additional training datasets from multiple research sites in the Primate Data-Exchange 

(PRIME-DE) consortium. Our final model outperformed brain extraction routines from popular 

MRI packages (AFNI, FSL, and FreeSurfer) across a heterogeneous sample from multiple 

sites in the PRIME-DE with less computational cost (20 s~10 min). We also demonstrated the 

transfer-learning process enables the macaque model to be updated for use with scans from 

chimpanzees, marmosets, and other mammals (e.g. pig). Our model, code, and the skull-stripped 

mask repository of 136 macaque monkeys are publicly available for unrestricted use by the 

neuroimaging community at https://github.com/HumanBrainED/NHP-BrainExtraction.

1. Introduction

As the recent explosion of MRI data sharing in Nonhuman Primate (NHP) scales the 

amounts and diversity of data available for NHP imaging studies, researchers are having to 

overcome key challenges in pre-processing, which will otherwise slow the pace of progress 

(Autio et al. 2020; Milham et al. 2018; Messinger et al., 2021; Lepage et al. 2021). Among 

them is one of the fundamental preprocessing steps - brain extraction (also referred to as 

skull-stripping) (Seidlitz et al., 2018; Tasserie et al., 2020; Zhao et al., 2018). In both human 

and NHP MRI pipelines, brain extraction is often among the first early preprocessing steps 

(Esteban et al., 2019; Glasser et al., 2013; Seidlitz et al., 2018; Tasserie et al., 2020; Xu 

et al., 2015). By removing the non-brain tissue, brain extraction dramatically improves the 

accuracy of later steps, such as anatomy-based brain registration, pial surface reconstruction, 
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and cross-modality coregistration (e.g., functional MRI, diffusion MRI) (Autio et al. 2020; 

Seidlitz et al. 2018; Acosta-Cabronero et al. 2008; Lepage et al. 2021). In humans, 

automated brain extraction tools have been developed (e.g., the Brain Extraction Tool [BET] 

in FSL, 3dSkullStrip in AFNI, the Hybrid Watershed Algorithm [HWA] in FreeSurfer, etc.) 

and easily inserted into a diversity of preprocessing pipelines (e.g. Human Connectome 

Project [HCP], fMRIPrep, Configurable Pipeline for the Analysis of Connectomes [C-PAC], 

Connectome Computational System [CCS], Data Processing & Analysis for Brain Imaging 

[DPABI]) (Cox, 1996; Craddock et al., 2013; Fischl, 2012; Glasser et al., 2013; Jenkinson 

et al., 2012; Ségonne et al., 2004; Xu et al., 2015; Yan et al., 2016). However, adaption 

for macaque brain extraction is significantly more challenging, as the data are often noisy 

due to the smaller brain and voxel sizes involved. The low signal-to-noise ratio (SNR) 

and strong inhomogeneity of image intensity compromise intensity-based brain extraction 

approaches, necessitating parameter customization to fit the macaque data (Messinger et al., 

2021; Milham et al., 2018). For instance, a new option ‘-monkey’ has been developed to 

customize AFNI’s widely-used 3dSkullStrip function, which improves its performance for 

NHP data. Yet, the results are still mixed across datasets and often require further manual 

corrections (Fig. 1).

In recent years, registration-based label transferring (i.e. template-driven) approaches have 

been proposed as a potential solution for NHP brain extraction (Jung et al., 2020; Lohmeier 

et al., 2019; Seidlitz et al., 2018; Tasserie et al., 2020). These approaches start by registering 

an individual’s anatomical image to the template in order to establish the deformation 

between the subject-specific head and template head. Once obtained, the transform is used 

to bring a template-based brain mask back to the individual space, where it can be used 

to extract the individual brain. The performance of such approaches heavily relies on the 

accuracy of the transformation and whether the template is representative of the individual 

data. As such, factors that can compromise the appropriateness or representativeness of the 

template for the specific individual dataset can decrease the utility of registration-based 

approaches. Examples where a template may not be representative include variations in 

macaque species (i.e. M. mulatta, M. fascicularis, etc.) and other NHPs species (e.g. 

macaque, marmoset, etc.), the field of view, age (e.g. infant, juvenile, aging), sex (e.g. 

thicker muscular tissue for male adult macaque), and surgical implants (e.g. with head­

holder implants, or anatomical lesions). This issue might be further intensified for data from 

multiple study centers with different scan acquisitions and samples (Fig. 1). In addition, 

non-linear registration (e.g. ANTs, 3dQwarp) for high-resolution images in brain extraction 

step is relatively time-consuming (e.g. over hours) and limits the computational efficiency of 

NHP pipelines.

Recognizing the continued challenges of brain extraction, researchers in human literature 

have begun to leverage deep learning models as a potential solution. In humans, a growing 

number of studies have demonstrated the ability of convolutional neural network (CNN) 

models for brain extraction, as well as tissue segmentation (Henschel et al., 2020; Lyksborg 

et al., 2015; Rehman et al., 2018; Roy et al., 2018a; Yogananda et al., 2019). Across studies, 

training and validation datasets in humans have included hundreds, and in some cases, even 

thousands of datasets, to ensure accurate performance and avoid overfitting. Once trained, 

the models have proven to be able to perform highly accurate extraction for new datasets 
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in a matter of seconds. With rare exceptions, the NHP field does not possess datasets close 

to the multitudes used for training in humans. A recent study did, however, successfully 

implemented a CNN model (i.e. Bayesian SegNet) for brain extraction using a relatively 

smaller sample in macaques collected at a single site (N=50), suggesting that such training 

sets may not need to be as large as expected based upon these preliminary human studies 

(Zhao et al., 2018). However, the large majority of NHP studies use notably smaller sample 

sizes (i.e., 2–10). While combining data from multiple studies could be a solution, it is 

important to note the NHP literature tends to have substantially greater variability in imaging 

protocols than its human counterpart.

