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Abstract: As the most abundant cell types in the brain, astrocytes form a tissue-wide signaling
network that is responsible for maintaining brain homeostasis and regulating various brain activities.
Here, we review some of the essential functions that astrocytes perform in supporting neurons,
modulating the immune response, and regulating and maintaining the blood–brain barrier (BBB).
Given their importance in brain health, it follows that astrocyte dysfunction has detrimental effects.
Indeed, dysfunctional astrocytes are implicated in age-related neuropathology and participate in
the onset and progression of neurodegenerative diseases. Here, we review two mechanisms by
which astrocytes mediate neuropathology in the aging brain. First, age-associated blood–brain bar-
rier dysfunction (BBBD) causes the hyperactivation of TGFβ signaling in astrocytes, which elicits a
pro-inflammatory and epileptogenic phenotype. Over time, BBBD-associated astrocyte dysfunction
results in hippocampal and cortical neural hyperexcitability and cognitive deficits. Second, senescent
astrocytes accumulate in the brain with age and exhibit a decreased functional capacity and the
secretion of senescent-associated secretory phenotype (SASP) factors, which contribute to neuroin-
flammation and neurotoxicity. Both BBBD and senescence progressively increase during aging and
are associated with increased risk of neurodegenerative disease, but the relationship between the
two has not yet been established. Thus, we discuss the potential relationship between BBBD, TGFβ
hyperactivation, and senescence with respect to astrocytes in the context of aging and disease and
identify future areas of investigation in the field.
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1. Introduction

Age-onset neurodegenerative disorders such as Alzheimer’s disease (AD) and related
dementias (ADRD) are debilitating conditions that progressively impair the memory,
cognition, and daily functioning of afflicted individuals. As the average lifespan has
increased in developed nations, so has the prevalence of symptomatic AD. An estimated
6.2 million adults aged 65 and older are living with Alzheimer’s dementia, presenting a
substantial societal burden [1]. However, despite decades of research, negligible progress
has been made in developing effective disease-modifying treatments capable of halting or
reversing AD progression and associated cognitive decline. The unsatisfactory clinical trial
outcomes of experimental AD therapies indicate the need for a greater understanding of
the age-related processes that drive neurodegenerative diseases.

In recent years, increased focus has been placed on understanding the role of astrocytes
in driving such neurological disorders. As the most abundant cell type in the adult brain,
astrocytes form a sophisticated tissue-wide signaling network responsible for maintaining
brain homeostasis and regulating various brain activities. Consequently, there are many
potential mechanisms through which astrocytes may contribute to neural deficits in the
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context of advanced age and disease. Two such mechanisms are blood–brain barrier
dysfunction (BBBD) and cellular senescence. Both progressively increase during aging and
are associated with an increased risk of neurodegenerative disease, but the relationship
between the two, if any, has not yet been established. Here, we discuss the causes and
consequences of BBBD and senescence with respect to astrocytes and identify future areas
of investigation in the field.

2. Astrocyte Functions

Astrocytes are stellated glial cells that interface with nearly every functional element
of the brain. They are the most abundant glial cells in the brain and can comprise up
to 50% of the tissue volume in some regions [2]. Their branch-like processes surround
neurons, axons, synapses, and blood vessels, and perform numerous functions that are
essential for brain homeostasis and neural functioning [3]. Therefore, astrocytes play
a pivotal role in preserving brain health, as well as driving pathogenic processes [4,5].
Our understanding of astrocyte functions is continually growing as researchers study
this heterogenous population of cells under different conditions, and it is increasingly
evident that astrocytes perform unique functions, depending on their temporal and regional
location within the brain [6–9]. Here, we briefly review the astrocyte functions related to
neuronal support, immune modulation, and regulation of the blood–brain barrier (BBB), as
three factors that go awry in aging and disease.

2.1. Neuronal Support

At the macrostructural level, astrocytes help form a functional glial network that
extends from the ependyma to the pial surface via gap junctions [10,11]. The perivascular
feet of astrocytes associate with the parenchymal basal lamina to form a plexus called the
glia limitans. This thin, but dense, structure surrounds the pia mater, subpial space, and
perivascular spaces, and plays an essential role in controlling the movement of substances
from the blood or cerebrospinal fluid (CSF) into the brain parenchyma, where neurons are
located [12].

