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Abstract

Genome wide association studies (GWAS) have identified multiple loci associated with cross-

sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. 

Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, 

initially from 16 cohorts with serial kidney function measurements within the CKDGen 

Consortium, followed by independent replication among additional participants from 13 cohorts. 

In stage 1 GWAS meta-analysis, SNPs at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1 and 

CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD 

locus which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-

analysis, the significant association at UMOD was replicated. Associations at GALNT11 with 

Rapid Decline (annual eGFRdecline of 3ml/min/1.73m2 or more), and CDH23 with eGFR change 

among those with CKD showed significant suggestive evidence of replication. Combined stage 1 

and 2 meta-analyses showed significance for UMOD, GALNT11 and CDH23. Morpholino 

knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 hours 

after gentamicin treatment compared to controls, but no gross morphological renal abnormalities 

before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney 
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function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly 

associated with kidney function decline.
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Introduction

Chronic kidney disease (CKD) is an important public health problem affecting up to 10% of 

adults world-wide [1–3]. Faster rates of decline in estimated glomerular filtration rate 

(eGFR), and entry into CKD stages of increasing severity are associated with an increased 

risk of cardiovascular and all-cause mortality [4–9]. Thus, recently issued guidelines on the 

evaluation and management of patients with CKD have highlighted the importance of 

evaluating longitudinal measures of renal function in addition to determining eGFR and 

urinary albumin excretion at discrete time points [3].

Traditional risk factors for CKD include diabetes and hypertension, but these do not fully 

account for CKD risk [10]. There is evidence for considerable clustering of CKD within 

families [11] and the heritability of eGFR has been estimated at up to 36–75% in population-

based studies [12]. Using genome-wide association studies (GWAS), multiple loci have 

been identified in association with eGFR and CKD in both European [13–16] and non-

European populations [17,18] using data from one time point. However, multiple lines of 

evidence suggest that there may be unique genetic contributions to renal function decline 

above and beyond baseline renal function. First, there is substantial variability in the rate of 

eGFR decline in studies of healthy persons as well as among those with CKD [3,4,19,20]. 

Second, we have previously shown that some genetic loci associated with cross-sectional 

eGFR are also associated with incident CKD even after accounting for baseline eGFR [21]. 

Finally, genetic background has been shown to affect CKD progression in animal models 

[22,23].

Taken together, these data suggest that unique loci may exist for renal function decline in 

addition to those identified for a one-time measure of eGFR. Thus, we conducted a genome-

wide association study (GWAS) meta-analysis among participants from 16 cohorts with 

serial kidney function measurements within the CKDGen Consortium, followed by 

independent replication among additional participants from 13 cohorts.

Results

Study participants

Changes in renal function over time were derived from 45,530 individuals who participated 

in stage 1 meta-analysis of study-specific GWAS, and an additional 18,028 independent 

individuals who participated in stage 2 meta-analysis (Table 1). Details on study design and 

genotyping are provided in Supplementary Tables 1 and 2 respectively.
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At the baseline examination, the prevalence of CKD, defined as eGFR<60 ml/min/1.73m2, 

ranged from 3.2% to 21.4% in stage 1 cohorts and from 0.2% to 23.9% in stage 2 replication 

cohorts. As expected, cohorts with lower mean age at baseline tended to have a lower 

baseline prevalence of CKD. Four kidney function decline traits were derived from serial 

eGFR values in each study participant to model mechanisms underlying different rates of 

kidney function change over time: 1) annual decline of eGFR (eGFRchange, in ml/min/

1.73m2 decline per year; a positive value represents a decline in eGFR, whilst a negative 

value represents a rise in eGFR over time), 2) incident CKD to select individuals with a 

decline in kidney function to the clinical outcome CKD stage 3 or higher (CKDi, cases 

defined as those free of CKD at baseline but eGFR<60ml/min/1.73m2 during follow-up), 3) 

incident CKD with additionally at least a 25% eGFR decline from baseline to select 

individuals reaching CKD stage 3 after a sizeable decline in kidney function (CKDi25,) 

[24], and 4) rapid eGFR-decline to select individuals with the highest risk of adverse 

outcomes (Rapid Decline, cases defined as those with annual eGFR-decline≥3ml/min/

1.73m2) [5]. Most cohorts showed a decline in kidney function over time (Table 1). The 

distribution of all four traits in stage 1 and stage 2 cohorts can be found in Supplementary 

Table 3.