The present work attempts to overcome the challenges at hand for NHP imaging by 

developing a generalizable macaque brain extraction model that can handle data from 

previously untrained protocols/sites with high accuracy. To accomplish this, we leveraged 

a transfer learning U-NET strategy, which explicitly aims to train a model for one purpose, 

and then extended its utility to related problems. In the present case, we trained our model 

on a human sample (n = 197), and then treated a non-human sample (n = 2 for six sites) 

as the transfer dataset - a strategy that exploits the similarity of human and non-human 

brain structure. Upon successful demonstration of the ability to transfer between species, 

we then evaluated the transfer of the updated model to untrained sites in the PRIMatE 

Data Exchange. Finally, we improved the generalizability of our model by adding a single 

macaque sample from each of the additional 7 sites (for a total of N=19). We released 

our pre-trained model, code, and the brain masks outcomes via the PRIMatE Resource 

Exchange (PRIME-RE) consortium (Messinger et al., 2021; Milham et al., 2018).

2. Methods

2.1. Human sample

We made use of an open available human brain extraction sample as an initial good-standard 

training dataset (Puccio et al., 2016). Data were collected as a part of the Enhanced 

Rockland Sample Neurofeedback Study (N=197, 77 female, age=21–45) (McDonald et 

al., 2017). Anatomical images data were acquired from a 3T Siemens Trio scanner using 

a 12 channel head matrix (T1-weighted 3D-MPRAGE sequence, FOV=256 × 256 mm2, 

TR=2600 ms, TE=3.02 ms, TI=900 ms, Flip angle=8°, 192 sagittal slices, resolution=1 × 

1 × 1 mm3 ). T1w images were skull-stripped using a semi-automatic iterative procedure 

that involved skull-stripping all of the data using BEaST (brain extraction based on nonlocal 

segmentation technique) (Eskildsen et al., 2012) and manually correcting the worst results. 

Corrected brain masks were added into the BEaST library and the procedure was repeated 

until the process converged. The results of this procedure underwent an additional manual 

inspection and correction procedure to identify and fix any remaining errors.

2.2. Macaque sample

The MRI macaque data used in the present study are publicly available from the recent 

NHP data-sharing consortium – the non-human PRIMate Data-Exchange (PRIME-DE) 

(Milham et al. 2018), which includes 136 macaque monkeys from 20 laboratories. We 

selected one anatomical T1w image per macaque in our analyses. The detailed description 
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of the data acquisition of the magnetization-prepared rapid gradient echo (MPRAGE) 

image for each site was described in the prior study and PRIME-DE website (https://

fcon_1000.projects.nitrc.org/indi/indiPRIME.html, Milham et al., 2018). As the sample size 

is relatively small in most of the sites (N≤6 for 13 out of 20 sites), we selected six 

sites which have no less than eight macaque monkeys collected as the first dataset pool 

for manual edits, model training, and testing (East China Normal University Chen [ecnu­

chen], Institute of Neuroscience [ion], Newcastle University Medical School [newcastle], 

University of Oxford [oxford], Stem Cell and Brain Research Institute (sbri), and the 

University of California, Davis [ucdavis]). The details of the sample and MRI acquisition 

are specified in Milham et al ((Milham et al., 2018), Table 1). In total, eight macaque 

monkeys per site were selected to create the manually-edited ‘ground truth’ dataset to train 

and evaluate our model (Macaque Dataset I, N=48). To optimize the generalizability of our 

model to other sites, we also manually edited an additional seven macaques from seven sites 

(one per site: East China Normal University Kwok [ecnu-k], Lyon Neuroscience Research 

Center (lyon), Mount Sinai School of Medicine - Siemens scanner [mountsinai-S], National 

Institute of Mental Health - Messinger [nimh1], Netherlands Institute for Neuroscience 

[nin], and Rockefeller University [rockefeller]) to create Macaque Dataset II (N=7). The 

rest of the PRIME-DE macaques across all 20 sites were used as an additional hold-out 

testing dataset (N=81). Of note, our main model was built based on the MPRAGE data. 

We further made use of the magnetization‐prepared two rapid acquisition gradient echoes 

(MP2RAGE) images from site-UWO-MP2RAGE (N=3) to extend our model to facilitate the 

brain extraction for MP2RAGE data. All animal procedures were conducted in compliance 

with the animal care and use policies of the institution where the data was collected.

2.3. Preprocessing

To improve the quality and homogeneity of input data across different sites, a minimal 

preprocessing was carried out for all anatomical images to remove the salt-and-pepper 

noise and correct the intensity bias. Specifically, we first re-conformed all T1w images into 

RPI orientation and applied a spatially adaptive non-local means filtering to remove the 

‘salt-and-pepper’ noise (DenoiseImage in ANTs) (Buades et al., 2011). Next, we performed 

the bias field correction to normalize image intensities (N4BiasFieldCorrection in ANTs) 

(Tustison et al., 2010). The preprocessed images were served as inputs for all the brain 

extraction approaches.

2.4. Traditional methods and manually edited masks

To compare our deep learning models with state-of-the-art methods for brain extraction, we 

employed five widely-used skull stripping pipelines implemented in commonly used MRI 

packages (AFNI, ANTs, FSL, and FreeSurfer) (Avants et al., 2009; Cox, 1996; Fischl, 2012; 

Jenkinson et al., 2012). Specifically, we tested three intensity-based approaches (FSL BET, 

FreeSurfer HWA, and AFNI 3dSkullStrip) and two template-driven pipelines (Flirt+ANTS 

and AFNI @animal_warper) (Jung et al., 2020; Seidlitz et al., 2018; Tustison et al., 2020). 