In addition to their role in barrier function, astrocytes maintain the optimal conditions
required for neurotransmission within the cerebral microenvironment. To transmit a signal,
neurotransmitters are released from an axon terminal into the synaptic cleft, where they
interact with post-synaptic receptors. Ending the transmission requires neurotransmitter
uptake from the synaptic cleft by neurons and astrocytes. While neurons primarily uptake
the inhibitory transmitter, gamma-amino butyric acid (GABA), astrocytes are responsible
for the uptake and metabolism of the excitatory amino acid, glutamate [13–15]. Additionally,
the propagation of nerve impulses involves cellular depolarization, which causes local
extracellular changes in ion concentration. Astrocytes contain ion channels, enzymes, and
receptors that enable them to modify extracellular ion concentrations and pH following
depolarization to restore the surrounding milieu to its resting state [16–19]. Astrocytes are
also critical in removing harmful metabolites and waste products from the brain. They
can directly metabolize some soluble waste products, such as ammonia; alternatively, they
collect and shuttle unwanted metabolites and soluble proteins, such as amyloid beta (Aβ)
to the vasculature for elimination via the glymphatic system [15,20,21].

In addition to maintaining the cerebral microenvironment, astrocytes also participate
in neurotransmission and are critical in shaping the complex circuitry of the brain [22].
Astrocytes form tripartite complexes with presynaptic and postsynaptic nerve terminals,
through which they help define synaptic connections. Astrocytes are the major source
of extracellular matrix proteins, cell adhesion molecules, and neurotrophic factors in
the central nervous system (CNS), which are essential in promoting neurite growth and
elongation [23–27]. Additionally, astrocytes physically associate with neuronal synapses
via perisynaptic astrocytic processes (PAPs) that regulate many aspects of their formation,
maturation, and function [22,28]. For example, astrocytes regulate synaptogenesis via the
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secretion of thrombospondins (TSP) [29] and TGFβ1 [30,31], and can specifically control the
maturation and plasticity of certain circuits via the secretion of Hevin and SPARC [32,33].

2.2. Immune Modulation

Compared to other tissues, the brain is a relatively immune-privileged site because it
lacks a significant resident lymphoid population, and the BBB substantially restricts the
entry of circulating immune cells into the CNS. Astrocytes are not immune cells per se,
but are capable of many immune functions, including phagocytosis, antigen presentation,
and facilitating immune-cell trafficking [34,35]. Therefore, astrocytes may produce pro- or
anti-inflammatory cytokines, such as IL-1β, IL-6, TNF, IL-10, IL-27, and TGF-β in response
to disease, stress, or injury [34,36]. Within the CNS, they communicate bidirectionally
with microglia to coordinate defense responses [37]. Along with microglia, astrocytes
phagocytose neuronal material including synapses, apoptotic neurons, and degenerating
axons, as well as toxic proteins, such as Aβ plaques in AD and α-synuclein in Parkinson’s
disease [38,39]. Consistent with their ability to present antigens, astrocytes express major
histocompatibility complex (MHC) antigens that are upregulated in response to disease [40].
For example, high levels of astrocytic MHC-II were found in the brains of patients with
Parkinson’s disease (PD), which correlated with the load of pathological, phosphorylated
alpha synuclein (αSYN) [41]. Notably, perivascular and infiltrated CD4+ T cells were
surrounded by MHC-II expressing astrocytes, indicating astrocyte–T-cell cross-talk in
the PD brain [41]. Astrocytic MHC-I is upregulated during aging, which appears to be
protective, since it is associated with preserved cognitive function [42].

Due to their proximity to blood vessels, astrocytes play a critical role in mediating
reciprocal communication between CNS-resident cells and the immune system. Depending
on the subsets involved, astrocytes respond to T-cell signals to either boost or limit CNS
inflammation. For instance, pathogenic Th17 cells signal to astrocytes via GM-CSF and
IL-17 to boost neurotoxic astrogliosis [43–45]; however, FOXP3+ regulatory T cells secrete
amphiregulin to suppress astrogliosis and promote recovery after ischemic stroke [46].
Conversely, they can also produce chemokines, such as CCL2, CXCL10, and CXCL12,
which are involved in leukocyte recruitment into the CNS [47]. During aging, there is an
increase in the production of astrocytic CXCL10, which serves as a chemoattractant for
peripheral immune cells and aids in T-cell adhesion to endothelial cells [48]. In summary,
astrocytes are critical regulators of immune responses in the CNS, as they may promote or
dampen neuronal damage and inflammation, depending on the context and stimuli.

