
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Journal of Chemical Neuroanatomy 122 (2022) 102101

Available online 14 April 2022
0891-0618/© 2022 Elsevier B.V. All rights reserved.

Review 

An overview of the neurological aspects in COVID-19 infection 

Divyanshi Singh a,*, Ekta Singh b 

a KIIT School of Biotechnology, Bhubaneswar, Odisha 751024, India 
b Acharya & BM Reddy College of Pharmacy, Soladevanahalli, Bengaluru 560107, India   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
SARS-CoV-2 
Central nervous system 
Neurological disorders 
Neuropsychiatric disorders 
ACE2 
TMPRESS2 

A B S T R A C T   

The Crown-shaped, severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) triggered the globally fatal 
illness of Coronavirus disease-2019 (COVID-19). This infection is known to be initially reported in bats and has 
been causing major respiratory challenges. The primary symptoms of COVID-19 include fever, fatigue and dry 
cough. As progressed the complications may lead to acute respiratory distress syndrome (ADRS), arrhythmia and 
shock. This review illustrates the neurological and neuropsychiatric impairments due to COVID-19 infection. The 
SARS-CoV-2 virus enters via the hematogenous or neural route, spreads to the Central Nervous System (CNS), 
causing a blood-brain barrier (BBB) dysfunction. Recent scientific articles have reported that SARS-CoV-2 causes 
several neurological issues such as encephalitis, seizures, acute stroke, delirium, meningoencephalitis and 
Guillain-Barré Syndrome (GBS). As a long-term effect of this disease certain neuropsychiatric conditions are 
witnessed such as depression and anxiety. Invasion into followed by degeneration takes place causing an un-
controlled immune response. Transcription factors like NF-κB (nuclear factor kappa light chain enhancer of 
activated B cells), which modulate genes responsible for inflammatory response gets over expressed. Nrf2 (nu-
clear factor erythroid 2- related factor 2) counterpoises the inflammation by antioxidant response towards 
COVID-19 infection. Like every other infection, the severity of this infection leads to deterioration of major organ 
systems and even leads to death. By the columns of this review, we elaborate on the neurological aspects of this 
life-threatening infection.   

1. Introduction 

World Health Organisation initially reported several cases of viral 
pneumonia which was later identified as COVID-19. SARS-CoV-2 was 
reported as the causative virus behind the current worldwide pandemic. 
This highly infectious disease has caused uncountable casualties across 
the globe. Coronavirus is a Latin word that means a crown. The club-like 
spikes that are projected on the outermost surface help the virus to 
adhere on to the host, thus giving it a Crown-shaped structure. Based on 
its Crown-shaped structure the name Coronavirus was suggested 
(Velavan and Meyer, 2020). The Coronaviruses are the part Nidovirales 
order (Pal et al., 2020). Coronaviruses are members of the Coronaviridae 
family, which has two significant subfamilies, Coronavirinae and Tor-
ovirinae (Fehr and Perlman, 2015). These are further divided into four 
genres, Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Del-
tacoronavirus (Pal et al., 2020). The Betacoronavirus can be divided into 
five sub-genre Nobecovirus, Hibecovirus, Embecovirus, Sarbecovirus and 
Merbecovirus (Cui et al., 2019; Dong et al., 2020; Wong et al., 2019). 

Many variants of SARS-CoV-2 have been reported such as B.1.617.1, 
B.1.617.3 and B.1.616 (WHO, 2021). The first defined coronavirus was 
the Avian Infectious Bronchitis virus which was isolated in 1937 
(El-Sayed et al., 2021). The severe acute respiratory syndrome first 
emerged in China in 2002 (Zhu et al., 2020). The second emergence of 
this virus was in the form of Middle Eastern Respiratory Syndrome 
(MERS) that caused small outbreaks in 2012 initially in Saudi Arabia 
(Ramadan and Shaib, 2019). The third outbreak of SARS-CoV-2 
appeared in Wuhan China in 2019 (Zhu et al., 2020). WHO, together 
with national authorities, institutions and researchers, frequently ex-
amines if variants of SARS-CoV-2 develop changes in transmissibility, 
clinical presentation and severity. The execution of public health and 
social measures (PHSM) by national health authorities is also followed 
up for changes in the variants. Systems are established to detect signals 
of potential Variants of Concern (VOCs) or Variants of Interest (VOIs). 
The amount of threat these variants pose is determined by evaluating the 
signals. WHO in collaboration with GISAID, a global collective of sci-
entists monitors relative variant genome frequency per region at an 
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exponential rate by sequencing the genome of different variants (WHO, 
2021). 