The command and parameters of intensity-based approaches were selected based on the 

experiments and suggestions from the prior studies as follows (Xu et al., 2019; Zhao et al., 

2018). 1) FSL ‘bet’ command with a smaller fractional intensity threshold (-f 0.3, denoted as 

“FSL”) and 2) with the vertical gradient in fractional intensity threshold and the head radius 
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setting (-f 0.3 -g −0.5 -r 35, denoted as “FSL+”), 3) FreeSurfer ‘mri_watershed’ command 

with default settings and 4) using atlas information and brain radius setting (30 mm), 5) 

AFNI ‘3dSkullStrip’ command with NHP specific option ‘-monkey’ and shrink factor = 

0.5. Template-driven approaches in both Flirt+ANTs and AFNI @animal_warper pipelines 

were performed by first applying a linear registration to transform the individual head to 

the template head, followed by nonlinear registration. Next, the template brain mask was 

transformed back into the individual space to obtain the individual brain mask. Specifically, 

the Flirt+ANTs pipeline uses ‘flirt’ and symmetric diffeomorphic image registration (SyN) 

(Avants et al., 2008) for linear and nonlinear registration. Of note, we used FSL ‘flirt’ rather 

than ANTS linear registration because ‘flirt’ is faster and performed better in our initial 

tests on NHP samples. AFNI @animal_warper uses 3dAllineate and 3dQwarp to compute 

affine and nonlinear alignments. The same NIMH Macaque Template (NMT) was used in 

the Flirt+ANTs and AFNI @animal_warper pipelines (Jung et al., 2020; Seidlitz et al., 

2018). The details of the parameters and the approximate processing time are shown in Table 

S1. The Macaque Dataset I and II were manually edited by well-trained experts (J.W.C, 

A.K, and T.X.) using the best output from the traditional approaches as initial masks in 

ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php)(Yushkevich et al., 2006).

2.5. Train, update & evaluation workflow for deep learning models

2.5.1. Overview—Fig. 2 illustrates the overall analytic flow chart of the present study. 

First, we established a skull-stripping model using the human dataset, aiming to provide an 

initial pre-trained model to facilitate the transfer-learning from humans to macaques. The 

human NKI-RS dataset (N=197) was split into a training set (N=190) and a validation set 

(N=7). We used the training set to train the U-Net model for 10 epochs (i.e. the full training 

dataset passed through the complete neural network 10 times) and selected the best epoch as 

the human model based on the performance (i.e. dice coefficient) in the validating set. Next, 

we transferred the pre-trained human model to build the macaque model using Macaque 

Dataset I. Specifically, for each of six sites, we randomly selected 2 macaque monkeys as 

the training set, 1 macaque as the validation set and 5 macaques as the testing set. We 

also used all macaques across six sites in Macaque Dataset I to create the merged training 

(N=12), validating (N=6), and testing (N=30) sets.

Transfer-learning from human to macaque was carried out for each site as well as for the 

merged data. We calculated 40 transfer-training epochs and selected the epoch that had the 

best performance in the validation set as the transfer-learning model for each site and the 

merged samples (refer to the U-Net T model). We also created macaque models that were 

trained only on the macaque data using the same training (N=12) and validation (N=6) 

data for each of the six sites and the merged samples (refer to the non-transfer-learning 

model, i.e. U-Net NoT model). We evaluated and compared the performance between the 

site-specific T model and the NoT model in testing sets. We also compared the U-Net T and 

NoT model to the traditional pipelines using the held-out test set from Macaque Dataset I. 

To improve the generalizability of the U-Net model to fit more macaque data from other 

sites, we further upgraded the U-Net transfer-learning model using both Macaque Dataset I 

(N=12) & II (N=7) to generate the final generalized model (referred to as generalized U-Net 

12+7 model). To evaluate the model performance, we applied the U-Net transfer-learning 
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model, generalized 12+7 model, and traditional pipelines to all the T1-weighted images 

from PRIME-DE (136 macaques). Expert ratings (details in the Model Evaluation section) 

were conducted to evaluate whether brain extraction was successful.

2.5.2. Neural network model (U-Net)—We used a convolutional neural network 

(CNN) model, U-Net (Ronneberger et al., 2015) for brain extraction. The model was built 

using an open resource machine learning package (PyTorch: https://pytorch.org). Briefly, the 

preprocessed 3D T1w images were first resampled into slices along the axial, sagittal, and 

coronal planes. The U-Net model predicts the brain tissue in each slice and then merges all 

slices to obtain a 3D brain mask. Here, we focused on the architecture of the U-Net model 

(Fig. S1) and illustrated the details of how the U-Net model identifies the whole brain tissue 

in the training, validation, and testing processes in the next section.

As shown in Fig. S1, the U-Net model consists of a contraction (i.e. encoding) and an 

expansion (i.e. decoding) path; each includes five convolution units (Ronneberger et al., 

2015). Of note, for a given slice resampled from the T1 images, the input of the U-Net 

model also included its neighboring slices (i.e. 3 slices in total) as an input (dimension: 

3 × 256 × 256 blocks). Next, for each convolution unit, two 3 × 3 convolution layers are 

built and each is followed by a batch normalization and a leaky rectified linear (ReLU) 

operation (Fig. S1, blue arrow). In the encoding step, a 2 × 2 max pooling with stride 2 

was adopted for down-sampling data from the upper unit to the lower unit. We used 16 

feature channels in the initial unit, and doubled every unit. The expansive path consists 

of four up-convolution units. For each up-convolution unit, a 2 × 2 up-convolution and 

ReLU operation were applied to the lower unit to yield the feature map for the current 

unit. This feature map was then concatenated with the feature map at the same level in the 

contracting path to generate the combined feature map. Similar 3 × 3 convolution layers 

with batch normalization and ReLU operation were then performed on the feature maps 

at each up-convolution unit. Next, we employed a 1 × 1 convolution layer at the upper 

un-convolution unit to map the final feature maps to a two-classes map. Finally, a Soft-Max 

layer was used to obtain the probability map for brain tissue. Of note, the initial weights 

of the convolution and up-convolution layers were randomly selected using a Gaussian 

distribution N(0, 0.2), and the initial bias of layers was set to 0. For the transfer-learning and 

model-upgrading model, the parameters from the pre-trained model were used in the initial 

setting.

2.5.3. Model training and validating procedure—In Figure S2, we illustrated the 

training procedure of how 3D T1w data was processed for the U-Net model. First, we 

normalized the intensity of the preprocessed T1w image in the range 0 to 1 across all voxels. 