2.3. Blood–Brain Barrier Regulation and Maintenance

The BBB is a highly selective semipermeable barrier that restricts the entry of blood
cells and plasma components into the brain parenchyma, facilitates the influx of essential
nutrients, and mediates the efflux of neurotoxic products. Together, these tasks maintain
an optimal environment for neuronal survival and function. The anatomical BBB consists
of a continuous monolayer of endothelial cells (ECs) connected by tight junctions (TJ)
and adherens junctions (containing claudin, occludin, and zonula occludens proteins). TJ
proteins restrict paracellular permeability and also segregate the apical and basal domains
of the cell membrane, which enables endothelial polarization [49]. The regulation of the
BBB is accomplished by the neurovascular unit (NVU), a multicellular unit that functionally
connects the brain and the cerebral vasculature. The NVU is composed of specialized ECs,
pericytes, and perivascular astrocytes, whose end-feet sheath all cerebral blood vessels [50].

In addition to the paracellular pathway, several transcellular pathways across the BBB
are carefully regulated by the NVU. Due to large surface areas of the lipophilic membranes
in ECs, small gaseous molecules, such as O2 and CO2, and small lipid-soluble agents
can diffuse freely though the endothelium. Specialized EC transporter proteins, such as
glucose transporter 1 (GLUT1) and L-type amino acid transporter 1 (LAT1), supply the
brain with glucose and amino acids, respectively. Additional transporters supply the
brain with nucleosides, nucleobases, and other substances [51]. Some transporters, such as
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P-glycoprotein (Pgp), are energy-dependent and act as efflux transporters for neurotoxic
molecules [52]. Other proteins, such as insulin and transferrin, are taken up by ECs via
receptor-mediated endocytosis and then transported across the BBB in vesicles, in a process
called receptor-mediated transcytosis (RMT) [53]. Native plasma proteins, such as albumin,
are typically excluded from the healthy adult brain, but can cross the BBB via adsorptive-
mediated transcytosis (AMT) under specific conditions [54]. AMT is also vesicle-mediated,
but it involves nonspecific binding to the membrane surface charges before internalization
and transport through EC cell bodies.

The perivascular end feet of astrocytes show several specialized features, includ-
ing a high density of K+ transporters and aquaporin (AQP4) water channels, which are
involved in ion recycling and brain-volume regulation, respectively [55]. Through a com-
bination of cell–cell interactions and soluble factors, perivascular astrocytes regulate the
expression of TJ proteins and directly modify the transport properties of the cerebral en-
dothelium [55–57]. Compared with ECs cultured alone, ECs co-cultured with astrocytes
or astrocyte-conditioned media were found to exhibit increased TJ formation, transporter
expression, and overall improved barrier function [58]. Subsequent studies have identified
the molecular mechanisms responsible for the astrocytic regulation of the BBB. For example,
the astrocyte secretion of factors such as angiopoietin 1 (ANG1) and sonic hedgehog (SHH)
cause ECs to upregulate TJ proteins, thus enhancing barrier tightness [59–61].

Beyond BBB regulation, a recent study showed that astrocytes perform a necessary
and nonredundant function in adult BBB maintenance [62]. The study used a genetic DTA
ablation system to conditionally and selectively ablate astrocytes from the adult mouse
brain and observed significant BBBD, indicated by the leakage of cadaverine (~900 Da)
and fibrinogen (340 kDa) into the parenchyma. The blood vessels within the regions of
astrocyte loss had a lower expression of the TJ protein zonula occludens-1 (ZO-1), while the
expression of the endothelial transporter GLUT1 remained undisturbed. BBBD persisted
for several weeks following ablation, suggesting a lack of barrier repair [62].

Other roles of astrocytes in BBB function have been studied in the context of disease.
For example, the E4 variant of apolipoprotein E (APOE), the main susceptibility gene for
AD, leads to accelerated BBBD and cognitive decline in humans and animals [63,64]. APOE
is primarily synthesized and secreted in the CNS by astrocytes and is required for BBB
formation and maintenance [65]. A recent study used allele-specific knock-in mice with
the human E4, E3, and E2 APOE variants and showed that the humanized APOE4, but not
APOE2 or APOE3, mice exhibited BBBD, increased matrix metalloproteinases-9 (MMP9),
impaired TJs, and reduced the astrocyte end-foot coverage of blood vessels [66]. This is a
seminal example of how astrocyte dysfunction can directly lead to BBBD and subsequent
neurological disease. Additional mechanisms through which astrocytes contribute to BBBD
in aging and disease continue to be explored.