SARS-CoV-2, betacoronavirus has a single-stranded positive-sense 
RNA and has a diameter between 80 and 220 nm. The viral envelope is 
made up of a lipid bilayer in which tiny envelopes (E) glycoprotein, 
spike (S) glycoprotein, nucleocapsid (N) protein and membrane (M) 
glycoprotein are the major structural proteins. These major structural 
proteins help the virus as an anchor to the host (Bhandari et al., 2021). 
The viral pathogen spreads though respiration, sneezing or by close 
contact with the infected person (Ge et al., 2020). The droplets from an 
infected person tend to adhere to a surface which may cause trans-
mission as the touch can carry the virus to mouth or nose. The incuba-
tion period for this infection varies from 2 to 14 days. The primary 
symptoms of COVID-19 include headache, fever, fatigue and dry cough. 
As the severity of the infection progress, it may lead to acute respiratory 
distress syndrome (ADRS), arrhythmia and shock. A lesser percentage 
shows signs of muscle ache, confusion, sore throat, headache, diarrhoea, 
chest pain, nausea and vomiting (Bhandari et al., 2021). Diminishing 
responsiveness, anosmia, hyposmia, hypogeusia and dysgeusia are the 
early manifestations of COVID-19 infection. Complete or incomplete 
anosmia and ageusia are the basic fringes in the sensory system ap-
pearances. Diffuse corticospinal tract signs with enhanced tendon re-
flexes, ankle clonus and bilateral extensor plantar reflexes were also 
accounted for in some patients. RNA of SARS-CoV-2 is detected in the 
cerebrospinal fluid (CSF) specimen (Z. Zhou et al., 2020). The most 
common and possible route to enter CNS is via the olfactory route (Ellul 
et al., 2020). The olfactory receptor neurons (ORNs) are the sole known 
neurons within the body that are directly in touch with the external 
medium, and that they show a high employee turnover and directly 
project within the CNS to the olfactory glomeruli of the olfactory bulb. 
On this basis, the likelihood that human coronavirus might invade the 
neural structure, and, in turn, the CNS began to be investigated (Oliviero 
et al., 2021). SARS-CoV-2 has also succeeded to invade the nervous 
system via the respiratory route. Precursor astrocyte and Oligodendro-
cyte cells have a significant number of receptors in major cells of the 
cerebral artery such as Angiotensin-converting enzyme 2 (ACE2) and 
Transmembrane Protease Serine 2 (TMPRESS2). This brain vascular 
network can help prevent SARS-CoV-2 from entering CNS (Garg, 2020). 
But, the presence of SARS-CoV-2 in CNS have been supported by a large 
number or research. 

2. Background 

The SARS-CoV-2 virus has a spike protein that mediates its entry into 
the host cells. The S gene of SARS-CoV-2 is highly variable from SARS- 
CoV, the nucleotide identity shared is less than 75% (Harrison et al., 
2020). The receptor-binding domain present in the spike protein me-
diates its direct contact with a cellular receptors ACE2 and an S1 / S2 
polybasic cleavage site that is proteolytically cleaved by cellular 
cathepsin L and TMPRSS2 (Hoffmann et al., 2020; F. Wu et al., 2020; P. 
Zhou et al., 2020). ACE2 receptor has proven to be the reason by which 
SARS-CoV-2 enters the host cell (Yan et al., 2020; Yang et al., 2020). The 
lung’s epithelial cells (alveolar) and the small intestine (enterocytes) 
have ACE2 expressed in abundant. Viruses in oral, nasal and naso-
pharynx mucosa are also known to be present. Endothelium and smooth 
muscle of vascular cells can have the expression of the ACE2 receptor in 
the brain (Hamming et al., 2004). TMPRSS2 facilitates entry of the virus 
through the plasma membrane surface where the cathepsin L activates 
the spike protein of SARS-CoV-2 in the endosomes. Now, this can 
counterbalance the entry of the virus into the cells that do not have 
TMPRSS2 (Hoffmann et al., 2020). The genome is now released into the 
host cytosol, open reading frame, ORF1a and ORF1b are translated into 
viral replication protein and cleaved into individual non-structural 
proteins leading to the formation of RNA dependent RNA polymerase 
(Perlman and Netland, 2009). The endoplasmic reticulum is rearranged 
into double-membrane vesicles (DMVs), to facilitate viral replication of 

genomic and sub-genomic RNA. These DMVs are translated later into 
accessory and viral structural proteins that lead to virus particle for-
mation (Snijder et al., 2006; Wu and Brian, 2010). 

