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ABSTRACT 

Vigilance is a continuously altering state of cortical activation that influences cognition and 
behavior and is disrupted in multiple brain pathologies. Neuromodulatory nuclei in the brainstem 
and basal forebrain are implicated in arousal regulation and are key drivers of widespread 
neuronal activity and communication. However, it is unclear how their large-scale brain network 
architecture changes across dynamic variations in vigilance state (i.e., alertness and 
drowsiness). In this study, we leverage simultaneous EEG and 3T multi-echo functional 
magnetic resonance imaging (fMRI) to elucidate the vigilance-dependent connectivity of arousal 
regulation centers in the brainstem and basal forebrain. During states of low vigilance, most of 
the neuromodulatory nuclei investigated here exhibit a stronger global correlation pattern and 
greater connectivity to the thalamus, precuneus, and sensory and motor cortices. In a more alert 
state, the nuclei exhibit the strongest connectivity to the salience, default mode, and auditory 
networks. These vigilance-dependent correlation patterns persist even after applying multiple 
preprocessing strategies to reduce systemic vascular effects. To validate our findings, we 
analyze two large 3T and 7T fMRI datasets from the Human Connectome Project and 
demonstrate that the static and vigilance-dependent connectivity profiles of the arousal nuclei 
are reproducible across 3T multi-echo, 3T single-echo, and 7T single-echo fMRI modalities. 
Overall, this work provides novel insights into the role of neuromodulatory systems in vigilance-
related brain activity. 
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1. INTRODUCTION 1 

Vigilance is a continuously altering state of physiological and psychological activation (i.e., 2 

alertness and drowsiness) that impacts the ability of the brain to process information and 3 

respond to external stimuli (Oken et al., 2006; Sara and Bouret, 2012). Higher levels of 4 

alertness result in enhanced cognitive processing, greater emotional reactivity, and an improved 5 

capability for sustained attention (Canales-Johnson et al., 2020; Franzen et al., 2008; 6 
Jagannathan et al., 2022). Additionally, impairments of vigilance occur in multiple brain 7 

pathologies and contribute to the development of neurocognitive deficits in executive function 8 

and attention. These vigilance impairments include hyperarousal in neuropsychiatric disorders 9 

(Hegerl and Hensch, 2014; Xie et al., 2024) and excessive daytime sleepiness and sleep-wake 10 

disturbances in traumatic brain injury, epilepsy, Alzheimer’s disease, and Parkinson’s disease 11 
(Englot et al., 2020; Rothman and Mattson, 2012; Sandsmark et al., 2017). Identifying the 12 

neural circuit mechanisms underlying alterations in vigilance state may aid in uncovering novel 13 

therapies for neurocognitive deficits in various brain disorders. 14 

Key drivers of widespread neuronal activity and communication include neuromodulatory 15 

centers in the brainstem and basal forebrain (van den Brink et al., 2019). These 16 

neuromodulatory nuclei consist of monoaminergic, glutamatergic, and cholinergic neurons that 17 

project to the thalamus, hypothalamus, and widespread areas of the cortex, mediating cortical 18 

activation and autonomic function (Brown et al., 2012; Edlow et al., 2012; Scammell et al., 2017; 19 
Zaborszky et al., 2008). Human and animal studies have provided evidence that the neuronal 20 

activity of neuromodulatory nuclei is associated with changes in widespread cortical activity, 21 

brain network organization, and markers of arousal and attention (Grimm et al., 2024; Liu et al., 22 

2018; Taylor et al., 2022; Zerbi et al., 2019). For instance, blood oxygenation level dependent 23 

(BOLD) signals in the locus coeruleus (LC) and nucleus basalis of Meynert (NBM) have been 24 
shown to be correlated with pupil diameter, low-frequency electrophysiological activity, and 25 

attentional task response (Joshi et al., 2016; Liu et al., 2018; Murphy et al., 2014). Furthermore, 26 

pharmacological studies have found that inactivation of neurons in the NBM leads to 27 

suppression of global brain signals (Turchi et al., 2018) and modulation of monoamine 28 

neurotransmitters results in altered resting-state functional connectivity (FC) (van den Brink et 29 

al., 2016). 30 

Neuroimaging studies in healthy individuals have sought to characterize the structural and 31 

functional connectivity of neuromodulatory nuclei in the brainstem and basal forebrain (Bar et 32 
al., 2016; Beliveau et al., 2015; Cauzzo et al., 2022; Hansen et al., 2024; Yuan et al., 2019; 33 

Zhang et al., 2016). Abnormalities in the connectivity of these subcortical regions have also 34 

been observed in multiple neurological conditions, suggesting that mapping of the FC may 35 

provide a valuable avenue for identifying brain targets for therapeutic neuromodulation (Edlow 36 

et al., 2021; Englot et al., 2020; Gonzalez et al., 2021; Kelberman et al., 2020; Serra et al., 37 
2018). However, to date, functional magnetic resonance imaging (fMRI) studies have not 38 

comprehensively mapped vigilance-related alterations in the FC of the brainstem and basal 39 

forebrain. Dynamic changes in the spatiotemporal activity and FC of the cortex have been linked 40 

to altering states of alertness and wakefulness (Liu and Falahpour, 2020; Martin et al., 2021). 41 

These state-dependent effects are often unaccounted for due to the difficulty in estimating 42 
vigilance based on fMRI alone (Goodale et al., 2021; Liu and Falahpour, 2020; Martin et al., 43 
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2021). Subcortical neuromodulatory systems may be involved in coordinating arousal changes 44 

in the cortex (Brown et al., 2012; Scammell et al., 2017), and characterizing the vigilance-45 

dependent connectivity of the subcortical activating structures can provide novel insights into 46 
their role in regulating brain activity. Therefore, in this study, we leveraged simultaneously 47 

recorded electroencephalography (EEG) and fMRI data to elucidate the functional network 48 

architecture of neuromodulatory nuclei in different vigilance states. The EEG data were used to 49 

identify time periods of alertness and drowsiness (Olbrich et al., 2009; Sander et al., 2015), and 50 

the whole-brain correlation patterns of nine brainstem and two bilateral basal forebrain regions 51 

of the ascending arousal network were compared between the two vigilance states (Edlow et 52 

al., 2024; Edlow et al., 2012; Zaborszky et al., 2008). 53 

In addition to the vigilance-dependent FC analysis, we evaluated the ability of fMRI to reliably 54 
characterize the FC of nuclei in the brainstem and basal forebrain. Functional MRI 55 

investigations of brainstem and basal forebrain nuclei are challenging because of their small 56 

size, heterogeneity in location across individuals, and susceptibility to contamination by 57 

physiological noise due to their close proximity to major blood vessels, subarachnoid cisterns, 58 

and the ventricles (Beissner, 2015; Brooks et al., 2013). Advanced acquisition techniques, such 59 
as multi-echo sequences and 7T fMRI, may alleviate some of these limitations by improving the 60 

BOLD contrast, signal-to-noise ratio (SNR), and spatial resolution and specificity (Chang et al., 61 

2016; Sclocco et al., 2018; Turker et al., 2021). In particular, multi-echo independent component 62 

analysis can remove non-BOLD artifacts caused by head motion and cyclic physiological noise 63 