Heritability of eGFR change

The heritability of eGFR change in the Framingham Heart Study was estimated as 38%, 

after adjusting for age, sex, and baseline eGFR.

Stage 1 meta-analysis of GWAS of measures of kidney function change over 
time—Stage 1 GWAS meta-analysis was performed in all samples for all four traits. Two 

secondary association analyses were performed to account for potentially different rates of 

kidney function decline in those with and without CKD: 1) eGFRchange stratified by 

baseline CKD status and 2) Rapid Decline in only those without baseline CKD; too few 

individuals with CKD fulfilled Rapid Decline criteria to perform this analysis. 

Supplementary Figure 1 shows the Manhattan and QQ-plots of the stage 1 meta-analysis of 

each trait. The genomic control factor ranged from 1.007 – 1.05, suggesting negligible 

evidence for population stratification.

In GWAS meta-analysis of stage 1 cohorts, the minor T allele of rs12917707 at the UMOD 

locus, previously identified by GWAS to be associated with higher eGFR in cross-sectional 

analysis [14], was associated with an increase in eGFR over time at a genome-wide 

significant level (p=2.6×10−14, Table 2), and showed at least nominally significant, direction 

consistent association with all other analyzed phenotypes (Supplementary Table 4). In 

addition, SNPs at the novel CDH23, GALNTL5/GALNT11, MEOX2, IL1RAP/OSTN, 

C2orf48/HPCAL1 and NPPB/NPPA loci were associated with at least one of the analyzed 

traits at a significance level of p<10−6 (Table 2). Thus, a total of 7 SNPs were moved 

forward to stage 2 meta-analysis. These SNPs mostly showed high imputation quality in 

each cohort or were genotyped de-novo (Supplementary Table 5), and low between-study 

heterogeneity (I2<25%).
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Stage 2 meta-analysis—Of the seven loci moved forward for stage 2 meta-analysis, only 

rs12917707 at UMOD was significantly associated with the stage 1 trait after correcting for 

multiple testing (p=4.7*×10−5). Two further SNPs showed suggestive significance (one-

sided p<0.05) with their respective stage 1 trait: rs875860 in CDH23 with eGFRchange in 

those with CKD at baseline, and rs1019173 at GALNTL5/GALNT11 with Rapid Decline 

(Table 2). There was no significant heterogeneity between studies for these two SNPs 

(rs875860: I2=9.7%, p=0.34; rs1019173: I2=32.4%, p=0.12) or for the other SNPs analyzed 

in stage 2 meta-analysis (I2 <30.0%).

The SNP rs1019173 is located in an intron in the GALNTL5 gene, and lies in a linkage 

disequilibrium (LD) block spanning the genes GALNT11, MLL3, CCT8L, and part of the 

GALNTL5 gene (Figure 1a). The SNP in CDH23, rs875860, is an intronic SNP in an LD 

block whose boundaries lie within the coding region of the CDH23 gene (Figure 1b).

In the combined meta-analysis of these three SNPs from both stage 1 and stage 2 cohorts, 

there was no evidence of between-study heterogeneity in the combined metaanalysis 

(I2<25%). Only the SNP at UMOD showed genome-wide significant association 

(rs12917707, p=1.2×10−16) in the combined stage 1 and stage 2 analysis, whereas there was 

suggestive evidence of significance for the two novel loci identified in stage 1 (rs875860 in 

CDH23: p=1.5×10−6 for the association with eGFRchange in those with CKD; rs1019173 at 

GALNTL5/GALNT11: OR=0.91 for the A allele, p=2.2×10−7 for the association with Rapid 

Decline).