2.1. Pathogenesis associated with neurological complications 

The transcription factor family of NF-κB is a pleiotropic regulator 
involved in many cell signalling pathways. Its stimuli cause inflamma-
tion and influence the development of axons and dendrites in their 
initiating state (Gutierrez and Davies, 2011). COVID-19 infection causes 
NF-κB activation, leading to stroke or brain thrombosis neuropathy. The 
cytokine (IL-6, IL-10, IFM-μ and TNF-α) storm is typical of the increased 
reaction in the colony of granulocytes. The genetic induction of adaptive 
immunogenic cells appears to have an impact on NF-κB. The unregu-
lated activation results in an autoimmune T-cell response coupled with 
inflammasome being released (Guisado-Vasco et al., 2020). When par-
thenolide, an inhibitor of NF-κB was administered there was a reduction 
in the COVID-19 infection. NF-κB was reported as a transcript of IκB 
degradation, a complex kinase enzyme phosphorylated by a protein 
kinase, induced by mitogens (DeDiego et al., 2014). Excess cytokines 
and species of reactive oxygen cause brain injury along with dysregu-
lation of the neurotransmitter due to high pro-inflammatory genes 
(Welcome and Mastorakis, 2021). 

Nrf2 is a part of a leucine transcription factor that expresses anti-
oxidant genes under the influence of oxidative stress (Cecchini and 
Cecchini, 2020). It can be useful for COVID-19 since it works against 
similar illnesses (Bhandari et al., 2021). In order to alleviate reactive 
stresses, Nrf2 is released, stabilised and translocated. Nrf2 generates an 
internal antioxidant alleviation during the process when the oxidative 
stress is switched on/off (Bhandari et al., 2021; Singh and Devasahayam, 
2020). 

If a virus starts replicating within the cell, inflammatory mediators 
are triggered to combat inflammatory cytokines and the species of 
reactive oxygen. Particularly the levels of macrophages and dendritic 
cells gets elevated. Respiratory failure creates radicals of superoxide and 
hydrogen peroxides that cause oxidative stress. The cytokine storm 
causes serious tissue damage upon activation of NF-κB (Cecchini and 
Cecchini, 2020). This over-articulation was observed to be agitated in 
Nrf2 knockout astrocytes (Pan et al., 2012). NF-κB monitors Nrf2 
mediated response element expression, the antioxidant response 
element (ARE). NF-κB basic component, p65, obstructs the antioxidant 
response element (ARE) gene expression (Bhandari et al., 2021). 

2.2. SARS-CoV-2 encounter with the central nervous system 

The structural proteins of SARS-CoV-2 plays an important role in 
determining the approach, multiplication and inclusion of the virions 
into a host body (Satarker and Nampoothiri, 2020a). It has also been 
reported that during the second week of COVID-19 infection and acute 
brainstem dysfunction is observed (Wong et al., 2020). Olfactory sus-
tentacular epithelial cells are important for smell and olfactory neuronal 
metabolism. Also, there is a significant amount of ACE2 and TMPRSS2. 
The SARS-CoV-2 virus, therefore, penetrates CNS and creates olfactory 
system abnormalities (Bilinska et al., 2020). The olfactory receptor 
neurons (ORNs) are the main neurons in the body that are immediately 
in touch with the outside medium. They show a high turnover rate and 
straightforwardly project inside the CNS to the olfactory glomeruli of the 
olfactory bulb (Oliviero et al., 2021). A study reported that human 
pluripotent stem cells obtain mixed neurones which in turn suggested 
that ACE2 is expressed in huge amounts in the neuronal cell bodies but 
comparatively less in the axons and dendrites (Xu and Lazartigues, 
2020). Another study to second the previous results suggested that 
SARS-CoV-2 tends to infect the neural progenitor cells (B. Z. Zhang et al., 
2020). The S protein of SARS-CoV-2 possesses an ACE2 binding protein 
of 10–20 times the binding capacity of SARS-CoV. A transformation 
takes place in the S1 subunit of the receptor-binding domain to enhance 
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ACE2 receptor binding as well as viral binding (Wrapp et al., 2020). 
Now, the S2 subunit is transformed into a post-fusion mode (Satarker 
and Nampoothiri, 2020b). To help in membrane fusion the activation 
and priming of the spike (S) protein is important, for which the ACE2 is 
expressed alongside TMPRESS2 (Glowacka et al., 2011). 

Facilitated viral replication in the host body produces a high amount 
of N protein in the initial stage of infection (Surjit and Lal, 2008). 
SARS-CoV RNA has N protein bound to it, which bundles them into a 
ribonucleoprotein complex (Huang et al., 2004). The N-terminal domain 
helps in RNA binding, the serine-rich linker region promotes phos-
phorylation and the C-terminal domain facilitates oligomerization 
(Kang et al., 2020). The small E proteins play a crucial role in viral 
duplication, deform minor hydrophobic viroporins that help in the 
removal and assemble the viral particles. They even facilitate cytotox-
icity and pathogenic pathways (Ye and Hogue, 2007). Neuronal viru-
lence and degradation are some of the major functions of E proteins 
(Stodola et al., 2018). It is even known to enhance the 
inflammation-mediated effect by increasing inflammatory responses in 
the host (Wang and Liu, 2016). 