(Kundu et al., 2013; Kundu et al., 2012). Additional preprocessing methods that estimate and 64 

regress out non-neuronal BOLD signals originating from systemic vascular effects may also 65 

improve the SNR (Brooks et al., 2013; Caballero-Gaudes and Reynolds, 2017). 66 

We implemented a 3T multi-echo fMRI paradigm for the simultaneous EEG-fMRI dataset to 67 
mitigate SNR limitations caused by non-BOLD motion and physiological noise, and we used two 68 

large datasets of 3T and 7T single-echo fMRI from the Human Connectome Project (Smith et 69 

al., 2013) to quantify the spatial reproducibility of the static whole-brain correlation patterns of 70 

the neuromodulatory nuclei across different field strengths and acquisition methods. Because 71 

the optimal preprocessing strategy for analysis of subcortical fMRI remains an open question 72 
(Beissner, 2015; Sclocco et al., 2018; Turker et al., 2021), the FC patterns were also compared 73 

between three preprocessing pipelines designed to remove non-neuronal influences. Finally, we 74 

analyzed simultaneous fMRI and pupillometry recordings in the HCP 7T dataset to assess the 75 

reproducibility of the vigilance-dependent FC profiles of the subcortical nuclei between the EEG-76 

fMRI and HCP 7T datasets. 77 

2. RESULTS 78 

This study included resting-state fMRI data from three datasets (see Table 1 for a detailed 79 

description of each dataset). The first dataset consisted of simultaneous EEG and 3T multi-echo 80 

fMRI data collected at Vanderbilt University (VU 3T-ME dataset: n = 30 healthy subjects). The 81 

other two datasets consisted of 3T and 7T single-echo, multi-band fMRI from a large number of 82 
subjects in the HCP database (HCP 3T dataset: n = 375; HCP 7T dataset: n = 176) (Smith et 83 

al., 2013). Non-BOLD physiological and motion artifacts in the fMRI data were removed with 84 

multi-echo independent component analysis (ME-ICA) in the VU 3T-ME dataset (Kundu et al., 85 
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2013; Kundu et al., 2012; Turker et al., 2021) and with ICA-FIX in the HCP 3T and 7T datasets 86 

(Smith et al., 2013). fMRI signals were extracted from subcortical regions-of-interest (ROIs) 87 

involved in arousal and autonomic regulation (hereafter referred to as “arousal ROIs”). The 88 
arousal ROIs consist of monoaminergic, glutamatergic, and cholinergic nuclei in the brainstem 89 

(9 ROIs) (Edlow et al., 2024; Edlow et al., 2012) and basal forebrain (2 bilateral ROIs) 90 

(Zaborszky et al., 2008) (see Table 2). 91 

Table 1. Demographic and technical information for the three datasets used in this study: simultaneous 92 
EEG and 3T multi-echo fMRI from Vanderbilt University (VU) and 3T and 7T single-echo fMRI from the 93 
Human Connectome Project (HCP S1200 data release). 94 

Dataset VU 3T-ME HCP 3T HCP 7T 
Number of Subjects (n) 30 375 176 
Number of Sessions (n) 45 (1-2 per subject) 1500 (4 per subject) 704 (4 per subject) 
Age (mean ± SD years) 35.1 ± 15.3 28.5 ± 3.8 29.4 ± 3.3 

Gender (M/F) 14/16 207/168 70/106 
fMRI Modality 3T multi-echo fMRI 3T single-echo fMRI 7T single-echo fMRI 

Scalp EEG Yes (30 subjects) No No 
Respiratory belt and PPG Yes (28 subjects) Yes (375 subjects) No 

Pupillometry No No Yes (145 subjects) 
 95 

Table 2. Seed regions-of-interest (ROIs) used for the whole-brain connectivity analysis. The ROIs are 96 
involved in arousal and autonomic regulation and consist of monoaminergic, glutamatergic, and 97 
cholinergic nuclei in the brainstem (Harvard Ascending Arousal Network [AAN] atlas Version 1.0; 98 
https://www.nmr.mgh.harvard.edu/resources/aan-atlas) (Edlow et al., 2024; Edlow et al., 2012) and basal 99 
forebrain (JuBrain Anatomy Toolbox; https://www.fz-juelich.de/en/inm/inm-7/resources/jubrain-anatomy-100 
toolbox) (Zaborszky et al., 2008). 101 

Brain Area Region-of-interest (ROI) 
Main neurotransmitter systems 

(Brown et al., 2012; Edlow et al., 
2012; Scammell et al., 2017) 

Brainstem Locus coeruleus (LC) Norepinephrine 
Brainstem Dorsal raphe (DR) Serotonin 
Brainstem Median raphe (MR) Serotonin 
Brainstem Ventral tegmental area (VTA) Dopamine 
Brainstem Periaqueductal gray (PAG) Dopamine, GABA 
Brainstem Parabrachial nuclear complex (PBC) Glutamate 
Brainstem Cuneiform/subcuneiform nucleus (CSC) Glutamate, GABA 
Brainstem Pedunculopontine nucleus (PPN) Acetylcholine, glutamate, GABA 
Brainstem Nucleus pontine oralis (PO) Acetylcholine, glutamate, GABA 

Basal Forebrain Nucleus basalis of Meynert (NBM) Acetylcholine, glutamate, GABA 

Basal Forebrain Medial septum/diagonal band of Broca 
(MS/DBB) Acetylcholine, glutamate, GABA 

 102 

The quality of the fMRI signals of the arousal ROIs was assessed by computing the temporal 103 
SNR (tSNR) (shown in Supplementary Fig. 1) from the ME-ICA denoised data in the VU 3T-104 

ME dataset and from the ICA-FIX denoised data in the HCP datasets. The tSNR of the arousal 105 

ROIs was greater for the VU 3T-ME dataset compared to the HCP 3T and 7T datasets. In the 106 

VU 3T-ME dataset, the tSNR of the arousal ROIs was comparable to the tSNR of cortical ROIs 107 

from the Schaefer atlas (Schaefer et al., 2018). In the HCP 3T and 7T datasets, the tSNR of the 108 

arousal ROIs was lower than that of the cortical ROIs. 109 
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2.1. Cross-modality reproducibility of static connectivity patterns 110 

The whole-brain static FC patterns of the arousal ROIs were estimated by computing the seed-111 

based correlation over the entire fMRI scan duration. The seed-based correlation was 112 

calculated after removal of mean white matter (WM), deep cerebrospinal fluid (CSF), and fourth 113 

ventricle (FV) signals from the fMRI data (i.e., the mCSF/WM pipeline). The mCSF/WM pipeline 114 
is described in more detail in the Methods section and was performed to mitigate non-neural 115 

influences due to systemic vascular effects (Caballero-Gaudes and Reynolds, 2017; Turker et 116 

al., 2021). FC t-maps were then computed for the group average of the seed-based correlation 117 

patterns in each dataset, and the t-maps were thresholded to portray the strongest significant 118 

correlations (threshold of pFDR < 0.05 and 40% of the top t-values). The static FC t-maps of the 119 
LC, cuneiform/subcuneiform nucleus (CSC), and NBM are depicted in Fig. 1a, and the static FC 120 

t-maps of all the arousal ROIs are provided in a Neurovault repository (available upon 121 

acceptance of this manuscript; NIFTI file format). For ease of visualization, the spatial overlap of 122 

the static FC t-maps with 16 canonical brain network templates from the FINDLAB and 123 