Functional validation of novel loci in zebrafish

To investigate the role of the two suggestive novel loci in vertebrate kidney development 

and function and to bolster confidence in the nominally significant statistical associations in 

the replication studies, we knocked down the corresponding genes in the zebrafish using 

antisense morpholino (MO) technology. We focused on the CDH23 region and the block 

containing GALNTL5, GALNT11, MLL3 and CCT8L1. For the latter region, we focused on 

GALNT11 and MLL3, because there are no zebrafish GALNTL5 and CCT8L1 orthologs. 

Further, we investigated the effect of MO knockdown of umod. Following MO injection at 

the 1-cell stage, we performed in situ hybridization for the established renal markers pax2a 

(global kidney) and nephrin (podocytes) at 48 hours post-fertilization (hpf). Compared to 

control embryos, cdh23, galnt11, mll3a, mll3b and umod morphants did not display 

significant defects in glomerular or tubule gene expression (Figure 2A, n>25 embryos per 

MO injection).

It is possible that morphant embryos develop a kidney function decline phenotype only after 

exposure to a nephrotoxin, despite observing no differences in renal marker expression at 48 

hpf. Accordingly, after MO injection, we injected embryos with gentamicin at 48 hpf and 

observed edema prevalence and severity over the next three days. In control embryos, 

gentamicin injection predictably resulted in a majority of embryos developing minor 

(cardiac) edema by 24 hours post-injection (hpi) (Figure 2B–D). In comparison, cdh23 and 

galnt11 morphants developed significantly more severe (cardiac, intestinal, and ocular) and 

more frequent edema (Figure 2B–D). Specifically, whereas 10% of control embryos 

developed severe edema by 72 hpi, 43% of cdh23 morphants (p=0.009) and 55% of galnt11 
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morphants (p=0.001) developed severe edema at this time point. Additionally, a significant 

proportion of cdh23 (33%, p=0.035) and galnt11 morphant embryos (46%, p=0.005) 

injected with gentamicin developed edema earlier compared to controls at 5 hpi. In contrast, 

knockdown of mll3 or umod affected neither kidney development nor susceptibility to 

gentamicin (Figure 2B–C). Taken together, these data demonstrate that knockdown of cdh23 

and galnt11 results in altered renal function after a nephrotoxic insult.

Interrogation of novel loci in eSNP databases and the CRIC Study

We interrogated eSNP data bases for evidence of SNPs at the CDH23 and GALNTL5/

GALNT11 loci to evaluate an effect on gene expression [25] but found no relevant 

associations. Similarly, annotation information provided by ANNOVAR [26] did not yield 

genetic variants of potential functional interest within 500kb of and in linkage 

disequilibrium (r2 > 0.8 based on HapMap release 22) with the index SNPs.

In Caucasian participants of the Chronic Renal Insufficiency Cohort (CRIC) study, a 

prospective study of patients with CKD at baseline [27], neither SNPs in GALNTL5/

GALNT11 or CDH23 were associated with eGFRchange (n=1476) or time to a composite 

renal event that consisted of incident end stage renal disease or halving of eGFR (n=1585, 

with a total of n=178 events; results not shown).

Discussion

Key findings

Our key findings are fourfold. First, we estimate the heritability of eGFR decline as being 

38% in the general population of European descent, providing a rationale to search for 

genetic variants associated with kidney function decline. Second, we extend evidence of a 

known locus (UMOD) previously associated with incident CKD and ESRD [21,28] by 

showing genome-wide significant association with kidney function change. Third, we have 

identified two novel genetic loci (CDH23 and GALNTL5/GALNT11) with suggestive 

association with kidney function decline phenotypes. Finally, we show that knock-down of 

the two novel loci in zebrafish renders the nephron susceptible to a nephrotoxic insult.

Our findings in the context of the literature

We extend the current literature by performing the first large-scale GWAS of renal function 

decline traits in the general population. Previous studies analyzing progression of renal 

disease in African Americans [29−32], individuals of European descent [21], healthy nurses 

[33], and patients with diabetes [34,35], hypertension [31], IgA nephropathy [36,37] and 

ESRD [21] focused only on candidate genes.