Another structural protein, the most abundantly present in corona-
virus is the M protein (Alsaadi and Jones, 2019). This protein when 
associated with protein E, facilitates the adherence of spike protein over 
the exterior of M protein. The elongated structure of M protein is bent to 
produce an enveloped layer around the ribonucleoprotein (Neuman 
et al., 2011). Hence, we can conclude that such functions of structural 
proteins present in the SARS-CoV-2 play an important role in infecting 
the host cells (Satarker and Nampoothiri, 2020b). 

3. Neurological and neuropsychiatric complications 

COVID-19 adversities along with the respiratory dysfunction extend 
to the central as well as the peripheral nervous system, causing neuro-
logical and neuropsychiatric complications. The infection affects 
different regions of the nervous system (as shown in Fig. 1). 

3.1. Neuronal damages in respiratory centre 

Pulmonary malfunction is caused by aberrant muscular breathing, 
including chronic obstructive pulmonary disease (COPD) leading to a 
malfunctioning of the lungs. Pneumonia with ground glass opacities in 

the central and inferior lobes of the lungs is a characteristic indication of 
this infection. This along with acute respiratory distress syndrome and 
septic shock leads to deterioration in respiration (Wu and McGoogan, 
2020). This condition of lung damage arises in ARDS patients (Scala and 
Heunks, 2018). In studies conducted on animals, it was observed that 
SARS-CoV-2 particles enter the brain via the olfactory nerves and 
circulate into the brainstem as well as in the thalamus. The virus repli-
cated to a high number in the lungs of Tg mice. An extensive virus 
replication was also detected in the brain. The virus was not detected to 
a significant extent in CNS at day 2, but by day 4, a large fraction of cells, 
predominantly neurons expressed viral antigen. This extensive brain 
infection was postulated to be a critical condition about aspirational 
pneumonia. SARS-CoV-infected K18-hACE2 Tg mice were studied to 
further address the aspects of SARS-CoV infection of the brain, including 
sites of viral entry into the CNS and factors responsible for a lethal 
outcome. (Netland et al., 2008). In light of a recent study conducted by 
Zazhytska et al. the SARS-CoV-2 infection instigates extensive olfactory 
receptor (OR) and signalling component downregulation. This non-cell 
autonomous action is accompanied by a significant remodelling of 
neuronal nuclear architecture, resulted in the disintegration of genomic 
compartments housing OR genes. SARS-CoV-2 induced anosmia has a 
molecular explanation where the virus may change the integrity of cells 
without the passageway receptors. Because the virus only infects a 
limited percentage of cells, its capacity to modify the OSN transcriptome 
is constrained. The non-cell-autonomous, broad, and persistent down-
regulation of OR and OR signalling genes is thus the most plausible 
explanation for COVID-19 patients’ olfactory abnormalities. The fact 
that UV-neutralized serum from infected hamsters causes considerable 
and swift alterations in OSN nuclear architecture imply that SARS CoV-2 
infection influences the anatomy and function of cells that the virus 
cannot infect (Zazhytska et al., 2022). ACE2 receptors have been 
depicted in sections of the brainstem, in the paraventricular nucleus 
(PVN), also in the nucleus of the tractus solitarius (NTS) and even in the 
rostral ventrolateral medulla (Calcagno et al., 2020). The nucleus of the 
solitary tract in association with the nucleus ambiguus commands the 
respiration process of the lungs (Zoccal et al., 2014). The receptors in the 
respiratory tract and lung regions transmit sensory data into the solitary 
tract nucleus and nucleus ambiguus. The intrusions of efferent fibres 
emerge out of all the two nuclei leading to the respiratory system (Li 
et al., 2020). SARS-CoV-2 advances in the direction of the neurons of the 

Fig. 1. Neurological and neuropsychiatric 
manifestations due to COVID-19 affecting 
different regions of the brain. The frontal lobe is 
affected by many neurological abnormalities 
such as seizures, encephalitis, obsessive- 
compulsive disorder, psychosis, insomnia, en-
cephalopathy. Disorders like delirium affect the 
parietal, occipital as well as the temporal lobe. 
The temporal lobe is also affected by seizures, 
encephalitis, encephalopathy and respiratory 
dysfunction. Neuropsychiatric disorders such as 
pain disorders and anxiety affect the amygdala. 
Post-traumatic stress disorder affects the hip-
pocampus as well as the amygdala. Guillain- 
Barré syndrome affects the peripheral nervous 
system and the spinal cord region.   
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solitary tract nucleus in the medulla oblongata and cause damage to the 
rhythmic centre of respiration. It also affects the action potentials in the 
neuron which regulates the mechanism of respiration (inspiration and 
expiration) (Tassorelli et al., 2020). A primary oscillator named pre--
Bötzinger complex (PBC) present in the brain stem is vital for the process 
of respiration. As the secondary oscillator, it contains the retrotrapezoid 
nucleus or the parafacial respiratory group (RTN/pFRG). SARS-CoV-2 
could penetrate the CNS and infect PBC (Gandhi et al., 2020). This 
could lead to cardiorespiratory damages responsible for causing ARDS 
COVID-19 infected patients with respiratory failure (Acharya et al., 
2020). 