3. Mechanisms of Astrocyte-Mediated Neuropathology in the Aging Brain

Brain aging consists of a set of physiological and cellular changes that result in reduced
neural function. The salient changes associated with aging include significant decreases in
certain neuronal populations, dendritic spines, axonal arborization, post-synaptic density,
and cortical volume [67]. Together, these physiological changes result in cognitive impair-
ment and memory loss. Given the many diverse functions astrocytes perform in the brain,
it is logical that astrocyte dysfunction would result in neural deficits and neuropathol-
ogy. Thus, there is substantial interest in understanding the precise role of astrocytes in
age-related neural dysfunction, especially in neurodegenerative diseases.

Several molecular changes have been observed in aging astrocytes that may negatively
affect neurons, including the activation of complement system genes and increased oxida-
tive stress. Aged astrocytes express C3 and C4B complement component genes [68], which
may impair plasticity by causing structural changes in neurons [69]. Furthermore, oxidative
stress increases during aging and leads to the intracellular accumulation of reactive oxygen
species (ROS). In turn, this causes calcium overload in astrocytes, which is associated with
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hippocampal neuronal dysfunction [70]. While these pathways are relevant, this review
focuses on two other critically important and potentially related mechanisms through
which astrocytes contribute to neuropathology in aging: blood–brain barrier dysfunction
(BBBD) and cellular senescence.

3.1. TGFβ Hyperactivation following Blood–Brain Barrier Dysfunction (BBBD)

One of the physiological consequences of advanced age is the progressive decline in
NVU function, which results in increased BBB permeability and the leakage of blood-borne
molecules into the neural microenvironment. Clinical studies have shown that BBBD is
prevalent in aging individuals [71–73] and is correlated with neurodegenerative diseases,
especially ADRD [74–77]. The BBBD phenotype is multifaceted and adversely affects
nearly every element of the brain. The murine endothelium in BBBD is characterized by
the decreased expression of TJ proteins [78,79], increased EC pinocytosis [80,81], and the
decreased expression of the GLUT1 transporter [82]. In humans, BBBD is characterized
by focal endothelium degeneration [83] and the decreased EC expression of the Pgp trans-
porter [84,85]. The decreased GLUT1 expression in BBBD impairs the influx of glucose,
and decreased Pgp expression impairs the efflux of neurotoxic molecules, such as Aβ,
allowing them to accumulate in the brain tissue, where they contribute to inflammation and
neural degeneration [84,86,87]. In humans and mice, pericytes and astrocytes have reduced
vascular coverage in BBBD, and astrocytes exhibit the downregulation of AQP4, the protein
primarily responsible for end-foot adhesion and polarization at the vascular wall [88–92].
The leakage of neurotoxic blood-derived proteins into the parenchyma triggers microglial
activation and astrogliosis as an injury response, contributing to neuroinflammation [93–95].
Studies in mice have shown that in the short term, this inflammation triggers microglia
to migrate to damaged vessels and maintain the BBB via the expression of the TJ protein,
Claudin-5; however, during sustained inflammation, microglia phagocytose astrocytic
end-feet, further impairing BBB integrity [96]. In addition to the leakage caused by the
loss of BBB integrity, recent evidence suggests that there is a global age-related shift in
BBB transcytosis mechanisms that further increases the influx of neurotoxic proteins such
as albumin, fibrinogen, and autoantibodies into the aging brain [92]. Specifically, the ag-
ing BBB exhibits diminished RMT transport and an increased non-specific transport of
macromolecules compared to young brains. Regardless of the mechanism of entry, the dys-
regulated presence of serum proteins causes astrogliosis and neuroinflammation, and the
dysfunctional phenotype of the NVU components in BBBD creates a hostile environment
for neurons. As a result, white matter, neuronal axons, and synapses are compromised in
BBBD, leading to cognitive impairment [83].

The hippocampus, the brain region’s center for learning and memory, appears to be
especially vulnerable to age-related BBBD. Hippocampal BBBD is associated with mild
cognitive impairment (MCI) and occurs before tissue atrophy and dementia in AD pa-
tients [71,97]. Notably, hippocampal neural hyperexcitability is also an early biomarker of
MCI in humans that precedes dementia [98,99] and is associated with disease progression in
rodent AD models [100,101]. These findings suggest there is a relationship between BBBD
and neural hyperexcitability in aging. Indeed, a recent study from our group identified
astrocytic TGFβ signaling as a mechanistic link between BBBD and hyperexcitability in the
aging hippocampus and established how these factors contribute to cognitive impairment
in humans and mice [73,102]. This study was based on the observation that the context and
symptomatology of age-related neural dysfunction resemble those observed in traumatic
brain injury (TBI). Both aging and TBI involve a period of BBBD followed by secondary
neural dysfunction and are associated with an increased risk of neurodegenerative dis-
ease and dementia [74,103]. In both cases, the neural dysfunction is characterized by an
excitation–inhibition (E/I) imbalance, hippocampal and cortical circuit hyperexcitability,
and cognitive deficits [73,102].