We then resampled the T1w volume to a 3D intensity matrix where the highest sampled 

dimension of the T1w volume was forced to be rescaled to 256. In the example shown in 

Fig. S2, the initial T1w matrix of 176 × 176 × 96 was rescaled to a 256 × 256 × 140 

matrix. Next, for each slice along the axial, sagittal, and coronal direction, we generated a 

3-slice block; the slice and its two neighboring slices. As a result, we obtained 254, 254, 

and 138 blocks for axial, coronal, and sagittal directions respectively. Next, we conformed 

each of the 3-slice blocks into a 3 × 256 × 256 matrix. When the dimension of the slice 
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plane was less than 256, we filled the matrix with zeros. In total, 646 conformed blocks 

were generated for the T1w image. Similarly, we processed the manually edited brain mask 

of the T1w image and generated 646 corresponding blocks. After that, we used the above 

U-Net model to estimate the probability of brain tissue for each T1w block and calculated 

the cross-entropy (PyTorch function: CrossEntropyLoss) between the probability map and 

the ‘ground truth’ map (Ketkar, 2017) as the model cost. A stochastic optimization (learning 

rate=0.0001, batch size=20) was then used for backpropagation (Kingma and Ba, 2014).

To evaluate and select the model from the training epochs, we used the probability map 

generated from the U-Net model to create the final predicted brain mask for each epoch, 

and then examined the Dice coefficient (see equation in Section 2.6 below) between the 

predicted mask and the ‘ground truth’ mask (Fig. S3). Specifically, we processed the 

validation T1w images into 3-slices blocks following the above procedure. Next, we used 

the U-Net model at each training epoch to estimate the probability map for each block. All 

the probability maps (646 blocks) were then combined along the axial, sagittal, and coronal 

direction and yielded an averaged 3D probability matrix (256 × 256 × 256). After that, we 

rescaled and cropped the matrix back to the original voxel dimension to create a probability 

volume for the given T1w image. Finally, we thresholded (>0.5) this probability volume to 

obtain the predicted brain mask. The Dice coefficient between the predicted mask and the 

‘ground truth’ mask was computed for each epoch during training. The epoch which showed 

the highest Dice coefficient was then selected as our final model.

2.6. Model evaluation

We carried out a quantitative examination in the testing set of Macaque Dataset I and 

evaluated the degree to which methods provided more similar brain masks as compared 

to the manually edited ‘ground truth’. Specifically, we calculated Dice coefficients (Dice) 

(Sørensen, 1948) between the predicted mask and the manually edited ‘ground truth’ using 

the following equation:

Dice = 2 P ∩ T
P + T ,

where |…| represents the total number of voxels in a mask and P and T are the predicted 

and ‘ground truth’ masks, respectively. Dice equals 1 when the predicted mask and ‘ground 

truth’ mask are perfectly overlapped. In addition, we also calculated the voxel-wise false­

positive (FP), and false-negative (FN) rate to examine where the predicted mask falsely 

includes non-brain tissue (higher FP) or misses any brain tissue (higher FN). For each voxel 

in a given macaque, we tested whether the voxel is falsely assigned as brain tissue (FP=1) 

or falsely assigned as non-brain tissue (FN=1) in individual space. Next, we transferred the 

individual FP and FN map to the NMT space by applying affine and warp transforms. Linear 

affine here was created by aligning the manually skull-stripped brain to the NMT brain 

(‘flirt’) and nonlinear warp was generated by registering each individual’s head to the NMT 

head (‘fnirt’). The FP and FN maps were averaged across macaques for each brain extraction 

approach in the NMT space.
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We also employed a qualitative evaluation to compare the success rate across different brain 

extraction approaches for PRIME-DE data without the ‘ground truth’. Three experts with 

rich experience in imaging quality control visually rated the brain masks (J.W.C., X.L., and 

T.X.). First, each expert independently reviewed all the images and rated them with four 

grades, i.e. ‘good’, ‘fair’ (the brain tissue was identified with a slightly inaccurate prediction 

at the edge), ‘poor’ (i.e. most of the brain regions are identified but with significant errors, 

in particular missing brain tissue at the edge), and ‘bad’. ‘Good’ and ‘fair’ rating were 

considered as a success while ‘poor’ and ‘bad’ scores were recognized as failures. The brain 

masks with inconsistent ratings (including good vs. fair, fair vs. poor, and poor vs. bad) 

among experts were reviewed and discussed for a final consensus rating.

3. Results

3.1. The convergence of human U-net model

To acquire a pre-trained model for macaque samples, we first trained a U-Net model using 

the human samples. Fig. S4 demonstrates the sum of loss on the training set and the 

mean Dice coefficients across human participants on the validation set for each epoch. 

After the first epoch, the loss decreased steeply and the mean Dice coefficient reached 

above 0.985. After that, the mean Dice coefficient gradually improved, showing its highest 

value (0.9916±0.0012) after the 9th epoch. To avoid over-fitting the human samples for the 

subsequent macaque training, we only carried out 10 epochs and selected the model after the 

9th epoch as the pre-trained model for transfer-learning to the macaque samples.

3.2. Comparison between models with and without transfer-learning

We first evaluated the site-specific models with and without transfer-learning on Macaque 

Dataset I. For each site and for the merged sample across the six sites, the loss converged 

faster for the transfer-learning model than the model without transfer-learning (Fig. 3, left); 

the loss had nearly reached its minimum after 2 epochs. In addition, the Dice coefficients 

were more stable for transfer-learning models in the validation sets (Fig. 3, center). Of note, 

the mean Dice coefficients slowly dropped after 20 epochs in the validation set across three 

sites (i.e. ecnuchen, ion, and sbri), which may reflect overfitting of the model selection 

on small training samples (Fig. 3, center). Nevertheless, the mean Dice coefficients still 

remained stable in the testing set after the first epoch (Fig. 3, right). In addition, compared to 

the model trained solely on macaque samples, the transfer-learning model also showed lower 

variation across testing macaques, suggesting its potential generalizability across macaque 

samples (Fig. 3, right).