Melbourne atlases (Shirer et al., 2012; Tian et al., 2020) was also computed (see Fig. 1b).  124 

Fig. 1 125 

The Dice similarity coefficient (DSC) was used to evaluate the reproducibility of the thresholded 126 
static FC t-maps across the three fMRI modalities (see Fig. 1c) (Turker et al., 2021). We found 127 

that the reproducibility across all three modalities was moderate to good for all of the arousal 128 

ROIs (DSC = 0.59-0.68 [interquartile range; IQR]), except for the periaqueductal gray (PAG) 129 

between the HCP 3T and 7T datasets. The FC pattern of the ventral tegmental area (VTA) had 130 
the lowest reproducibility between the VU 3T-ME and HCP 3T datasets while the FC of the PAG 131 

and medial septum/diagonal band of Broca (MS/DBB) had the lowest reproducibility between 132 

the VU 3T-ME and HCP 7T datasets. The FC of the PAG also had the lowest reproducibility 133 

between the HCP 3T and 7T datasets. 134 

In agreement with the moderate to good reproducibility, the thresholded FC patterns of most of 135 

the arousal ROIs were qualitatively similar between the three fMRI modalities. The LC exhibited 136 

strong positive correlations to regions of the thalamus, precuneus, basal ganglia, and salience, 137 

default mode, sensorimotor, and visual networks. The FC patterns of the other brainstem ROIs 138 
were relatively similar to that of the LC (see Supplementary Fig. 2 for the spatial similarity of 139 

the FC patterns between the arousal ROIs). The NBM exhibited strong positive correlations to 140 

regions of the thalamus, basal ganglia, mesial temporal lobe, and salience, default mode, 141 

auditory, language, and sensorimotor networks. Notable differences between the fMRI 142 

modalities include less spatial overlap of the FC patterns of the brainstem ROIs with the 143 
sensorimotor cortex in the HCP 3T dataset and greater spatial overlap with the executive control 144 

network and higher-order visual cortex in the HCP 3T and 7T datasets. 145 

2.2. EEG-based vigilance-dependent connectivity patterns 146 

We leveraged simultaneous EEG and fMRI data in the VU 3T-ME dataset to derive vigilance-147 

dependent FC patterns for the arousal ROIs. Time periods of alert and drowsy vigilance states 148 
were identified from the EEG data using an adapted version of the Vigilance Algorithm Leipzig 149 
(VIGALL) algorithm (see Fig. 2a for an illustration of the vigilance staging algorithm) (Huang et 150 
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al., 2015; Jawinski et al., 2019; Sander et al., 2015). Whole-brain FC t-maps were then 151 

computed for the group average of the seed-based correlation patterns of the arousal ROIs in 152 

each state separately and for the effect of vigilance state (drowsy versus alert) on the 153 
correlation patterns. The alert, drowsy, and drowsy versus alert FC t-maps were thresholded to 154 

portray the strongest significant correlations (threshold of pFDR < 0.05 and 40% of the top t-155 
values). The vigilance-dependent FC t-maps of the LC, CSC, and NBM are depicted in Fig. 2b, 156 

and the vigilance-dependent FC t-maps of all the arousal ROIs are provided in the Neurovault 157 

repository. The spatial overlap of the FC t-maps with the canonical brain network templates is 158 

shown in Fig. 2c. 159 

Fig. 2 160 

We found that the FC of all the arousal ROIs, except for the dorsal raphe (DR) and MS/DBB, 161 

were significantly different between the alert and drowsy states. The LC, CSC, median raphe 162 

(MR), parabrachial nuclear complex (PBC), nucleus pontine oralis (PO), and NBM had the 163 
greatest vigilance-related FC alterations. In general, the arousal ROIs exhibited a stronger 164 

global correlation pattern in the drowsy compared to the alert state. The brainstem ROIs had the 165 

strongest drowsy versus alert FC differences in regions of the thalamus, precuneus, and 166 

salience, ventral default mode, sensorimotor, auditory, and visual networks while the NBM had 167 

the strongest drowsy versus alert FC differences in regions of the mesial temporal lobe and 168 

executive control, salience, ventral default mode, language, sensorimotor, auditory, and higher-169 

order visual networks. 170 

In the separate alert and drowsy states, the thresholded FC patterns of the arousal ROIs had 171 
similar spatial profiles as their static FC patterns. Most of the arousal ROIs had strong positive 172 

correlations to the thalamus, precuneus, and salience, default mode, auditory, and sensorimotor 173 

networks in both the alert and drowsy states. The ROIs also had strong correlations to the visual 174 

networks in the drowsy state. The FC patterns of most of the ROIs in the alert state had more 175 

spatial overlap with the dorsal default mode network than the FC patterns in the drowsy state 176 
while the FC in the drowsy state had more spatial overlap with the visual networks. The FC of 177 

most of the ROIs in both the alert and drowsy states had more spatial overlap with the auditory 178 

network compared to their static FC patterns. 179 

2.3. Cross-modality reproducibility of vigilance-dependent connectivity patterns 180 

We evaluated the cross-modality reproducibility of the state-dependent FC patterns of the 181 
arousal ROIs that had the greatest vigilance-related FC alterations in the VU 3T-ME dataset 182 

(i.e., LC, CSC, MR, PBC, PO, and NBM). An unsupervised clustering algorithm was used to 183 

derive dynamic FC states in the VU 3T-ME and HCP 7T datasets, and markers of vigilance 184 

were estimated from the simultaneous EEG data in the VU 3T-ME dataset and from the 185 

simultaneous pupillometry recordings in the HCP 7T dataset. The unsupervised clustering was 186 
performed by first computing the dynamic FC of the arousal ROIs with sliding window 187 

correlations. The k-means algorithm was then employed to spatially cluster the dynamic FC 188 

patterns of each ROI into two states (Wang et al., 2016). Whole-brain FC t-maps were derived 189 

for the group average of the sliding window correlation patterns in each state separately and for 190 

the effect of state (state 2 versus state 1) on the correlation patterns. The FC t-maps were 191 
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thresholded at pFDR < 0.05 and at 40% of the top t-values, and the DSC was used to evaluate 192 

the reproducibility of the single- and two-state FC t-maps between the VU 3T-ME and HCP 7T 193 
datasets. The state-dependent FC t-maps of the LC and NBM are depicted in Fig. 3a-b, and the 194 

FC t-maps of all the arousal ROIs (i.e., LC, CSC, MR, PBC, PO, and NBM) are provided in the 195 

Neurovault repository. 196 

Fig. 3 197 

In the VU 3T-ME dataset, the VIGALL-based alert/drowsy staging algorithm was used to assign 198 

a vigilance score to each time window based on the EEG data. In the HCP 7T dataset, the 199 
percent duration of eye closure was computed from the pupillometry recordings and used as a 200 

putative marker of vigilance (Abe, 2023; Shekari Soleimanloo et al., 2019; Soon et al., 2021; 201 

Wang et al., 2016). We found that, for each arousal ROI, the VIGALL score was significantly 202 

lower and the percent eye closure was significantly greater for state 2 compared to state 1 (pFDR 203 
< 0.05; see Fig. 3c), suggesting that state 2 primarily corresponds to a state of drowsiness. The 204 