3.2. Acute cerebrovascular disease (ACVD) 

Acute cerebrovascular disease is caused by various complications in 
the cerebral blood vessels. The flow of cerebral blood and the supply of 
oxygen to the cerebral region is compromised in ACVD. Ischemic stroke, 
due to blockage of cerebral blood flow causing reduced oxygen supply 
leads to ACVD (Satarker and Nampoothiri, 2020b). A case study was 
presented with the symptoms of COVID-19 along with acute onset 
aphasia and weakness in the right side of the brain. A proximal middle 
cerebral artery thrombus and territorial infarct with local mass effect 
was confirmed by a computerized tomography (CT) Scan of the brain. 
The CT angiogram displayed a saddle pulmonary embolism, which is 
most likely to be managed with split-dose low molecular weight heparin. 
The activation of the coagulation system leads to the circulation of a 
peptide degradation product in the bloodstream, known as the D-dimer. 
D-dimer in access can be reduced by anticoagulation (Paterson et al., 
2020) i.e., higher levels of D dimer in the systemic circulation system 
could suggest higher chances of thrombosis which may lead to stroke 
(Zhang et al., 2018). COVID patients with severe infection having an 
acute cerebrovascular disease were suspected with a higher level of the 
D-dimer (Mao et al., 2020). Markers like hypersensitive C reactive 
protein (hsCRP), procalcitonin (PCT), erythrocytes sedimentation rate 
(ESR) and D dimer level are activated along with the coagulation system 
in COVID-19 patients (Yu et al., 2020). 

3.3. Seizures 

A seizure is a rapid, occasional, abrupt, uncontrolled electrical 
disturbance in the nerve cell activity due to high discharge from neu-
rones in the brain. It causes modifications in behaviour, movements and 
level of consciousness. They are characterized by loss of attention, 
impaired or loss of consciousness, skeletal muscle contraction as partial 
and generalized seizures (Stafstrom CE, 2015). It has been observed that 
seizures occur in the earlier stage of infection, and the ones with hypoxia 
have a high risk to manifest seizures (Lu et al., 2020). Frontal sharp 
waves in an EEG (Electroencephalography) test run in a COVID-19 pa-
tient suggested sporadic epileptic abnormality, a frontal epileptogenic 
dysfunction concluding SARS-CoV-2 invasion into the brain through the 
olfactory route (Galanopoulou et al., 2020). 

3.4. Guillain- Barré syndrome 

Guillain-Barré Syndrome (GBS) is an acute generalized poly-
radiculoneuropathy autoimmune neurologic disease of the peripheral 
nervous system. GBS is mainly caused by an immune response towards 
the antigen that causes the demyelination and injury to the axons 
(Satarker and Nampoothiri, 2020b). The nerves affecting muscle 
movement leading to Areflexia in the limbs, bilateral weakness in the 
facial muscles, bladder or bowel dysfunction, acute inflammatory 
demyelinating polyneuropathy, acute motor axonal neuropathy are 
some characteristics of GBS (Willison et al., 2016). Zika virus, Middle 
East Respiratory Syndrome (MERS-CoV) severe acute respiratory syn-
drome (SARS-CoV) have been known to trigger GBS (Cao-Lormeau et al., 
2016; Kim et al., 2017; Ng Kee Kwong et al., 2020). GBS can be 

diagnosed under clinical, electrophysiology or nerve conduction studies. 
In some studies, a real time reverse transcription–polymerase chain re-
action (RT-PCR) assay of the CSF was used to confirm the presence of 
SARS-CoV-2. The test turned out to be negative and, in some studies, 
antibodies against ganglioside were observed to be absent. Shreds of 
evidence conclude that exposure to SARS-CoV-2 in the nervous system 
can result in the part of the peripheral nervous system being attacked by 
the immune system (Catanzaro et al., 2020). This abnormal activation of 
immune response might provoke GBS by occupying glycoconjugate, 
particularly the gangliosides are the neural target (Cutillo et al., 2020). 
Sialic acid is used as an attachment factor for cell entry, they are linked 
to gangliosides. The S protein containing two components the S1 and S2 
subunits mediates the association and access of viral particles in the host 
cells(Alejandra Tortorici et al., 2019; Matrosovich, Herrler G, 2015). 
The communication between axons and glia and the receptor signal 
transduction is assisted by several gangliosides (Yamashita et al., 2005). 
Gangliosides are susceptible to an antibody-mediated attack due to their 
presence on the plasma membrane of the cells (Cutillo et al., 2020). 
COVID-19 triggers a cytokine storm by removing cytokines directly or 
encouraging a transition to a more anti-inflammatory cytokine profile 
(Caress et al., 2020). 