The SNP in UMOD has previously been identified in a GWAS of eGFR measured at one 

time point [14], and was significantly associated with incident CKD and ESRD in a 

candidate gene study [21] and with salt-sensitive hypertension and kidney damage in rodents 

and humans [38]. Our data extend this knowledge base by providing strong evidence that 

genetic variation at the UMOD locus affects different definitions of kidney function decline.
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For Rapid Decline, the associated region on chromosome 7 contains the genes GALNTL5, 

GALNT11, MLL3, and CCT8L1, with our zebrafish data suggesting GALNTL5 and 

GALNT11 as the genes of interest. GALNTL5 encodes the putative polypeptide N-

acetylgalactosaminyltransferase-like protein 5, which by similarity has a presumed role in 

O-linked oligosaccharide biosynthesis. Polypeptide N-acetylgalactosaminyltransferase 11, 

encoded by GALNT11, is a glycosyl transferase that catalyzes the initial reaction in O-linked 

oligosaccharide biosynthesis. Studies in Xenopus support a role of the gene product in left-

right patterning by modulating Notch1 signaling and thus establishing the crucial balance 

between motile and immotile cilia, and it is also expressed in the developing kidney of 

zebrafish [39,40]. Our data suggest that galnt11 is not essential for kidney development, but 

protects against susceptibility from nephrotoxins.

The region of chromosome 7 also contains a locus (rs7805747 in PRKAG2) that was 

previously identified in a GWAS meta-analysis of cross-sectional eGFR [15]. However, this 

SNP is independent of rs1019173 (r2=0.002, D’=0.061 in the 1000 Genomes Pilot Version 

1, hg18); therefore, the novel locus identified in the present study is unlikely tagging the 

PRKAG2 locus. Moreover, conditional analysis using genotypes from both SNPs from 

individual level data from the ARIC study showed that the association between rs1019173 

and Rapid Decline is unchanged when controlling for rs7805747 (data not shown).

The other locus identified from this study is an intronic SNP in CDH23 that is nominally 

associated with eGFR change in those with CKD at baseline. CDH23 encodes cadherin 23, a 

glycoprotein of the cadherin family. Cadherin 23 and protocadherin 15, encoded by 

PCDH15, form the tip-links spanning the stereocilia of the inner ear’s hair cells. These tip-

links are key contributors to the mechanosensory transduction in hair cells required for 

hearing [41]. Rare mutations of CDH23 cause progressive, nonsyndromic deafness 

(DFNB12, MIM # 601386) [42−44] or Usher Syndrome 1D, characterized by profound 

deafness, vestibular dysfunction and retinitis pigmentosa (MIM # 601067). The 

transmembrane protein cadherin 23 is expressed in many tissues, including the kidney 

[44,45], where it is found predominantly in the tubulointerstitium [46]. While a kidney 

phenotype has not been reported for patients with DFNB12 or Usher syndrome, our 

zebrafish data provide evidence that cadherin 23 plays a role in protecting from 

susceptibility to nephrotoxins, while not being essential for nephrogenesis.

Implications

Our GWAS findings point towards two novel gene loci, CDH23 and GALNTL5/GALNT11, 

and one previously identified locus (UMOD) as being associated with kidney function 

decline. The zebrafish experiments support a role of the two newly identified loci in 

increasing renal susceptibility to nephrotoxic insults and may indicate that a perturbation 

model could serve as a model of longitudinal kidney function decline. In previous work, we 

have shown that knockdown of two genes identified by GWAS of cross-sectional eGFR, 

mpped2 and casp9, resulted in abnormal kidney development, with susceptibility to 

gentamicin only in casp9 knockdown [16]. Taken together, our current and previous data 

highlight the differential role of genes in affecting kidney development, function and 

susceptibility to damage.
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Strengths and Limitations