VIGALL scores of the time windows in state 1 were evenly distributed between alert and drowsy 205 

classifications (46-47% [IQR] percent alert and 47-49% [IQR] percent drowsy), suggesting that 206 

state 1 corresponds to a mixed state of alertness and drowsiness. The time windows in state 2 207 

were primarily classified as drowsy (6-9% [IQR] percent alert and 81-87% [IQR] percent 208 

drowsy). 209 

The single- and two-state FC t-maps had a high cross-modality reproducibility for the LC, CSC, 210 
MR, PBC, PO, and NBM (DSC = 0.62-0.68 [IQR]; see Fig. 3d), and the FC patterns were 211 

qualitatively similar between the VU 3T-ME and HCP 7T datasets. Similar to the EEG-derived 212 
drowsy versus alert FC patterns in the VU 3T-ME dataset, the FC of the arousal ROIs exhibited 213 

a stronger global correlation pattern in state 2 compared to state 1, with greater FC to regions of 214 

the thalamus, precuneus, and salience, ventral default mode, auditory, sensorimotor, and visual 215 

networks. Likewise, the thresholded single-state FC maps exhibited a similar correlation pattern 216 

as their EEG-derived alert and drowsy counterparts. The FC patterns in state 1 had more spatial 217 
overlap with the dorsal default mode network than the FC patterns in state 2, and the FC in 218 

state 2 had more overlap with the auditory, sensorimotor, and visual networks. 219 

2.4. Influence of preprocessing on the static connectivity 220 

In addition to the mCSF/WM pipeline, the fMRI data were preprocessed with two alternative 221 

strategies for removing systemic vascular effects (i.e., the physio and aCompCor pipelines) 222 
(Caballero-Gaudes and Reynolds, 2017). We then compared the static FC of the arousal ROIs 223 

in the VU 3T-ME, HCP 3T, and HCP 7T datasets between the three preprocessing pipelines. 224 

The aCompCor pipeline is a more aggressive method of removing signals from the WM and 225 

CSF (Behzadi et al., 2007) while the physio pipeline involves confound regression of low-226 

frequency physiological effects associated with heart rate and respiration (Chen et al., 2020). 227 
The static FC t-maps of the LC, CSC, and NBM for the physio and aCompCor pipelines are 228 

depicted in Supplementary Fig. 3. 229 

The mCSF/WM and physio pipelines resulted in largely similar static FC patterns for the arousal 230 
ROIs, and the cross-modality reproducibility of the static FC was similar for the mCSF/WM and 231 

physio pipelines (DSC = 0.59-0.68 [IQR] for the mCSF/WM pipeline and DSC = 0.56-0.62 [IQR] 232 
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for the physio pipeline; see Supplementary Fig. 4). The aCompCor pipeline led to a global 233 

decrease in the FC strength in all three fMRI modalities, primarily in the sensory and motor 234 

networks, and resulted in significant negative correlations for most of the arousal ROIs in the 235 
HCP 3T and 7T datasets. The cross-modality reproducibility was lower for most of the ROIs in 236 

the aCompCor pipeline compared to the other pipelines (DSC = 0.44-0.60 [IQR] for the 237 

aCompCor pipeline). However, the aCompCor pipeline improved the reproducibility between the 238 

HCP 3T and 7T datasets for the PAG, MS/DBB, and NBM. 239 

2.5. Influence of preprocessing on the vigilance-dependent connectivity 240 

We also compared the EEG-based vigilance-dependent FC of the arousal ROIs in the VU 3T-241 

ME dataset between the mCSF/WM, physio, and aCompCor pipelines. The vigilance-dependent 242 

FC t-maps of the LC, CSC, and NBM for the physio and aCompCor pipelines are depicted in 243 
Supplementary Fig. 5. Preprocessing the fMRI data through the physio pipeline resulted in less 244 

pronounced vigilance-related FC alterations compared to the mCSF/WM pipeline, and only the 245 
FC patterns of the CSC, MR, PBC, PO, VTA, and NBM were significantly different between the 246 

alert and drowsy states. The CSC, MR, and PBC had the greatest vigilance-related FC 247 

alterations, with similar spatial profiles as those in the mCSF/WM pipeline. Likewise, the 248 

reproducibility of the drowsy versus alert FC patterns between the mCSF/WM and physio 249 

pipelines was moderate to good for the CSC, MR, PBC, and VTA and poor for the PO and NBM 250 
(DSC = 0.37-0.61 [IQR]; see Supplementary Fig. 6). The reproducibility of the FC maps in the 251 

alert and drowsy states between the mCSF/WM and physio pipelines was high for all of the 252 

arousal ROIs (DSC = 0.77-0.79 [IQR]), except for the MS/DBB in the alert state. 253 

None of the arousal ROIs had significant FC alterations between alert and drowsy states for the 254 

aCompCor pipeline, and the overall strength of the FC patterns in the alert and drowsy states 255 

was reduced compared to the mCSF/WM and physio pipelines. The reproducibility of the FC 256 

maps in the alert and drowsy states between the aCompCor and the other two pipelines was 257 

poor to moderate for most of the arousal ROIs (DSC = 0.29-0.51 [IQR]). 258 

3. DISCUSSION 259 

Using simultaneous EEG and 3T multi-echo fMRI data, we investigated the whole-brain 260 

functional network architecture of arousal regulation centers in the brainstem and basal 261 

forebrain across EEG-derived states of vigilance. Our results revealed that the FC of most of the 262 

arousal ROIs was dependent on the vigilance level, with a stronger global correlation pattern in 263 
the drowsy state compared to the alert state. These state-dependent FC patterns were 264 

replicated in an independent 7T single-echo fMRI dataset in which pupillometry was used to 265 

assess vigilance. Furthermore, we found that the vigilance-related FC alterations were reduced 266 

but not completely removed when regressing out low-frequency physiological effects modeled 267 

from respiration and heart rate signals. Finally, we demonstrated that the most dominant 268 
connections of the static FC profiles of the brainstem and basal forebrain nuclei were 269 

reproducible across 3T multi-echo, 3T single-echo, and 7T single-echo fMRI modalities. 270 

Most of the arousal ROIs had a stronger global correlation pattern in the EEG-derived drowsy 271 
state compared to the alert state, with stronger FC to the thalamus, precuneus, and sensory and 272 

motor networks. Previous studies have shown that the amplitude of global fMRI fluctuations is 273 
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increased at lower vigilance levels and is dominated by higher signal power in sensory and 274 

motor regions (Falahpour et al., 2018; Liu and Falahpour, 2020; Pourmotabbed et al., 2024; 275 

Wong et al., 2013). This fMRI signature of vigilance is conserved across multiple experimental 276 
conditions (i.e., resting-state, sleep, and sedation) (Li et al., 2023). Likewise, prior work has 277 

discovered the existence of propagating global slow waves in fMRI that are associated with 278 

arousal transitions and are more frequent in states of drowsiness and NREM sleep (Gu et al., 279 