TBI causes sudden and pronounced BBBD in patients, which can persist for months to
years after the initial injury [104–106]. Studies in mice and rats have shown that BBBD in-
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duced by deoxycholic acid sodium salt (DOC) or direct injury enables blood-derived serum
albumin and fibrinogen molecules to extravasate into the brain, where they elicit a robust
inflammatory response mediated by astrocytic TGFβ signaling [107–109]. Albumin binds
to the type II TGFβ receptor (TGFβR) on astrocytes and activates the canonical ALK5 type I
TGFβR after receptor dimerization. This results in the phosphorylation of the downstream
effector protein SMAD2 (pSMAD2) and the subsequent activation of pro-inflammatory
and epileptogenic transcriptional programs [110–112]. The molecular hallmarks of this
altered astrocytic phenotype are the upregulation of the cytoskeletal intermediate filaments,
GFAP and vimentin, as well as S100 calcium-binding proteins. In mouse and rat models
of BBBD, the astrocytic inflammatory program involves the production of cytokines, such
as interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1; CCL2), and matrix
metalloproteinase 9 (MMP-9), which degrades critical extracellular structures and destabi-
lizes perineuronal nets (PNNs) around inhibitory interneurons [107,111]. In rodent models,
the astrocytic epileptogenic program features the upregulation of excitatory glutamate
receptors, the activation of complement components C1 and C2, and the downregulation
of voltage-gated potassium channels (Kir4.1), plasticity-associated NMDA receptors, and
genes involved in inhibitory GABAergic transmission [107,111]. Notably, albumin-induced
TGFβ activation itself upregulates the astrocytic expression of TGFβ and its receptors,
resulting in a positive feedback loop that can cause the altered phenotype to persist [73,110].
In this state, the normal homeostatic neurotransmitter recycling and ion buffering functions
of astrocytes are impaired, leading to disrupted neural communication. The remodeling of
neural circuits occurs over time, which causes network hyperexcitability, E/I imbalance,
and cognitive deficits [108,112–115]. In mice, the astrocytic secretion of TGFβ was shown to
increase the neuronal expression of c1q [116], a complement protein that mediates synapse
elimination [117] and increases in the CNS with age [118].

In the case of aging, the onset of BBBD is more gradual than in TBI, but it is also tempo-
rally constrained. Depending on an individual’s lifestyle and risk factors, BBBD begins as
early as middle age in the human hippocampus and progresses in scope and severity into
advanced age [71,73,75,76]. Interestingly, our study found that albumin-induced astrocytic
TGFβ activation is a mechanism underpinning key neural deficits in aging [73]. In mice,
immunohistochemistry (IHC) revealed that albumin begins to accumulate in hippocampal
astrocytes as early as 12 months (“middle age”) and is consistently elevated in aging up to
the end of life at ~2 years, indicating BBBD. Concurrent with the time course of BBBD, aged
mice showed a progressive increase in the amount of pSMAD2 colocalized with albumin-
positive hippocampal astrocytes, indicating BBBD-induced TGFβ signaling activation.
Additionally, a Western blot analysis showed an increased concentration of active TGFβ1 (a
positive feedback output of the TGFβ pathway) in the hippocampi of aged mice. Compared
to the young mice, the aged mice exhibited increased seizure vulnerability and paroxysmal
slow-wave events (PSWEs), indicating increased neural hyperexcitability. The activation of
TGFβ signaling via serum albumin infusion into the cerebral ventricles of young mice was
sufficient to elicit increased hyperexcitability, aberrant neural activity, and learning impair-
ment, as measured by the Morris Water Maze assay. The pharmacological inhibition of the
ALK5 type I TGFβR with the small molecule drug IPW-5371 significantly reduced TGFβ
activation and seizure vulnerability in young mice infused with albumin. Importantly, the
conditional knockdown of the type II astrocytic TGFβR and systemic treatment with IPW
were both able to reverse the BBBD-induced neuropathological changes observed in aged
mice, providing further evidence for the mechanistic role of TGFβ activation in driving
these changes [73,102].