We also computed and evaluated the model with and without transfer-learning based on 

the merged training samples across six sites (N=12). Similarly, the transfer-learning model 

(referred to as U-Net T12 model) showed lower loss and higher Dice coefficients across 

40 epochs than the model without transfer-learning (Fig. 3, last row); its best performance 

epoch (i.e. the 37th epoch) was selected as our macaque transfer-learning model (i.e. U-Net 

T12).
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3.3. Comparison between the U-net model and traditional approaches

Recognizing that the model with transfer-learning is superior to the one without, we then 

updated the transfer-learning model (i.e. U-Net T12) using Macaque Dataset I (N=12) & 

II (N=7) to generate our final generalized model (U-Net 12+7 model). Here, we evaluated 

the performance of the U-Net T12 model and the U-Net 12+7 model in comparison to 

other traditional brain extraction approaches. Brain masks from the two U-Net models 

showed significantly higher Dice coefficients than those from the traditional pipelines (Fig. 

4, F=30.164, p<10−29 repeated ANOVA, all post-hoc p<0.05). Skull-stripping using the 

U-Net models was successful (Dice>0.95) for all of the testing macaques (N=30) across six 

sites. Notably, the U-Net 12+7 model showed relatively higher Dice coefficients than the 

U-Net T12 model (Fig. 4, paired-t=3.62, p=0.001), though the additional training samples 

used in U-Net 12+7 model were not included in the sites where the testing samples were 

selected from. This indicated the generalizability of model-upgrading across sites. At the 

voxel level, both the U-Net T12 and ‘12+7’ models exhibited fewer false negatives and false 

positives than traditional pipelines (Fig. 5). The U-Net T12 model showed slightly more 

false positives than false negatives, which indicated that the model tends to include a few 

non-brain voxels on the edge of the brain mask rather than miss the brain tissue. Overall, 

these results demonstrated the feasibility of transfer-learning and model-upgrading using 

small training samples.

Comparing amongst the traditional approaches, the template-driven approaches (i.e. AFNI 

@animal_warper and Flirt+ANTS), and AFNI 3dSkullStrip with parameters customized 

for NHP data (3dSkullStrip-monkey) showed better performance than FSL and FreeSurfer 

(Figs. 4–5). FSL performed better with the radius setting (Fig 4–5, FSL vs FSL+), though 

still not particularly accurately (Dice<0.928). Both template-driven approaches appear to 

be more conservative and have missed the brain tissue (low false positives and high false 

negatives). AFNI 3dSkullStrip missed identifying the brain in the superior regions (higher 

false negatives on the top) and falsely included non-brain voxels in the bottom (Fig. 5).

3.4. Generalizability of U-net model and skull-stripping PRIME-DE samples

To evaluate the generalizability of the U-Net model, we applied the U-Net T12 and 12+7 

models to all the other macaque samples (i.e. T1w images) contributed to PRIME-DE from 

differing research sites. The results of brain masks were visually reviewed by three experts 

and rated into four grades (good, fair, poor, and bad). Good and fair ratings were considered 

to be successes, while poor and bad ratings were failures. We also used the traditional 

pipelines and similarly rated their brain mask results. The performance of different pipelines 

for each macaque is shown on github repository: https://github.com/HumanBrainED/NHP­

BrainExtraction. Fig. 6 shows the proportion of macaques with good, fair, poor, and bad 

skull-stripping masks for each of the 20 sites, for each of the five approaches. Again, the 

U-Net models outperformed the traditional approaches for most sites. In particular, the 

final U-Net 12+7 model showed the best performance across macaque samples (success 

rate=90.4%). All macaque samples (N=123) were successfully skull-stripped across the 

twelve sites with thirteen exceptions. This result demonstrated the generalizability of the 

U-Net 12+7 model across sites. Of note, all crab-eating macaques (M. fascicularis, N=12) 
were successfully skull-stripped using the U-Net 12+7 model, though the training samples 
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only contained the rhesus macaques (M. mulatta). No significant difference was observed 

in age and sex between the successes sand failures. In addition, four out of five sites with 

anisotropic data also succeeded (sbri: 0.6 × 1.2 × 0.6 mm, nki: 0.50 × 0.55 × 0.55 mm, ecnu 

and ecnu-chen: 0.75 × 0.75 × 0.8 mm75 × 0.75 × 0.8mm, NIMH: 1.5 × 0.5 × 0.5 mm). 

These findings suggested the generalizability and relative robustness of the U-Net model 

across macaque species, age, sex and whether the voxels were anisotropic or isotropic.

Among intensity-based approaches, AFNI 3dSkullstrip showed better performance 

(successful rate=10.3%) than FSL and FreeSurfer. FSL and FreeSurfer default pipelines 

failed in almost all the cases except FSL with customized options (successful rate=3.7%). In 

particular, massively incorrect results were observed (see visual inspection figures: https://

github.com/HumanBrainED/NHP-BrainExtraction). This is because the intensity-based 

approaches heavily depend on the data quality. Specifically, these approaches perform brain 

extraction by identifying the center of the brain and expand the brain outline outward till the 

intensity drops (at the cerebrospinal fluid [CSF] or skull). As such, it is crucial to set the 

brain/head radius as the NHP has a smaller brain size than the human, recognize the center 

of the brain for the input image, and have a sufficient intensity contrast between brain and 

CSF/skull to identify the brain boundary. However, as shown in Fig. 1, those conditions in 

NHP data are usually not satisfied. Thus, most of the samples failed with FSL, FreeSurfer, or 

even AFNI 3dSkullstrip with ‘-monkey’ option.

We also noticed that template-driven approaches performed well in some cases but 

failed in others (success rate: AFNI @animal_warper=52.9%, Flirt+ANTS=38.2%). Visual 

inspection of the intermediate outputs from AFNI @animal_warper and Flirt+ANTS 

pipelines showed that all successful cases had the first linear alignment of the individual’s 

head to the template head somewhat close. The failures mostly occurred in the first linear 

registration step; 79.4% of 63 skull-stripping failures using @animal_warper and 89.3% of 

the 84 failures using the Flirt+ANTS pipeline had failed in the first linear registration step. 