2021; Li et al., 2023; Liu et al., 2018; Raut et al., 2021). The vigilance-dependent FC patterns of 280 

the arousal ROIs may be influenced by the occurrence of these global slow waves, which are 281 

characterized by activation of sensory and motor cortices and co-deactivation of arousal nuclei 282 
in the thalamus, brainstem, and basal forebrain (Gu et al., 2021; Liu et al., 2018). The gamma 283 

power of intracranial EEG recordings in monkeys also exhibits a similar propagating wave 284 

topology that has been linked to cortex-wide increases in low-frequency electrophysiological 285 

activity, providing evidence for an electrophysiological basis (Gu et al., 2021; Li et al., 2023; Liu 286 

et al., 2015; Raut et al., 2021). 287 

The vigilance-dependent FC alterations of the arousal ROIs were reduced but not completely 288 

removed when regressing out low-frequency physiological effects from the fMRI data. This 289 
indicates that changes in respiration and heart rate are associated with some but not all of the 290 

vigilance-dependent FC differences, which may be related to the role of the subcortical arousal 291 

regions in central autonomic and cardiorespiratory regulation (Benarroch, 2018; Iacovella and 292 

Hasson, 2011). Prior work has demonstrated that physiological effects in fMRI are greater at 293 

lower vigilance levels and are strongly correlated with the global fMRI signal and with fMRI 294 

signals in the thalamus, precuneus, and sensory and motor cortices (Gold et al., 2024; Ozbay et 295 
al., 2019; Yuan et al., 2013). The precuneus and sensory cortices are brain areas with a high 296 

vascular density (Bernier et al., 2018), suggesting that the physiological covariance in fMRI may 297 

partially represent systemic effects on brain vasculature (e.g., due to changes in arterial CO2 298 

concentration and blood pressure) (Chen et al., 2020; Liu, 2016; Liu et al., 2017). However, 299 

studies have shown that arousal-related global activity in fMRI co-occurs with shifts in both EEG 300 
power and peripheral physiological signals (Gold et al., 2024; Gu et al., 2022; Ozbay et al., 301 

2019). Electrophysiological oscillations in sensory and autonomic brain regions have also been 302 

observed to be coupled with cardiorespiratory activity, potentially reflecting neural interoceptive 303 

and autonomic processes (Engelen et al., 2023; Herrero et al., 2018; Kluger and Gross, 2021). 304 

The stronger global correlation pattern of the arousal ROIs in the drowsy state suggests that 305 

neuromodulatory arousal systems may be involved in regulating global fMRI activity. These 306 

findings agree with a previous study demonstrating that inactivation of the NBM leads to 307 

suppression of global fMRI signals (Turchi et al., 2018). Neuromodulatory regulation of global 308 
fMRI activity may occur through multiple, interconnected mechanisms. Global fMRI fluctuations 309 

have been shown to be coupled to low-frequency electrophysiological oscillations and to low-310 

frequency variations in heart rate and respiration (Gu et al., 2022; Liu et al., 2018; Ozbay et al., 311 

2019; Pourmotabbed et al., 2024; Wong et al., 2013). These slow signal changes may be 312 

influenced by neuromodulatory control of widespread neuronal activity, brain vasculature, and 313 
autonomic function across different vigilance states. For instance, low-frequency EEG 314 

oscillations during drowsiness and NREM sleep are thought to arise due to the influence of 315 

decreased neuromodulator levels on thalamocortical activity (Brown et al., 2012; Lorincz and 316 
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Adamantidis, 2017). Neuromodulator levels also mediate brain vascular tone and astrocyte 317 

activity, which can affect low-frequency electrophysiological signals via modification of interstitial 318 

ion concentrations (Ding et al., 2016; Lewis, 2021; Rasmussen et al., 2020). In addition, 319 
subcortical arousal regions are implicated in vigilance-dependent modulation of central 320 

cardiorespiratory control (Benarroch, 2018), and fluctuations in peripheral physiological activity 321 

are associated with systemic vascular effects (Chen et al., 2020; Liu, 2016; Liu et al., 2017) and 322 

entrainment of neural activity (Engelen et al., 2023; Herrero et al., 2018; Kluger and Gross, 323 

2021). 324 

The most dominant connections of the static FC of the arousal ROIs were reproducible across 325 

the three fMRI modalities and consisted of strong correlations to the thalamus, basal ganglia, 326 

precuneus, sensory and motor cortices, and salience and default mode networks. These brain 327 
areas partially align with the whole-brain structural connectivity profiles of the subcortical 328 

arousal nuclei. The LC has dense projections to the thalamus, sensory and motor cortices, 329 

precuneus, and salience and default mode networks (insula, cingulate gyrus, and medial 330 

prefrontal cortex) as well as sparse projections to the basal ganglia (caudate and putamen) 331 

(Zerbi et al., 2019). Studies in rodents have employed chemogenetic stimulation techniques to 332 
demonstrate that LC projections influence the FC strength of these regions (Oyarzabal et al., 333 

2022; Zerbi et al., 2019). Moreover, our findings revealed that the static FC patterns were highly 334 

similar across the brainstem ROIs and moderately similar between the brainstem and basal 335 

forebrain ROIs. The similarity of the FC patterns may result from the reciprocal structural 336 

connections of the arousal nuclei and from reciprocal modulation of their neurotransmitter 337 

activity (Brown et al., 2012; Edlow et al., 2024). 338 

We found that the arousal ROIs generally had strong FC to the precuneus and salience, default 339 

mode, auditory, and sensorimotor networks in both the alert and drowsy states and strong FC to 340 
the visual networks in the drowsy state. Prior studies have provided evidence for the importance 341 

of neuromodulatory arousal systems in sensory processing (Mather et al., 2016; Poe et al., 342 

2020), which is consistent with the strong connectivity of the subcortical arousal nuclei to the 343 

salience and sensory networks. For example, the LC-norepinephrine system has been 344 

hypothesized to interact with the salience network in order to regulate selective processing of 345 
salient stimuli (Mather et al., 2016; Poe et al., 2020). Norepinephrine and LC activity have also 346 

been shown to alter visual field receptors in the occipital lobe, modulate odor detection, and 347 

enhance auditory perception (Poe et al., 2020). Furthermore, monoaminergic neuromodulators 348 

and the basal forebrain have been implicated in regulating neural activity and FC within the 349 

default mode network (Harrison et al., 2022; Kelly et al., 2009; Nair et al., 2018; Oyarzabal et 350 

al., 2022; van Wingen et al., 2014). The default mode network has been shown to be more 351 
active during states of resting wakefulness compared to externally oriented tasks (Buckner and 352 

DiNicola, 2019), and FC of the default mode network has been associated with behavioral and 353 

electrophysiological measures of drowsiness (Chang et al., 2013; Samann et al., 2011; Ward et 354 

al., 2013). In our work, the FC patterns of the arousal ROIs had greater spatial overlap with the 355 

dorsal default mode network at a higher vigilance state, indicating that interactions between the 356 

arousal nuclei and default mode network may be involved in promoting a resting wakeful state. 357 

Unsupervised clustering of the dynamic FC of the arousal ROIs resulted in state-dependent FC 358 
patterns that were highly reproducible between the VU 3T-ME and HCP 7T datasets. The FC in 359 
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the lower vigilance state was characteristic of the sensory dominated global correlation pattern 360 

observed in the EEG-derived drowsy state while the FC in the higher vigilance state exhibited 361 

strong correlations to the thalamus, precuneus, and salience and default mode networks. The 362 
global FC pattern corresponded to a lower EEG vigilance score in the VU 3T-ME dataset and to 363 

a greater percent eye closure in the HCP 7T dataset, which is consistent with the similarity of 364 

vigilance-fMRI relationships between EEG-fMRI and pupillometry-fMRI modalities (Liu and 365 