3.2. Cellular Senescence

Another consequence of advanced age is the accumulation of senescent cells [119–124].
Cellular senescence is an important anti-cancer mechanism that occurs in replication-
competent cell types. The senescence response permanently arrests cell growth in response
to stresses that can promote malignant transformation [125]. There are two main types
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of senescence: replicative senescence is triggered by extreme telomere erosion caused by
repeated cell division [126], while stress-induced premature senescence (SIPS) is triggered
by sublethal levels of cellular stress in the absence of telomere erosion. A common trigger
of SIPS is DNA damage, which can be caused by factors such as environmental toxins,
viral infection, and ionizing radiation [127–129]. Other stressors can trigger SIPS by acti-
vating molecular pathways that are associated with cellular transformation. For example,
epigenetic factors, mitochondrial dysfunction, disrupted nutrient signaling, chronic inflam-
mation, oxidative stress, and proteotoxic stress can also cause SIPS [130]. The senescence
response ultimately activates the p53/p21WAF1 and p16INK4A/pRB tumor suppressor path-
ways, which establish and maintain growth arrest [127,131–133]. The senescent phenotype
is not precisely defined and differs among cell types and conditions but is generally char-
acterized by permanent cell-cycle arrest, increased lysosomal mass, the loss of nuclear
integrity, decreased functional capacity, and the expression of the senescence-associated
secretory phenotype (SASP) [119,134–137].

Senescent cells accumulate with age in a variety of tissues and contribute to age-
associated tissue dysfunction and disease. A seminal study in the field showed that
senescent cells accumulate in a progeroid mouse model of accelerated aging, and that
the elimination of senescent cells via a drug-inducible transgene extends lifespan and
prevents the onset of aging phenotypes, including cataracts, sarcopenia, and subcutaneous
fat loss [138]. There are two known mechanisms through which senescent cells drive tissue
aging and dysfunction. The first is through loss of function, in which senescent cells have a
reduced ability to perform their vital activities within t tissues. The second is through the
SASP, in which senescent cells secrete inflammatory cytokines, chemokines, growth factors,
and proteases to communicate cellular damage to surrounding cells [130,139,140]. Many
SASP factors are considered beneficial in limited quantities because they stimulate tissue
repair and increase immune surveillance; however, their abundance in aging tissue has
been shown to impair tissue structure and function by disrupting intercellular signaling
and maintaining a pro-inflammatory environment [139,141–144].

While normally quiescent in the adult brain, astrocytes maintain their ability to repli-
cate, and are thus susceptible to SIPS [145]. Astrocytic SIPS has been observed in re-
sponse to oxidative stress [146], proteasome inhibition [146], HIV infection [147], metham-
phetamine [147], Aβ oligomers [148], and the environmental toxin, paraquat [149]. Human
and animal studies have demonstrated that senescent cells accumulate in the aging CNS
and are associated with neuroinflammation and neurodegeneration [150–154]. In human
brain samples, the prevalence of senescent astrocytes in the brain was shown to increase
with age, with a significantly higher burden observed in the cortices of AD patients com-
pared to age-matched controls [148]. Recent studies in animal models have demonstrated a
causal relationship between glial senescence and neurodegeneration. The accumulation of
senescent astrocytes and microglia was found in the cortices and hippocampi of a mouse
model of tau-dependent pathology, and the genetic ablation of these cells reduced tau
deposition and prevented neuronal degeneration [155]. Similarly, senescent astrocytes
were found in abundance in the substantia nigra of a mouse model of paraquat-induced
Parkinson’s disease, and their selective genetic ablation was sufficient to reduce nigral
dopaminergic cell loss and improve motor function [149]. Notably, novel pharmacological
agents have been developed that can selectively eliminate senescent cells, and they are
being explored in clinical trials for the treatment of age-related diseases [156–158]. These
findings indicate that senescent astrocytes actively participate in driving age-associated
neural dysfunction and pathology, including neurodegeneration, and can be leveraged as
therapeutic targets.

As with other senescent cell types, senescent astrocytes appear to drive neural dysfunc-
tion via both loss of function and their SASP. Given the important role of astrocytes in sup-
porting brain homeostasis and maintaining the neural microenvironment, the senescence-
associated loss of astrocyte function is especially detrimental to neuronal survival and
performance [159]. Indeed, substantial impairments have been reported in rat astrocyte
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functions cultured in vitro, including impaired wound healing ability, phagocytic uptake,
metabolic function, and neuroprotective capacity [160,161]. Furthermore, the downregu-
lation of potassium (Kir4.1) and glutamate (EAAT1/2) transporters in human senescent
astrocytes promotes neurotoxicity in cortical neurons [162]. As a heterogenous population,
it is likely that other specialized astrocyte functions are also impaired that have not yet
been identified. Additionally, the astrocytic SASP participates in driving pathological
changes in the aging brain by generating a chronic inflammatory environment. Senescent
astrocytes from humans and mice secrete inflammatory and proteolytic SASP factors, such
as IL-6, IL-1β, CCL2, MMP-3, and MMP-9 [148,149,155,163,164]. Interestingly, these factors
are elevated in the cerebrospinal fluid (CSF) and sera of AD patients, suggesting that
senescence-associated inflammation accompanies and may contribute to the progression of
AD [165,166]. In particular, IL-6 is a salient SASP component and a biomarker of AD [167],
whose overexpression drives neurodegeneration in AD models [168–170].