3.5. Encephalitis 

Encephalitis mediated by a viral (even bacterial) infection causes 
inflammation in the brain leading to neurological dysfunction (Willison 
et al., 2016). Patients with disturbed consciousness, seizures, fever, 
arthralgia symptoms and even respiratory malfunctions could be man-
ifested with viral encephalitis (Costa, da, Sato, 2020). The presence of 
inflammatory lesions in the brain parenchyma is a characteristic clinical 
feature of COVID-19 existing side-by-side with meningitis (Dogan et al., 
2020; Ye et al., 2020). The intrusion of the virus into the CSF is a sup-
portive hypothesis proved by a COVID-19 patient manifested with en-
cephalitis (Huang et al., 2020). Some authors suspect that encephalitis 
might be the result of anti-NMDA (N-methyl D-aspartate) receptor an-
tibodies inducing functional destruction of glutamatergic signalling in 
the CNS (Panariello et al., 2020). Neuroinflammation leading to en-
cephalitis is a consequence of the glial system being influenced by the 
immunological response of the brain. (Asadi-Pooya and Simani, 2020; 
Mudgal et al., 2019; Natoli et al., 2020). However, the association of 
clotting and infarction with the presence of ACE2 receptor in the 
vascular endothelium imply the possibility of another mechanism. 
(Satarker and Nampoothiri, 2020b). 

3.6. Meningoencephalitis 

Meningoencephalitis occurs when there is an inflammation in the 
meninges (three layers of membranes known to protect the brain and 
spinal cord) and the brain tissue. This leads to the symptoms like neck 
muscle stiffness, fever and headache. Meningoencephalitis may even 
involve inflammation in the brain parenchyma causing cortical 
dysfunction and aphasia coupled with hemiparesis (Sapra and Singhal, 
2019). As the traces of SARS-CoV-2 were detected in the CSF of a COVID 
19 patient, this suggest the association of COVID-19 with meningoen-
cephalitis. (Moriguchi et al., 2020). The absence of a strong immune 
system leads the pathogen to multiply rapidly (Satarker and Nampoo-
thiri, 2020b). In many prognoses white matter hyperintensities, anom-
alous occurrence in the medial temporal lobe and sacculus haemorrhage 
were observed. Increased level of proinflammatory cytokines IL-6, 
ferritin levels in CSF without pleocytosis is evident enough to eluci-
date the meningoencephalitis manifestation in COVID-19 patients 
(Dogan et al., 2020). Numerous neurological manifestations of menin-
goencephalitis are the result of an immune-mediated reaction to the 
aggressive virus (Satarker and Nampoothiri, 2020b). 
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3.7. Demyelinating lesions 

Autopsy reports have confirmed the presence of the demyelination 
and SARS-CoV viral particles along with genomics sequence in the brain 
(Gu et al., 2005; Zanin et al., 2020). Via the trans-lamina cribrosa, the 
neurotropic virus may reach the brain through the olfactory tract (Baig 
et al., 2020). The virus can infiltrate into the neuronal cells due to the 
intercommunication between the spike protein S1 and the ACE2 re-
ceptor of the host cell. (Wrapp et al., 2020). The delayed damage in the 
CNS appears to be controlled by the immune system (Klein et al., 2017). 
The development of virus-induced systemic inflammatory response 
syndrome (SIRS) also known as SIRS-like immune disorder is intricately 
linked to severe viral infection (Zanin et al., 2020). The proin-
flammatory state induced by the cytokine storm mainly prolonged by 
IL-1, IL-6 and TNF α, could be responsible for the activation of glial cells 
with successive demyelination. In other words the brain and spine 
Magnetic resonance imaging (MRI) of the patient exhibited a new onset 
of multiple, non-enhancing demyelinating lesions. It was assumed that 
following SARS-CoV-2 infection, the pro-inflammatory environment 
induced by the cytokine storm might be responsible for the activation of 
glial cells with subsequent demyelination as reported by (Mehta et al., 
2020 and Shabani, 2021). As a para-infective or post-infective phe-
nomenon, the virus could trigger the activation of antibodies against the 
glial cells (Zanin et al., 2020). SARS-CoV-2 might act as an operative 
infective trigger like the one of Epstein-Barr virus in multiple sclerosis. 
Severe pneumonia leading to hypoxia in the CNS causing an increase in 
anaerobic metabolism is required to trigger neurological damage. 
SARS-CoV-2 in the CSF sample are not a genuine confirmation as the 
neurological damage could be persistent due to an overdue immune 
response that occurs following the viremia. CSF clearance of virus is a 
low sensibility method to reduce lesions (Helms et al., 2020; Panciani 
et al., 2020; Ye et al., 2020). 