Falahpour, 2020; Soon et al., 2021). Pupil size and dilation are indices of increased arousal and 366 

have been shown to be negatively correlated with fMRI signals in sensorimotor and visual 367 

networks and positively correlated with thalamic and brainstem regions (Murphy et al., 2014; 368 
Schneider et al., 2016; Yellin et al., 2015). Spontaneous eye closures are indices of decreased 369 

arousal and have been associated with fMRI activation in the precuneus and ventral default 370 

mode, auditory, sensorimotor, and visual networks and with deactivation in the thalamus and 371 

brainstem (Ong et al., 2015; Soon et al., 2021). The fMRI activation patterns during eye 372 

closures resemble the spatial topology of global fMRI waves that occur more often at lower 373 
vigilance levels (Gu et al., 2021; Li et al., 2023; Liu et al., 2018; Raut et al., 2021). These 374 

arousal-related brain activation events may influence the dynamic FC profiles of the subcortical 375 

arousal nuclei, which have been implicated in regulating pupil activity across different vigilance 376 

states (Joshi, 2021; Larsen and Waters, 2018). 377 

Our findings for the static FC patterns of the arousal ROIs generally agree with the results of 378 

prior studies (Bar et al., 2016; Beliveau et al., 2015; Li et al., 2014; Turker et al., 2021; Yuan et 379 

al., 2019; Zhang et al., 2016), although some discrepancies are observed primarily in the 380 

sensorimotor and visual networks. Inconsistencies between datasets may be a consequence of 381 
differences in tSNR, preprocessing strategies, sample size, and vigilance state (e.g., eyes-382 

closed versus eyes-open and shorter versus longer scan durations). Previous work in fMRI 383 

found that the FC of the LC is only moderately concordant between multi-echo and single-echo 384 

preprocessed fMRI data (Turker et al., 2021). In our study, the tSNR of the arousal ROIs in the 385 

multi-echo fMRI dataset was greater than the tSNR in both the 3T and 7T single-echo fMRI 386 
datasets even though ICA-FIX had been applied to mitigate non-BOLD artifacts. Additionally, we 387 

found that the aCompCor pipeline reduced the overall strength of the FC maps, introduced 388 

significant negative correlations for the HCP datasets, and resulted in lower cross-modality 389 

reproducibility. Similarly, previous studies that employed aCompCor or global signal regression 390 

observed significant negative correlations in the FC patterns of the LC, DR, VTA, and NBM 391 
(Beliveau et al., 2015; Li et al., 2014; Zhang et al., 2016). Global signal regression and 392 

aCompCor aggressively remove global contributions to the correlation profiles of the arousal 393 

ROIs, and global signal regression has been shown to shift FC networks in fMRI toward 394 

negative correlations (Murphy and Fox, 2017). These negative correlations may be a byproduct 395 

of removing vigilance-related signals from the fMRI data (Liu et al., 2017; Nalci et al., 2017). 396 

The cross-modality reproducibility of the static FC was the lowest for the VTA, PAG, and 397 

MS/DBB. The VTA had the lowest tSNR of the arousal ROIs in all three datasets, and the PAG 398 

may be more susceptible to non-neural influences because of its proximity to the cerebral 399 
aqueduct. We implemented ME-ICA in the VU 3T-ME dataset and ICA-FIX in the HCP datasets 400 

to mitigate non-BOLD cyclic physiological artifacts, and we evaluated the FC after regressing 401 

out low-frequency physiological effects modeled from WM and CSF signals (mCSF/WM and 402 
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aCompCor pipelines) or heart rate and respiration signals (physio pipeline). Other studies have 403 

implemented similar preprocessing strategies (e.g., RETROICOR and removal of WM and CSF 404 

regressors) (Bar et al., 2016; Beliveau et al., 2015; Turker et al., 2021; Yuan et al., 2019). 405 
However, the optimal preprocessing pipeline remains an open question and may include novel 406 

techniques, such as masked ICA (Beissner, 2015; Maki-Marttunen and Espeseth, 2021). 407 

Advanced methods for localization and co-registration of the arousal ROIs, such as deep 408 

learning-based segmentation and contrast enhanced structural imaging, may also improve the 409 

accuracy of the FC estimates (Doss et al., 2023; Maki-Marttunen and Espeseth, 2021; Turker et 410 

al., 2021). An important caveat is that aggressive removal of low-frequency physiological effects 411 
during preprocessing may reduce meaningful signal variance associated with arousal-related 412 

neural and neuromodulatory activity. In particular, studies have shown that low-frequency EEG 413 

oscillations are coupled to slow pulsations in global fMRI activity, CSF flow, respiration, and 414 

cardiac signals during low vigilance states, which may reflect arousal-related metabolic 415 

clearance and autonomic processes (Fultz et al., 2019; Helakari et al., 2022; Picchioni et al., 416 

2022). 417 

The static FC patterns of the arousal ROIs had a moderate to good reproducibility across the 418 
three fMRI modalities despite the lower tSNR of the HCP datasets compared to the VU 3T-ME 419 

dataset. The large sample size of the HCP datasets and greater number of timepoints per 420 

subject provide greater statistical power that may compensate for the lower tSNR (Helwegen et 421 

al., 2023; Smith et al., 2013). In addition, the static FC in the 3T and 7T HCP datasets tended to 422 

have higher reproducibility with each other than with the VU 3T-ME dataset, which may be 423 

attributed to several factors. Both the HCP datasets were collected in an eyes-open condition 424 
(rather than the eyes-closed condition in the VU 3T-ME dataset) and were acquired with a multi-425 

band fMRI sequence. The HCP datasets also share some of their subject population and have a 426 

similar age range. The neocortical FC of subcortical arousal regions has been shown to be 427 

associated with age and age-related cognitive performance (Guardia et al., 2022). 428 

Overall, the results of our study suggest that the FC of most of the arousal ROIs is influenced by 429 

dynamic variations in vigilance state. The spatial topology of the vigilance-dependent FC may 430 

reflect the role of the arousal nuclei in regulating global fMRI activity via neurobiological, 431 
autonomic, and vascular mechanisms. These findings have broad implications for studying 432 

arousal networks in healthy individuals and for clinical investigations of disrupted arousal circuits 433 

in neurological and neuropsychiatric disorders. Degeneration of cholinergic and monoaminergic 434 

neurons is a hallmark of neurodegenerative disorders such as Parkinson’s and Alzheimer’s 435 

disease (Grothe et al., 2014; Kelberman et al., 2020; Ray et al., 2018; Schmitz et al., 2016; 436 

Seidel et al., 2015), and the fMRI activity and FC of brainstem and basal forebrain nuclei have 437 
been related to cognitive outcomes in these disease groups (Mieling et al., 2023; Serra et al., 438 

2018; Wang et al., 2023; Zeng et al., 2022). Impaired FC of subcortical arousal regions has also 439 

been observed in temporal lobe epilepsy (Englot et al., 2018; Gonzalez et al., 2023; Gonzalez et 440 

al., 2021) and traumatic brain injury (Snider et al., 2020; Spindler et al., 2021; Woodrow et al., 441 