Strengths of this study include the large sample size of renal function decline traits, follow-

up in independent samples, analysis of several definitions of kidney function decline and 

validation in zebrafish. Some limitations warrant mention. Even though we addressed inter-

assay differences of serum creatinine measurement by calibrating creatinine to 

representative NHANES standards, several other factors causing imprecision in defining 

kidney function decline phenotypes may have reduced our statistical power to identify 

genome-wide significant associations: 1) despite our use of different renal function decline 

definitions all featured in current guideline statements [3], there is no standard definition of 

renal function decline, 2) kidney function trajectories are less well-defined with two vs. 

several serum creatinine measurements given that renal function change may not be linear 

over time [3] and there may be day-to-day alterations in GFR, 3) GFR estimation equations 

are known to be imprecise especially at a GFR>60 ml/min/1.73m2, 4) we observed 

heterogeneity in design between studies including a wide range of length of follow-up. We 

cannot rule out that low statistical power also accounts for the negative finding in the CRIC 

study. Further, our findings, obtained mainly in general population cohorts, provide novel 

insights into mechanisms of kidney function decline, but may not be generalizable to cohorts 

enriched for CKD. This limitation deserves particular attention due to the unexpected 

observation that in most cohorts, the subgroup with baseline CKD (defined as eGFR<60 

ml/min/1.73m2) showed a mean increase in eGFR over time irrespective of length of follow-

up interval. This may indicate that in the CKD subgroup of these cohorts, a baseline 

eGFR<60 ml/min/1.73m2 may not represent progressive CKD with active disease but rather 

stable disease or imprecise GFR estimation. This highlights that more work with expanded 

datasets and functional models are necessary to further elucidate the genetics of CKD 

initiation and progression in population-based studies. Finally, the role of genes contributing 

to aging and chronic disease in humans may not be entirely modeled by transient 

morpholino knockdown and observation of a developmental phenotype: while zebrafish 

allows high throughput modeling of the effects of gene knockdown in a vertebrate organism, 

the developmental role of specific genes may well be different from homeostatic organ 

maintenance in the adult. Specifically, umod may not play a relevant role in zebrafish renal 

development or toxin susceptibility.

Conclusion

In a large GWAS of kidney function decline phenotypes in individuals of European descent, 

we showed that a SNP in UMOD is associated with kidney function decline phenotypes, and 

that there is suggestive statistical evidence for two novel loci (GALNTL5/GALNT11 and 

CDH23). Zebrafish experiments at the two novel loci suggest roles in the deterioration of 

kidney function after acute injury. Given the complexity of the kidney function decline 

phenotype, further interrogation of these regions is warranted.

Materials and Methods

Ethics Statement

In all studies, all participants gave informed consent. All studies were approved by their 

responsible Research Ethics Committees.

Gorski et al. Page 7

Kidney Int. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Phenotype definition

Serum creatinine was measured at a minimum of 2 time points spaced several years apart 

(2.0 – 22.2 years, median 5.6 years). In almost all studies, there were only two serum 

creatinine measurements in total. To be consistent across studies, we used each individual’s 

two creatinine measurements with the longest follow-up in between for phenotype creation 

in all cohorts (see below). Baseline and follow-up serum creatinine were calibrated to the 

US nationally representative National Health and Nutrition Examination Study (NHANES) 

data in all discovery and replication studies to account for between-laboratory variation [47]. 

In order to be consistent with our prior work, GFR based on serum creatinine (eGFRcrea) 

was estimated using the four-variable MDRD Study Equation. eGFRcrea values <15 

ml/min/1.73m2 were set to 15, and those >200 were set to 200 ml/min/1.73m2.