We also noticed that, for some cases, the brain mask generated by AFNI @animal_warper 

had a straight cut-off at the top of the brain (Fig.(Fig S5A). This might be caused by the 

displaced center of the brain within these T1w image. As a first step, @animal_warper 

aligns the centers of the input and template volumes. If the brain is far from the center of 

the image, this first pass at alignment with the template may be too far off for subsequent 

alignment steps to succeed. We found that re-centering the head to the center of the image 

could fix the straight cut-offs, though did not necessarily produce a good brain mask (Fig. 

S5B). We further cropped the neck regions by zeroing out the bottom slices using the U-Net 

output as a prior. Specifically, we zeroed the bottom k slices along the z-axis. Here k was 

determined by N-m-p, where N = the total number of slices of the image along the z-axis, 

m = the total number of non-zeros slices of the U-Net mask, p = the number of slides 

from the top slice of the image to the first non-zero slice of U-Net mask along the z-axis. 

After the recentering and cropping, we found that @animal_warper turned most of the failed 

cases (66.7% of 63 failures) into successes (Fig S5C). For some cases, however, inaccuracies 

remained (Fig. S5D).

U-Net successfully skull-stripped 123 out of 136 macaques. Among the 13 failures in 

the U-Net 12+7 model, 8 macaques failed because their T1w images were substantially 
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different from the training samples (e.g., highly inhomogeneous intensity, very different 

field of view, Fig. S6A). For the other 5 failed cases, the U-Net 12+7 model still enabled 

identifying most of the brain with only minor inaccuracies at the edge of the brain (Fig. 

S6A). When we used the U-Net output mask to perform an initial brain extraction and 

estimated the affine transformation from the initial skull-stripped brain to the template brain, 

the template-driven approaches (AFNI @animal_warper and ANTS) turned seven failed 

cases into successes (Fig S6C). As the performance of the deep-learning approach heavily 

depends on the training set, we also updated the U-Net 12+7 model using site-specific 

training data and showed the improvement across macaques (Fig S6B). We have selected 

the best of the successful brain masks (Fig S6D) for each macaque and shared them on 

PRIME-RE (Messinger et al., 2021).

3.5. Application of U-net model-upgrading for an external dataset and MP2RAGE images

Here we used a large external dataset (N=454, UW-Madison dataset with manually drawn 

whole-brain masks, details described in previous studies) to evaluate the utility of our U-Net 

-based approach (Fox et al., 2018, 2015; Oler et al., 2010). First, we directly applied the 

model-prediction module using our U-Net 12+7 model to extract the brain masks for 40 

macaques and found relatively good results (Dice=0.923+/−0.025). We further used the 

U-Net 12+7 model as the pre-trained model and upgraded the U-Net model on these 40 

macaques for 10 epochs. This procedure took about 90 min. The upgraded model showed 

substantial improvement and successfully skull-stripped all remaining macaques (N=414, 

All Dice>0.95, Mean=0.977±0.005). We further challenged our U-Net model-upgrading 

module with MP2RAGE images collected from the UWO site (N=8) in PRIME-DE, which 

have different intensity profiles with opposite contrast in gray matter and white matter (Fig. 

S7). By upgrading the pre-trained U-Net 12+7 model with three MP2RAGE brain masks, 

the U-Net model enabled skull-stripping on the rest of the hold out MP2RAGE images 

(N=5).

3.6. Applications of U-net transfer-learning model to chimpanzee, marmoset and pig 
samples

To demonstrate the feasibility of applying our U-Net tool in other primates, and other 

mammals, we included chimpanzee data (N=1) from a repository of previously collected 

scans (the National Chimpanzee Brain Resource; https://www.chimpanzeebrain.org), 

the common marmoset template data (N=1) from the Riken marmoset atlas (https://

brainatlas.brain.riken.jp/marmoset_html), a common marmoset dataset (N=5) from the 

coauthor SS, and a pig dataset (N=5) (Benn et al., 2020). We directly applied the U-Net 

12+7 model to the chimpanzee data (Fig. 7A). Interestingly, the U-Net 12+7 macaque model 

performed relatively well in chimpanzees. We also applied the U-Net 12+7 macaque model 

directly to the marmoset data. The result was fairly good for the template data (Fig. 7B) 

but failed in the individual data with highly site-specific inhomogeneous noise (Fig. 7C). 

We further updated our 12+7 macaque model using one manually edited marmoset. The 

updated model succeeded in the rest of the 4 marmosets from the same site (Fig. 7D). We 

also tested whether our U-Net tool is capable of transferring the macaque model to other 

mammals. With the addition of training data from 3 pigs, the transferred model achieved a 

Dice coefficient ≥ 0.93 in the remaining 2 pigs (Fig. 7E).
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4. Discussion

The present work demonstrated the feasibility of developing a generalizable brain extraction 

model for NHP imaging through transfer learning. Central to the success of our effort was 

our leveraging of human data as a base training set, upon which additional learning for 

NHP and site-related variations could be readily achieved. We employed the heterogenous, 

multi-site PRIME-DE resource to evaluate the effectiveness of our framework, finding that 

the transfer-learning U-Net model identified macaque brain tissue with higher accuracy than 

traditional methods and also proved more generalizable across data collections. Notably, the 

transfer-learning U-Net model provides a notably faster solution (approximately 1–10 min) 

than the next best performing algorithms, which tend to rely on template-based strategies 

and require over an hour. We have released our model and code, including the utilities 

for skull-stripping, model-training, transfer-learning, as well as model-updating modules 

(https://github.com/HumanBrainED/NHP-BrainExtraction). Additionally, we created and 

shared the skull-stripped repository of 136 macaque monkeys to facilitate the large-scale 

macaque MRI imaging for the PRIME-DE and NHP community (Messinger et al., 2021; 

Milham et al., 2018).