2023) and may contribute to excessive drowsiness, sleep disturbances, and neurocognitive 442 
deficits of attention and executive function (Englot et al., 2020; Sandsmark et al., 2017). 443 

However, if not properly controlled for, differences in vigilance between patient and control 444 

populations can act as a confounding factor in resting-state neuroimaging studies. Likewise, 445 
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modeling vigilance-related interactions in fMRI may lead to the discovery of novel neural and 446 

physiological biomarkers of arousal and neurocognitive disturbances (Bagshaw et al., 2017; 447 

Guo et al., 2023; Wang et al., 2024). 448 

4. METHODS 449 

4.1. Simultaneous EEG-fMRI data collection and preprocessing 450 

This study included resting-state fMRI data from three datasets. Detailed descriptions of the 451 
datasets are provided in Table 1. The first dataset consisted of 20-minute sessions of 3T multi-452 

echo fMRI collected from 36 healthy subjects (65 sessions in total) during April 1, 2021 to April 453 
29, 2023 at Vanderbilt University (VU 3T-ME dataset). All the participants provided written 454 

informed consent, and the study protocol was approved by the Institutional Review Board of 455 

Vanderbilt University. The MRI data were acquired on a Philips 3T Elition X scanner (Philips 456 

Healthcare, Best, Netherlands) with a 32-channel head/neck coil. The BOLD fMRI data were 457 

collected in an eyes-closed resting-state condition with a 3T multi-echo, gradient-echo EPI 458 
sequence (3-mm by 3-mm in-plane ACQ resolution; 2.5-mm by 2.5-mm in-plane reconstruction 459 

resolution; 240-mm by 240-mm in-plane FOV; slice thickness = 3 mm; slice gap = 1 mm; 30 460 

axial slices; FA = 79°; TE =  13, 31, 49 ms; TR = 2100 ms; N = 575 volumes). A high-resolution, 461 

T1-weighted structural volume was obtained for anatomical co-registration with a multi-shot, 462 

turbo-field-echo sequence (1-mm isotropic spatial resolution; 256-by-256 in-plane FOV; 150 463 

axial slices; FA = 8°; minimum TI delay = 634.8 ms; TE = 4.6 ms; TR = 9 ms; turbo factor = 464 

128). 465 

Scalp EEG, respiratory, and photoplethysmography (PPG) data were recorded simultaneously 466 
with the fMRI data. MRI scanner (volume) triggers were recorded with the EEG and 467 

physiological signals for data synchronization. The scalp EEG data were collected with a 32-468 

channel 3T MR compatible system (BrainAmps MR, Brain Products GmbH) at a sampling rate 469 

of 5 kHz, referenced to the FCz channel, and synchronized to the scanner’s 10 MHz clock. The 470 

respiratory and PPG data were collected at a 496 Hz sampling rate using a pneumatic belt and 471 
PPG transducer integrated with the MR scanner (Philips Healthcare, Best, Netherlands). The 472 

pneumatic belt was placed around the subject’s abdomen, and the PPG transducer was 473 

attached to the subject’s index finger. Data from 15 sessions were excluded due to the 474 

presence of buffer overflow errors, data transfer artifacts, or excessive noise (e.g., unremoved 475 

residual gradient artifacts) in the EEG data. Data from 5 sessions were excluded due to missing 476 

fMRI volumes and/or abbreviated scanning sessions. All the remaining 30 subjects (15 subjects 477 
with 2 sessions and 15 subjects with 1 session; 45 sessions in total) were included in the study. 478 

Out of the remaining subjects, 2 of the subjects (4 sessions) had unusable respiratory and PPG 479 

recordings and were excluded from any analyses requiring use of the physiological data. 480 

The 3T multi-echo fMRI data were preprocessed in AFNI (https://afni.nimh.nih.gov) using the 481 

following procedure: motion co-registration with six-parameter rigid body alignment based on 482 

the middle echo (3dvolreg function), slice-timing correction (3dTshift function), and denoising 483 

with multi-echo independent component analysis (ME-ICA) (tedana 0.0.9a toolbox). ME-ICA 484 
was performed to mitigate non-neuronal artifacts in the fMRI data caused by head motion and 485 

aliased cyclic physiological noise resulting from cardiac pulsatility and respiration-induced B0-486 

field shifts (Kundu et al., 2013; Kundu et al., 2012; Turker et al., 2021). After the ME-ICA 487 
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denoising, the fMRI data were co-registered to the structural T1-weighted image and nonlinearly 488 

warped to the MNI152 template (2-mm isotropic resolution) using the Advanced Normalization 489 

Tools (ANTs) toolbox (https://github.com/ANTsX/ANTs). Additional preprocessing of the 490 
normalized fMRI data included spatial smoothing at FWHM = 3 mm (AFNI 3dFWHMx function), 491 

confound regression of potential noise signals (described in section 4.4) and Legrende 492 

polynomials up to 4th order (to remove scanner drift), and bandpass filtering at 0.01-0.15 Hz. 493 

The EEG data were denoised using the average artifact subtraction procedure of BrainVision 494 

Analyzer 2 (Brain Products, Munich, Germany) to remove MR-induced gradient and 495 

ballistocardiogram (BCG) artifacts (Goodale et al., 2021). The EEG data were then aligned to 496 

the fMRI data, down-sampled to 250 Hz, and additionally preprocessed with the EEGLAB 497 

v2020.0 toolbox of MATLAB. The additional preprocessing steps included 60 Hz notch filtering 498 
to remove powerline noise, 0.5 high-pass and 70 Hz lowpass filtering, and rejection of noisy 499 

channels (e.g., exhibiting low correlation to neighboring electrodes). The bad channel rejection 500 

was limited to at most 3 channels. After the preprocessing, the Vigilance Algorithm Leipzig 501 

(VIGALL) algorithm was implemented to stage the EEG data into five vigilance stages 502 

(described in section 4.5) (Sander et al., 2015). 503 

The respiratory data of the subjects were contaminated with transient periods of signal dropout 504 

due to malfunction of the transducer. These periods were visually marked and replaced with 505 

NaN values to denote missing time points (3.4-6.4% [IQR] of the total scan duration). The 506 
respiratory volume (RV) time-series, matched to the fMRI sampling rate, was then computed by 507 

calculating the temporal standard deviation of the respiratory waveform in 6-s sliding windows 508 

centered at each TR (Chang et al., 2009; Chen et al., 2020). The RV at each time window was 509 

calculated using all the available time points in the window if less than 20% of the time points 510 

were missing. The RV was assigned a NaN value otherwise. For the PPG data, the peak 511 
detection algorithm of MATLAB (findpeaks function) was used to locate time points 512 

corresponding to individual heart beats, and the time-varying inter-beat-interval was computed 513 

by calculating the difference between adjacent peak times (Chang et al., 2009; Chen et al., 514 

2020). Outliers in the inter-beat-interval time-course were identified based on a cut-off of more 515 

than 2.5 standard deviations away from the mean and linearly interpolated (0.75-1.8% [IQR] 516 
outliers out of all the time points per session). The heart rate (HR) time-series was then 517 

computed by calculating the inverse of the median inter-beat-interval in 6-s sliding windows 518 

centered at each TR. 519 

4.2. Human Connectome Project (HCP) database and preprocessing 520 

The other two datasets included in this study consisted of a subsample of healthy subjects with 521 
3T single-echo fMRI (HCP 3T dataset) and a subsample of healthy subjects with 7T single-echo 522 

fMRI (HCP 7T dataset) from the HCP S1200 data release (Smith et al., 2013; Van Essen et al., 523 