4. Perspectives on BBBD, TGFβ Signaling, and Astrocyte Senescence in Aging

As detailed above, a growing body of evidence suggests that both BBBD and astrocyte
senescence progressively increase in the aging brain and are independently associated with
an increased risk of neurodegenerative disease, but the relationship between the two has
not been established. Given the salience of TGFβ signaling activation in aging phenotypes
and neural dysfunction, BBBD-induced TGFβ hyperactivation should be explored as a
potential mechanistic link between BBBD and senescence in the aging brain.

Studies show that TGFβ activation mediates senescence in various cell types in vitro,
including fibroblasts [171–173], keratinocytes [174], mesenchymal stem cells (MSCs) [175],
glioblastoma cells [176], cardiomyocytes [177], and lung epithelial cells [178]. Furthermore,
TGFβ1, as a SASP component, was found to be an important mediator of paracrine senes-
cence in vivo [179]. Furthermore, the pharmacological attenuation of age-associated TGFβ
activation has rejuvenating effects in the aged brain [73,180], including the suppression
of cellular senescence [181]. In astrocytes, previous reports have identified triggers of
astrocyte senescence, such as oxidative stress [146], Aβ oligomers [148,182], HIV infection,
and drug abuse [147]. Notably, TGFβ signaling is also implicated in these senescence
mechanisms. In the context of oxidative stress, TGFβ activation increases the production of
reactive oxygen species (ROS) by impairing mitochondrial function and inducing NADPH
oxidases [183,184]. Indeed, TGFβ1 was found to induce the senescence of bone marrow
MSCs via increased mitochondrial ROS [175]. TGFβ activation also suppresses the synthe-
sis of antioxidant enzymes, such as glutathione, causing redox imbalance and promoting
further oxidative stress [185]. In the case of Aβ pathology, astrocytic TGFβ overexpression
increases Aβ generation in transgenic mice [186–188], and TGFβ1 expression is elevated
in cortical astrocytes surrounding Aβ plaques in AD patients [189,190]. HIV infection
and drug abuse were found to mediate astrocyte senescence in a β-catenin-dependent
manner [147]. Notably, TGFβ1 operates through the canonical WNT/β-catenin pathway,
and these two pathways stimulate each other via SMAD effector proteins [191]. The precise
molecular mechanisms through which TGFβ signaling mediates senescence in astrocytes
are unknown, but some evidence suggests that epigenetic alterations may be involved. A
recent study found that canonical TGF-β/SMAD signaling promotes SIPS in cardiomy-
ocytes via the miR-29-induced loss of H4K20me3, and that disrupting TGFβ signaling
improves cardiac function in aged mice [177].

Together, these findings indicate that TGFβ activation is a salient factor in age-related
pathological changes and can directly mediate the senescence response under certain condi-
tions. Indeed, the results from a recent study suggest that BBBD-induced TGFβ activation
via albumin extravasation into the brain parenchyma is a potential physiological trigger
of astrocyte senescence [192]. This study utilized an animal model of BBBD in which
albumin was continuously infused into the lateral ventricles of adult mice. One week
of albumin infusion significantly increased TGFβ signaling activation and the burden of
senescent astrocytes in hippocampal tissue. The pharmacological inhibition of TGFβR
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ALK5 or the conditional genetic knockdown of astrocytic TGFβR prior to albumin in-
fusion were sufficient to prevent albumin-induced astrocyte senescence. In addition to
activating canonical TGFβ signaling, albumin uptake activates the p38MAPK pathway in
astrocytes [94], and it is known to play a central role in the regulation of astrocyte senes-
cence and SASP expression [148,193]. Thus, it follows that the simultaneous activation of
canonical TGFβ, p38MAPK, and, potentially, other unknown pathways by albumin can
mediate astrocyte senescence.