A priori, the major roadblocks that one would anticipate for the application of deep learning 

in NHP imaging are the small sample sizes and variations in imaging protocols (Autio et 

al., 2020; Milham et al., 2018). In part, this is a reflection of the experiences of the human 

imaging community, where large sample sizes have been required to accurately segment 

the brain using deep learning (Henschel et al., 2020; Kleesiek et al., 2016). The superiority 

of the transfer learning models in the present work emphasizes the unique advantages 

of transfer-learning in overcoming such challenges for nonhuman primate imaging and 

offers a model that may be considered in future efforts to overcome similar obstacles 

in other imaging populations (e.g., macaques with surgical implants and/or in-dwelling 

electrodes, brain extraction in other species, pathologic models, early development, aging) 

(Pontes-Filho et al., 2019; Roy et al., 2018b; Salehi et al., 2018). The success of the 

transfer-learning model emphasizes the similarity of the general structure of brain tissue in 

both species (e.g. gray matter, white matter) - despite the anatomical differences between 

human and macaque heads (e.g. head size, muscular tissue surrounding the skull, skull 

thickness, etc.) (Yosinski et al., 2014). Aside from accuracy, the transfer-learning model also 

converged faster (leveling off after 2 epochs) and yielded more stable results across epochs, 

even though the pre-trained model was established using a different species. Notably, 

our human-to-macaque model also enables skull-stripping the chimpanzee data though no 

chimpanzee training samples were used. Moreover, the smaller NHP (e.g. marmoset) and 

other mammals (e.g. pig) could also benefit from the transfer-learning model from the 

human-to-macaque and only required adding a small training sample to update the model. 

These findings suggest the utility of transfer-learning in other animal studies and further 

brain tissue segmentation.

The success of transfer learning in the present work may signal the ability to use smaller 

samples than previously employed for human imaging studies (Ghafoorian et al., 2017). 

However, this is not necessarily the case, as this may instead reflect that the folded surface 

of the macaque is much less complex than that of humans. The macaque central sulcus is 
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less meandering on the lateral parietal lobe (Hopkins et al., 2014). There is only one superior 

temporal sulcus in the temporal lobe and two less curved sulci (i.e. rectus, arcuate) in the 

frontal lobe, such that there is a relatively smooth surface edges for brain extraction (Bogart 

et al., 2012; Hopkins, 2018). In addition, such folded and meandering brain morphology is 

substantially more similar across individual macaques than humans (Croxson et al., 2018). 

As such, small training samples suffice for the macaque model compared to the human. 

Future work in the human imaging community would benefit from a systematic examination 

of minimal sample sizes needed for successful training and generalization.

Beyond transfer across species, a key finding of the present work is the ability to improve 

model generalizability across independent imaging sites relative to traditional methods. By 

further upgrading the pre-trained transfer-learning model based on the secondary training 

samples across multiple datasets, the upgraded U-Net model has improved the brain 

extraction performance and showed a higher success rate than the traditional methods 

across multiple sites. Of note, the upgraded model enabled successful skull-stripping of 

datasets acquired from three additional sites that were not included in any training sites. 

This demonstrates the out-of-site generalizability of upgrading the pre-trained U-Net model 

across sites. More impressively, we found that the model-upgrading module offers a solution 

of generalizing the pre-trained model to other modalities (i.e. MP2RAGE), which is usually 

difficult to achieve with traditional methods. These findings highlight the important role of 

pre-trained models in brain extraction for small samples, regardless of site (across or within 

sites), modality (MPRAGE or MP2RAGE), and species (across or within species). Further 

improvement for the user-specific dataset can be achieved by adding small samples (N≥2) 

using our U-Net result as the pre-trained model.

It is worth noting that the U-Net model we used in the current study is a 2D convolutional 

neural network. Although the 3D model usually tends to have higher accuracy (Hwang et 

al., 2019), the 2D model has a smaller network size, much less memory cost, and requires 

less computational time. More importantly, the 2D model is more accessible in general 

computational platforms for users without large amounts of video memory, which can be 

costly. In addition, unlike the single slice 2D model, our 2D model leveraged the local 

interslice features by using each slice and its neighboring slices (i.e. 3 slices in total as 

opposed to just one) as the input image in the first layer. We also resampled the slices 

in axial, sagittal, and coronal planes and combined the predictions from all three planes 

into a final probability map (Lyksborg et al., 2015). By doing so, we effectively tripled the 

number of training slices, which is especially useful for optimizing prediction when training 

sample sizes are limited (i.e. data augmentation technique). Of note, we opted for the U-Net 

model as the U-Net-like methods appear to be preferred for a broad biomedical image 

application across a variety of segmentation designs (e.g. identifying heart, cell, tumor, 

vessel etc.) (Isensee et al., 2021). For further improvement in a specific application, besides 

optimizing the specific architecture of neural networks, adding training data and optimizing 

the preprocessing step (e.g. denoising, bias correction, data harmonization etc.) are still 

suggested. For example, a conditional random field can be considered in the prediction 

layer for further refining the weights in the tissue prediction (Chen et al., 2019; Zhao et 

al., 2018). Beyond improving brain extraction, future efforts may place a greater focus on 

tissue classification (e.g. GM, WM, subcortical structures). Central to such efforts will be 
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the sharing and amassing of manually segmented brain images, to which 3D CNNs can be 

applied.

To promote pipeline development in the NHP field, we have released the skull-stripped 

brain masks, our generalized model, and code via the PRIMate Resource Exchange platform 

(PRIME-RE: https://prime-re.github.io) (Messinger et al., 2021). Researchers can access the 

code and perform the brain extraction on their own macaque datasets. The model-prediction 

for a dataset takes about 20 s on a GTX1070 GPU with 700MB GPU memory or 2–10 

min on a single CPU core. We also included the model-building and model-upgrading 

modules in the code, which has been implemented in a recent version of a Configurable 

Pipeline for the Analysis of Connectomes (C-PAC v1.6: https://github.com/FCP-INDI/C­

PAC/releases/tag/v1.6.0). When the results from the current model need improvement, users 

can upgrade the U-Net using our current generalized model as a pre-trained model and 

expect a stabilized solution after several training epochs (N<10 epochs) without validation 

datasets. The model-upgrading module takes about 1–5 h on a single CPU, or 15–20 

min on a GPU. In addition, we released our manually skull-stripped masks (40 macaques 

across 7 sites) which can be used as ‘gold standards’ for other deep-learning algorithms. 