3.8. Neuropsychiatric consequence 

The neuropsychiatric sequelae are an emergent concern about the 
neuropsychiatric burden suffered by severely infected patients. Trauma- 
related symptoms such as depression, anxiety have been post-COVID 19 
observations. But, the cause being viral infections or the host immune 
response is uncertain (Troyer et al., 2020). COVID infection associated 
with a history of mood disorder or with suicidal tendencies is another 
apprehension (Okusaga et al., 2011). Many COVID survivors were 
diagnosed with post-traumatic stress disorder, depression, pain disorder, 
panic disorder and obsessive-compulsive disorder (Lam et al., 2017). 
Another set of neuropsychiatric manifestations includes encephalopa-
thy, delirium, mild cognitive impairment, mood swings, insomnia, sui-
cidal tendencies and psychosis (Alkeridy et al., 2020; Duong et al., 2020; 
Helms et al., 2020; Huarcaya-Victoria et al., 2020; Moriguchi et al., 
2020; Poyiadji et al., 2020; Troyer et al., 2020; Valdés-Florido et al., 
2020; Ye et al., 2020; Yin et al., 2020). 

The underlying biological basis of anosmia and the potential link 
between COVID-19 and Parkinson’s disease remains obscure. SARS- 
CoV-2 infection has been predicted as a possible risk factor for devel-
oping Parkinsonism-related symptoms during a good portion of patients 
and survivors. Parkinson’s disease with olfactory dysfunctions are 
characterized by impaired neurogenesis in olfactory bulb and olfactory 
epithilium (Rethinavel et al., 2021). 

COVID-19 patients with prior mental illness are recommended to be 
treated with psychotropic drugs simultaneously with the usual treat-
ment for the infection. Based on the tolerability and minimal drug in-
teractions the ones that are considered safe are Benzodiazepines 
(oxazepam and lorazepam), antidepressants (citalopram and escitalo-
pram), antipsychotics (olanzapine), and mood stabilizers (valproate) (K. 
Zhang et al., 2020). Delirium is another one of the uncharacteristic 
presentations of COVID-19 infection (Alkeridy et al., 2020). Many of the 
atypical antipsychotics are forbidden in this treatment as they may cause 

metabolic syndrome and worsen pre-existing/disease-related hyper-
glycaemia. It is recommended to steer clear of Benzodiazepines. For the 
elderly among antipsychotics, quetiapine is preferred or as alternative 
oral haloperidol (0.5–1 mg) (di Giacomo et al., 2020; National Institute 
for Health and Care Excellence (NICE) in collaboration with NHS En-
gland and NHS Improvement., 2020). Recent Findings suggest that over 
30% of patients hospitalized with COVID-19 may exhibit cognitive 
impairment, depression, and anxiety that persist for months after 
discharge from the hospital. These symptoms are even more common in 
patients who required intensive care for the severe effects of the virual 
infection. In addition to the pandemic-related psychological stress, 
multiple biological mechanisms are proposed to know the neuropsy-
chiatric symptoms observed with COVID-19. Given the limited infor-
mation about the virus, no concrete proof can support such findings 
(Nakamura et al., 2021). 

4. Mechanism hypothesis 

There could be two major routes for coronavirus to enter the CNS: 
hematogenous or neural retrograde dissemination. The spread of 
COVID-19 infection in CNS could happen through the olfactory pathway 
and continuing towards the neuronal territory (Y. Wu et al., 2020). A 
direct invasion by the SARS-CoV2 virus might be possible through the 
activation of the ACE2 receptor, expressed in both capillary and neural 
endothelium (Hamming et al., 2004; Y. Wu et al., 2020). To trigger 
chronic neuropsychiatry sequelae, secondary immune alterations are 
hypothesized (Chuan et al., 2017; Needham et al., 2020; Severance 
et al., 2011). Excessive inflammation is a crucial manifestation in 
severity of the infection that is caused due to dysregulated immune 
response (Chuan et al., 2017; Toljan, 2020). Patients may also exhibit 
increased prothrombin time and coagulopathy that may contribute to 
thrombosis or haemorrhage (Wang et al., 2020). Stress during the virus 
outbreaks is consequential to activating the 
hypothalamic-pituitary-adrenal axis, releasing increased levels of ste-
roids. These steroids once released impair immune system functioning. 
This event also precipitates the infection or worsens the severity, leading 
to neurasthenia and chronic fatigue. Psychotic symptoms could also 
manifest as a secondary side effect of drugs such as oseltamivir, corti-
costeroids and interferons which are used to treat COVID-19 infection, 
(Dinakaran et al., 2020; Russell et al., 2020; Ueda et al., 2015). 