Several phenotypes were used to model different mechanisms involved in change of renal 

function over time, using each individual’s two serum creatinine measurements with the 

longest follow-up. The continuous phenotype eGFRchange, modeling annual change in 

kidney function, was calculated by subtracting the eGFR at follow-up from the eGFR at 

baseline, and then dividing by the number of years of follow-up for each participant. Thus, a 

positive value of eGFRchange corresponds to a decline in kidney function over time, 

whereas a negative value of eGFRchange corresponds to an increase in kidney function over 

time. Three dichotomous phenotypes were calculated to model kidney function decline 

phenotypes with different clinical implications [5,24]: For Rapid Decline, cases were 

defined as individuals with a rapid decline in kidney function >= 3ml/min/1.73 m2 per year, 

and controls as those with a kidney function decline < 3ml/min/1.73 m2 per year [6]. For 

incident CKD (CKDi), cases were defined as participants with eGFR at baseline >= 60 

ml/min/1.73m2 declining to an eGFR at follow-up < 60ml/min/1.73 m2; a more stringent 

definition of incident CKD (CKDi25) is restricted to incident CKD cases with a decline of 

eGFR >= 25% at follow-up. For both CKDi and CKDi25, controls were defined as those 

with an eGFR >= 60ml/min/1.73 m2 at baseline and follow-up.

Heritability of eGFR in the Framingham Heart Study

Heritability of eGFRchange was calculated with family data of the Framingham Heart Study 

using the variance components analysis implemented in SOLAR [48]. eGFRchange was 

calculated by taking follow-up eGFR (obtained between 2005−2008) and subtracting 

baseline eGFR (obtained in 1995−1998), divided by the number of years of follow-up. 

Residuals were created after adjusting for age, sex, baseline eGFR, and principal 

components as necessary. With residuals as response variable, a variance components model 

with an additive genetic and a random environmental variance components was fitted, where 

the correlation among relatives attributable to the genetic component is assumed 

proportional to the kinship coefficient matrix. Heritability is calculated as the ratio of the 

estimated genetic variance to the total phenotypic variance.

Definition of strata

Kidney function decline is known to differ depending on level of baseline eGFR. Thus, 

eGFRchange was analyzed (A) in the overall sample [eGFRchange overall], (B) in those 

with eGFR >= 60 ml/min/1.73m2 at baseline [eGFRchange noCKD], and (C) in those with 
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eGFR < 60 ml/min/1.73m2 at baseline [eGFRchange withCKD]. Rapid Decline was 

analyzed in the overall sample [Rapid Decline overall] and in those with eGFR >= 60 

ml/min/1.73m2 at baseline [Rapid Decline noCKD]. CKDi and CKDi25 were analyzed in 

the overall sample only.

Stage 1 genome-wide association analyses—All participating studies used a 

uniform analysis plan and each trait was created using standard programming commands 

that were provided to collaborating studies. The continuous trait (eGFRchange) was 

analyzed by linear regression, the dichotomous traits by logistic regression (Rapid Decline, 

CKDi, CKDi25). Models included the allelic dosage at each marker from imputed study data 

consisting of 2.5 million HapMap-II SNPs [49] on average, based on imputations with 

different programs and reference panels. Details of genotyping and imputation in each study 

are shown in Supplementary Table 2. We used the additive genetic model, adjusted for age 

and sex, baseline eGFR and, where applicable, for study site and principal components.

Stage 1 meta-analysis—For our stage 1 analysis, we used aggregated statistics of 16 

population-based GWA studies of individuals of European ancestry for each of the 

longitudinal traits: eGFRchange overall, eGFRchange noCKD, eGFRchange with CKD, 

Rapid Decline overall, Rapid Decline noCKD, CKDi and CKDi25. All 16 stage 1 studies 

contributed data to every trait, except for the AMISH study, which provided data to 

eGFRchange overall and eGFRchange no CKD only due to low number of CKD cases at 

baseline and follow-up.

All input files underwent quality control using the GWAtoolbox package in R 

(www.eurac.edu/GWAtoolbox.html) [50], before including them into meta-analysis. Study 

data was meta-analyzed assuming fixed effects and using inverse-variance weighting. Thus 

the pooled effect βpooled is estimated as , where β and SE are the effect and 

standard error of the SNP on the outcome in the ith study. The meta-analyses were 

performed by METAL. We performed genomic control correction if the inflation factor λ in 

the study files was greater than 1 (1st GC correction) or if it was greater than 1 in the meta-

analysis result (2nd GC correction) [51].