Reciprocally, the molecular and functional effects of senescent astrocytes on BBB in-
tegrity have not been established. Certainly, astrocytes produce SASP factors, such as
MMPs and IL-6, which are known to increase endothelial barrier permeability. MMPs
induce BBBD via the disruption of TJ proteins [194,195], and IL-6 upregulates cell adhesion
molecules (CAMs) on ECs, which facilitates leukocyte transmigration across the endothe-
lium. Interestingly, one study found that the accumulation of senescent ECs and pericytes
is associated with compromised BBB integrity due to reduced TJs; however, the blood
vessel coverage by astrocytic end-feet was not altered [196]. This suggests that EC and
pericyte senescence is not the proximal cause of the reduced astrocyte end-foot coverage ob-
served in age-associated BBBD. These findings raise another possibility—that each cellular
component of the NVU is differentially susceptible to physiological triggers of senescence.
Indeed, TGFβ signaling is complex and context-dependent [197,198]; therefore, TGFβ
hyperactivation may have variable effects in different cell types and conditions. Future
studies should seek to elucidate the context in which various triggers promote senescence
during aging and the extent of their respective contributions.

5. Concluding Remarks and Future Directions

Astrocytes are a diverse population of cells that perform essential functions in the
brain related to neuronal support, immune modulation, and blood–brain barrier regulation
and maintenance. Collectively, these functions ensure that the brain environment remains
optimal for neuronal function. In aging, astrocytes adopt a neurotoxic phenotype following
age-related BBBD that is mediated by TGFβ hyperactivation. Furthermore, aging is associ-
ated with an accumulation of senescent astrocytes, which contribute to neuroinflammation
and neurodegeneration. Given that TGFβ is a salient factor in aging pathologies and is
known to mediate senescence in various cell types, BBBD-induced TGFβ activation via
blood protein extravasation should be further explored as a potential trigger of astrocyte
senescence in the aging brain. Identifying the physiological triggers of astrocyte senescence
is important for understanding the complex series of events that facilitates the development
of neurodegenerative disease.

Astrocytes play an important role in BBB regulation and maintenance through their in-
volvement in the NVU. Since the NVU is highly interdependent, the impacts of perivascular
astrocyte senescence on each component of the NVU merit investigation. Genetic tools that
enable the selective ablation of senescent astrocytes [149] should be leveraged to investigate
the role of senescent astrocytes in the context of BBBD. Another unanswered question in
the context of aging is how the global shift in transcytosis mechanisms manifests in each
NVU cell type. Specifically, how do perivascular astrocytes experience this shift, and does
cellular senescence play a role in facilitating this shift? In other words, do senescent cells
experience more nonspecific transcytosis than their youthful counterparts?

Given the importance of astrocytes in preserving the BBB, it is likely that initial BBBD-
induced astrocyte senescence establishes a positive feedback loop that results in progressive
neurological decline. In this scenario, the accumulation of functionally impaired senes-
cent astrocytes causes more BBBD and, thus, more BBBD-induced astrocyte senescence—
perpetuating a vicious cycle of BBBD and associated functional decline (Figure 1). Further
studies should investigate how this process is regulated and explore potential strategies to
prevent its onset.
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 Figure 1. Mechanisms of astrocyte-mediated neuropathology in the aging brain. Blood–brain barrier
dysfunction (BBBD) and cellular senescence progressively increase during aging and are associated
with an increased risk of neurodegenerative disease. Two processes that result in dysfunctional
astrocyte phenotypes and subsequent neuropathology are BBBD-associated astrocyte activation and
astrocyte senescence. BBBD causes albumin to leak into the brain, where it activates TGFβ and
p38MAPK signaling in astrocytes, which elicits an epileptogenic and pro-inflammatory astrocyte
phenotype. The epileptogenic phenotype is characterized by downregulation of K+ transporters
(Kir4.1), inhibitory GABAA receptors (GABAAR), and NMDA receptors (NMDAR) and upregulation
of excitatory glutamate receptors (GluR). Second, certain types of cellular stress cause expression
of tumor suppressors p16 and p21, which elicit a senescent phenotype characterized by decreased
functional capacity and SASP expression. This decreased capacity involves downregulation of
aquaporin 4 (AQP4), K+ transporters (Kir4.1), and glutamate transporters (EAAT1/2). Factors such as
cytokines, chemokines, and proteases secreted by activated and senescent astrocytes may act on the
endothelium to further exacerbate BBBD via downregulation of tight junction (TJ) proteins, glucose
transporters (GLUT1), and waste efflux transporters (Pgp). Dysfunctional astrocytes contribute
to neuronal hyperexcitability, neuroinflammation, neurotoxicity, and neurodegeneration, which
manifest as cognitive deficits in the aging brain. Questions remain regarding the mechanistic links
and relationships between BBBD-associated astrocyte activation and senescence. This figure was
created with cell images from BioRender.
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