The hypothesis that COVID-19 virus follows hematogenous route 
explains another plausible path. The virus can infect endothelial cells of 
the BBB to gain access or infect leukocytes to disseminate into the CNS 
(Desforges et al., 2019, 2014; Swanson and McGavern, 2015). It has 
been noticed that SARS-CoV infect endothelial cells of the BBB following 
viremia, giving a direct passage across the BBB into the CNS (Guo et al., 
2008). The ACE2 expressed in the capillary endothelium of the BBB has 
SARS-CoV-2 bound to gain access into the CNS (Baig et al., 2020). To 
pass through the blood-brain barrier SARS-CoV can infect monocytes 
and macrophages (Gu et al., 2005). The other proposed major route for 
entry into the CNS is by infecting the neurons in the peripheral and using 
the axonal transportation machinery to enter inside the CNS (Desforges 
et al., 2019, 2014; Swanson and McGavern, 2015). For SARS-CoV-2 
another potential route of entry into the CNS is via the cranial nerve, 
ACE2 receptor is broadly expressed on the epithelial cell of the oral 
mucosa (Xu et al., 2020). The olfactory nerve serves as the shortest route 
for several viruses to enter the CNS. The olfactory receptor neurones 
protrude into the nasal cavity and stretch the axons to the cerebriform 
plate into the olfactory bulb of the brain (Riel et al., 2015). Hyposmia, 
the olfactory neurological manifestation was reported in patients who 
tested positive in the nasopharyngeal swab test (Z. Zhou et al., 2020). 
SARS-CoV-2 patients manifest cytokine storm, elevated D-dimer levels 
and thrombocytopenia suggesting neurological infringement (Mehta 
et al., 2020; Zhang et al., 2020). 
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5. Peripheral nervous system 

Under a case study, COVID-19 patients with GBS as well as the onset 
of neurological symptoms, developed a brachial plexopathy after 
COVID-19 symptoms. GBS patients were treated with IVIG, with 
brachial plexopathy they received corticosteroid and gained partial re-
covery at the time of writing (Paterson et al., 2020). 

6. Long term consequences 

The long-term neurological consequences are because of various 
neurological manifestations such as encephalopathy, encephalitis, 
stroke, acute peripheral nerve disease, demyelination, axonal GBS, 
Miller Fisher syndrome, Kawasaki like multisystem inflammatory syn-
dromes were primarily reported. Magnitudes of brain damage were 
caused either by a direct viral infection or by intravascular coagulation. 
The endothelial dysfunction or cerebral ischemia or severe immuno-
logical response and cytokines storm leading to autoimmune events 
were also some manifestations. Lewy bodies accumulated and localised 
initially in the olfactory pathway prior to extending themselves to other 
parts of the brain. Such disorders can even occur due to prolonged 
stressful situations and may induce posttraumatic stress disorder and 
other neuropsychiatric syndromes (El-Sayed et al., 2021). 

7. Conclusion 

COVID-19 infection caused by SARS-CoV-2 has been known to 
engender severe respiratory complications. The SARS-CoV-2 virus has 
been biased towards the inferior respiratory tract leading to the most 
common manifestations such as fever and dry cough. In mild conditions, 
headache, altered smell and taste, cough, asthenia and myalgia are 
commonly noted in COVID-19 patients. There have been reports of en-
cephalopathy, encephalitis, meningitis, stroke, seizures, neuromuscular 
disorders, GBS and other neuropathies. Symptoms involving the CNS 
include dizziness, headache, altered and sensorium cerebrovascular 
events. The peripheral nervous system manifestations include dimin-
ished sensation towards taste and smell. The ACE2 receptor, which binds 
to the spike protein of Coronavirus along with TMPRESS2 are known to 
facilitate the entry of SARS-CoV-2 into the host. By infecting the endo-
thelial cells via the BBB SARS-CoV-2 enables its entry into the CNS. The 
Nrf2 mediated antioxidant response element expression is regulated by 
NF-κB. The involvement of NF-κB and Nrf2 in cytokine storm and 
oxidative stress are the characteristic of COVID-19. For the infection to 
disseminate into the neurological territory immunological detriment is 
crucial. This neuro-invasion can cause complications such as GBS, SIRS- 
like immune disorders, demyelinating lesions and more. To weigh these 
complications as significant as any, is a step to doctor the infection. 
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