Researchers are encouraged to manually refine brain masks to further improve the training 

datasets (e.g. NMT v2.0) for deep-learning approaches (Jung et al., 2020; Seidlitz et al., 

2018). Additionally, we included the successful brain mask outputs to facilitate the further 

preprocessing analysis of PRIME-DE data. For a new macaque dataset, we recommend one 

to:

1. Use the U-Net 12+7 model first.

2. If the U-Net 12+7 model fails with minor inaccuracies, consider using the U-Net 

output to perform an initial linear alignment and apply AFNI @animal_warper or 

ANTs.

3. If the U-Net 12+7 model fails with high inaccuracies, use AFNI 

@animal_warper as the alternative. Of note, we recommend to recenter and crop 

the image before applying @animal_warper.

4. If both the U-Net 12+7 modal and template-based approaches fail, manually edit 

a few (N>=1) datasets and update the U-Net model using the 12+7 model as a 

prior.

There are some limitations in our studies. First, although the final U-Net model showed 

better generalizability across research centers than traditional approaches, it is unable to 

accurately skull strip all macaque datasets (success rate: 90.4%). Of note, in failed cases, it 

is possible to use the output of the U-Net model as the initial brain mask to recenter and 

crop the image, and then create a prior linear transformation for traditional template-driven 

approaches - a process that can turn most of the failed cases into successes. Second, the 

U-Net model requires denoising and bias correction using traditional approaches prior to 

the model prediction. Future work may consider leaving this image noise and the bias field 

information in the image during training of the network to simplify the processing steps and 

possibly improve performance.
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5. Conclusion

In the present work, we proposed and evaluated a fast and stable U-Net based pipeline 

for brain extraction that exhibited performance superior to traditional approaches in a 

heterogenous, multisite NHP dataset. We have released the code for brain mask prediction, 

model-building, and model-updating, as well as macaque brain masks of PRIME-DE data. 

We hope this open repository of code and brain masks can promote pipeline development in 

the NHP imaging field and accelerate the pace of investigations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figu. 1. 
Examples of failures using traditional pipelines in NHPs. A) brain mask (red) extends 

beyond brain; B) a highly inhomogeneous T1w image with a mask that both misses parts of 

the brain and extends into the skull; C) an overly expansive mask for a NHP with a surgical 

implant (i.e. head holder); D) an incomplete mask for a brain that is not centered in the 

volume; E-H) other inaccurate masks.
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Fig. 2. Schematic of the U-Net model’s training, transfer-learning, and validation steps.
The datasets are highlighted in square boxes, models are in hexagonal boxes, and training 

and validating process (including transfer-learning) are in round boxes. The human dataset 

(light blue box, middle left) was used to pretrain the U-Net model for transfer learning. 

Macaque Dataset I (yellow box, upper left) included 12 subjects from 6 sites to train 

the model. Another 30 subjects from these sites were used to evaluate versions of this 

model with (T-model; blue angled box) and without (NoT-model; yellow angled box) 

transfer-learning from the human dataset. Macaque Dataset II (red box, lower left) was 

then added to the training set to generate a generalized model (purple angled box) for brain 

extraction on macaque data. Numbers in parentheses are subjects unless otherwise specified.
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Fig. 3. Comparison of skull-stripping performance of the U-Net models with and without 
transfer-learning on Macaque Dataset I.
The models with transfer-learning (blue curve) outperform the one without (orange curve) 

across each of six sites (row 1–6), as well as the merged sample (the last row). The loss 

(i.e. the sum of cross-entropy, first column) between the predicted mask and ground truth 

mask on the train set converges faster for the model with transfer-learning. Similarly, models 

with transfer-learning show higher Dice coefficients with lower variation in the validation 

and testing sets than models without transfer-learning. Of note, one-side error bars (standard 

deviation) were used to avoid dense overlaps between the two models.
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Fig. 4. Performance of the U-Net models and traditional approaches.
The box-plot shows the Dice coefficients in the testing datasets (N=30) of Macaque 

Dataset I across brain extraction approaches including 1) the transfer-learning model (i.e. 

U-Net T12), 2) generalized model (i.e. U-Net 12+7), 3) AFNI 3dSkullStrip command with 

‘-monkey’ option, 4) AFNI @animal_warper pipeline, 5) template-driven FLIRT+ANTS 

pipeline, 6) FreeSurfer HWA approach, 7) FSL BET approach, and 8) FSL BET approach 

with customized options (FSL+).
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Fig. 5. The averaged voxel-wise false-negative and false-positive rates of the U-Net models and 
traditional approaches in the testing datasets of Macaque Dataset I.
The false-negative rate examines where the predicted mask falsely misses the brain tissue 

in the brain (left column) while the false-positive rate examines where the predicted mask 

falsely includes the non-brain tissue. Of note, FSL BET tends to falsely include large 

amounts of non-brain tissue in the brain mask, thus false-negative rates are close to zeros.
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Fig. 6. Expert rating consensus of brain extraction performance across the U-Net models and 
traditional approaches for the PRIME-DE datasets.
The stacked bar plots show the proportion of macaques with good, fair, poor, and bad 

skull-stripping masks on T1w images for each of 20 sites in PRIME-DE. Of note, the FSL 

BET customized pipeline only succeeded for 5 macaques. FreeSurfer HWA and FSL BET 

default pipelines failed to obtain fair/good brain masks, and thus their ratings were not 

displayed. The U-Net 12 + 7 model (the first row) shows the highest rating across pipelines.
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Fig. 7. 
The applications of the U-Net tool in the chimpanzee, marmoset, and pig datasets.
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