Next, we created a list of independent SNPs (pairwise r2<0.2, HAPMAP II release 22) that 

had a genomic control corrected p-value <10−6 and minor allele frequency > 5% in stage 1 

meta-analysis and were present in at least 85% of the contributing studies.

Stage 2 meta-analysis—The stage 2 meta-analysis of SNPs identified in stage 1 was 

performed on the same phenotypes and using the same analysis plan as the stage 1 analysis, 

and was based on in silico genetic data or on de novo genotyped variants. Details on each 

stage 2 study’s genotyping and imputation platforms are shown in Supplementary Table 2. 

In addition, we also performed a combined inverse-variance weighted fixed-effects stage 1 

and stage 2 meta-analysis using individual study files as input. Studies with less than 50 

cases for a dichotomous trait or with an overall sample size of less than 50 for a continuous 

trait were excluded from the meta-analyses of the corresponding trait. SNPs with a stage 2 

meta-analysis one-sided p-value <0.05 and effect direction consistency with the stage 1 
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meta-analysis effect direction were defined as showing nominally significant evidence of 

replication. The I2 statistic was computed to assess heterogeneity between studies.

Zebrafish functional experiments

Zebrafish were maintained according to established IACUC protocols. Zebrafish were 

injected at the 1-cell stage with 2 nl of 400 uM morpholinos (MO; GeneTools, Philomath, 

OR) designed to block the ATG start site or an exon-intron splice site of the target gene 

(Supplementary Table 6). Embryos were fixed in 4% PFA at the appropriate stages for in 

situ hybridization using well established protocols (http://zfin.org/ZFIN/Methods/

ThisseProtocol.html). Renal gene expression was visualized using established markers for 

pax2a (global kidney) and nephrin (podocytes) [52,53]. The number of embryos displaying 

abnormal renal gene expression was compared to uninjected control embryos, and statistical 

significance was determined by Fisher’s exact test. For the gentamicin nephrotoxin 

experiment, embryos were injected with MO at the 1-cell stage and then injected with 5 nl of 

10 mg/ml gentamicin prepared from one stock solution in the cardiac sinus venosus at 48 

hpf after being anesthetized in a 1:20 dilution of 4 mg/ml Tricaine in embryo water. Live 

embryo development and edema prevalence was documented over the next three days.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regional Association Plots of the novel loci identified by GWAS of kidney function decline 

traits. Negative log10 pvalues are plotted versus genomic position (build 36, hg18). The lead 

SNP in each region is labeled. Other SNPs in each region are color-coded based on their LD 

to the lead SNP. Light blue lines indicate recombination rate (cM/Mb). (A) GALNTL5/

GALNT11 locus. (B) CDH23 locus.

Gorski et al. Page 21

Kidney Int. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Cdh23 and galnt11 knockdowns exacerbate nephrotoxic injury in zebrafish embryos
(A) Whole mount in situ hybridization for the global kidney marker pax2a (arrowhead 

denotes the glomerulus, bracket denotes the tubule) and the podocyte marker nephrin 

demonstrates that morpholino (MO) knockdowns of cdh23, galnt11, mll3a, and mll3b do not 

result in changes in kidney gene expression compared to control embryos at 48 hours post-

fertilization (hpf). Similar results were obtained for MO knockdowns of umod (images not 

shown). (B) Morpholino knockdown of cdh23 and galnt11 causes embryos to develop 

edema at a higher frequency than control embryos following gentamicin challenge. Data are 

presented as number of observed abnormalities per total number of embryos scored at 5, 24, 

48, and 72 hours post-gentamicin injection (hpi), normalized to control experiments. *p < 

0.05, **p < 0.005 by Fisher’s exact test. (C) Graphical representation of edema prevalence 

in embryos injected with gentamicin in (B). (D) Control embryos develop minor (cardiac) 
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edema whereas cdh23 and galnt11 MO-injected embryos develop severe (cardiac, intestinal, 

ocular) edema 72 hours after gentamicin injection.
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