2012). Respiratory and PPG data were simultaneously acquired in the HCP 3T dataset, and 524 

pupillometry data were simultaneously acquired in the HCP 7T dataset. For the HCP 3T 525 

dataset, we included subjects (n = 375 subjects; 1500 sessions in total) who had four complete 526 
14.4-minute sessions of resting-state fMRI data and whose physiological recordings were 527 

previously reported to be of good quality (Power et al., 2020; Xifra-Porxas et al., 2021). For the 528 
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HCP 7T dataset, we included subjects (n = 176 subjects; 704 sessions in total) who had four 529 

complete 15-minute sessions of resting-state fMRI data. 530 

For both HCP datasets, the fMRI data were acquired in an eyes-open resting-state condition 531 

using a simultaneous multi-slice, gradient-echo EPI pulse sequence. The imaging parameters 532 

were 2-mm isotropic spatial resolution, FA = 52°, TE = 33.1 ms, TR = 720 ms, multiband factor 533 

= 8, N = 1200 volumes for the HCP 3T dataset and 1.6-mm isotropic spatial resolution, FA = 534 
45°, TE = 22.2 ms, TR = 1000 ms, multiband factor = 5, N = 900 volumes for the HCP 7T 535 

dataset. The data were provided after prior preprocessing had been performed with the ICA-FIX 536 

denoising pipeline (Smith et al., 2013). Briefly, the ICA-FIX pipeline included distortion and 537 

motion correction, co-registration to the subject’s structural T1-weighted image, global intensity 538 

normalization, spatial normalization to the standard MNI space, minimal high-pass filtering 539 
(cutoff = 2000 s), and ICA with the FSL tool FIX to remove non-neural spatiotemporal 540 

components (e.g., corresponding to scanner drift, head motion, and cyclic physiological noise). 541 

We additionally preprocessed the ICA-FIX cleaned data using the following procedure. The 542 

HCP 7T fMRI data were spatially down-sampled to a 2-mm isotropic resolution to match the 543 

spatial resolution of the other two datasets, and the fMRI data of both HCP datasets were 544 
spatially smoothed at FWHM = 4 mm (AFNI 3dFWHMx function), bandpass filtered at 0.01-0.15 545 

Hz, and temporally down-sampled by a factor of 2. Confound regression of potential noise 546 

signals (described in section 4.4) was then performed on the bandpass filtered and down-547 

sampled fMRI data. 548 

RV and HR signals were computed from the respiratory and PPG data in the HCP 3T dataset 549 

following the same sliding window procedure described in section 4.1. The RV and HR signals 550 

were then bandpass filtered at 0.01-0.15 Hz and temporally down-sampled by a factor of 2. In 551 

the HCP 7T dataset, the pupillometry data were aligned to the fMRI data and screened for faulty 552 
recordings according to the methodology of Gonzalez-Castillo et al (Gonzalez-Castillo et al., 553 

2022). Out of 704 sessions, 568 had available pupillometry data. Out of these 568 sessions, the 554 

pupillometry data of 20 sessions lacked TR onset information, had abbreviated recordings, or 555 

could not be loaded. Another 26 sessions had periods of eye closure greater than 90% of the 556 

recording duration, indicating potentially defective eye tracking. These 46 sessions were 557 
excluded from any analyses requiring use of the pupillometry data, leaving a total of 522 558 

sessions (145 subjects). 559 

4.3. Brain regions of interest 560 

Seed regions-of-interest (ROIs) were defined as the 9 brainstem ROIs of the Harvard Ascending 561 

Arousal Network (AAN) atlas Version 1.0 (https://www.nmr.mgh.harvard.edu/resources/aan-562 
atlas) (Edlow et al., 2024; Edlow et al., 2012) and the 2 bilateral basal forebrain ROIs of the 563 

JuBrain Anatomy Toolbox (https://www.fz-juelich.de/en/inm/inm-7/resources/jubrain-anatomy-564 

toolbox) (Zaborszky et al., 2008). The brainstem ROIs consist of monoaminergic, glutamatergic, 565 

and cholinergic nuclei of the ascending reticular activating system (ARAS) involved in regulating 566 

wakefulness, alertness, and autonomic function (Scammell et al., 2017). The basal forebrain 567 
ROIs consist of cholinergic nuclei involved in cortical activation and autonomic integration 568 

(Scammell et al., 2017). A more detailed description of the seed regions is provided in Table 2. 569 
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For all three datasets, time-courses for the seed regions were extracted by averaging across the 570 

time-series of all the voxels in each ROI. The ROI extraction was performed on the fMRI data at 571 

the original spatial resolution in the MNI space (i.e., 2-mm for the VU 3T-ME and HCP 3T 572 
datasets and 1.6-mm for the HCP 7T dataset) without the spatial smoothing step, without the 573 

spatial down-sampling step (HCP 7T dataset), and before the confound regression pipelines 574 

(described in section 4.4). In order to evaluate the quality of the BOLD signal in each seed 575 

region, the temporal SNR (tSNR) of the seed time-courses was computed by calculating the 576 

mean of the time-course divided by the standard deviation. The standard deviation was 577 

computed for the ICA-FIX denoised signals in the HCP datasets (which includes drift removal 578 
and minimal high-pass filtering) and for the ME-ICA denoised and detrended signals in the VU 579 

3T-ME dataset. The tSNR of the seed regions was compared to the tSNR of ROIs from the 580 

Schaefer cortical atlas (200 ROIs, 17 brain networks) (Schaefer et al., 2018) and Melbourne 581 

subcortical atlas (32 ROIs) (Tian et al., 2020). For use in the later confound regression 582 

pipelines, physiological tissue-based signals were extracted and included mean time-courses of 583 
the white matter (WM), deep cerebrospinal fluid (CSF) (i.e., first, second, and third ventricles), 584 

and fourth ventricle (FV). Masks for the gray matter (GM), WM, and CSF were obtained from the 585 

tissue-type probability maps available in FSL (https://fsl.fmrib.ox.ac.uk/fsl; 35% threshold for the 586 

GM, 50% threshold for the CSF, and 90% threshold for the WM). 587 

4.4. Static functional connectivity analysis 588 

Static FC patterns were estimated by computing the seed-based correlation of each brainstem 589 

and basal forebrain ROI to the voxels of the entire brain over the entire fMRI scan duration. The 590 

seed-based correlation was calculated after additional preprocessing was performed with three 591 

different confound regression pipelines (i.e., the mCSF/WM pipeline, aCompCor pipeline, and 592 

physio pipeline) (Caballero-Gaudes and Reynolds, 2017). The mCSF/WM pipeline involved 593 
regression of the mean WM, deep CSF, and FV signals (Turker et al., 2021); the anatomical 594 

CompCor (aCompCor) pipeline involved regression of the first five principal components of the 595 

mean WM and deep CSF signals (Behzadi et al., 2007); and the physio pipeline involved 596 

regression of low-frequency physiological effects modeled from the RV and HR signals 597 

convolved with five respiratory and five cardiac response functions (Chen et al., 2020). Before 598 
the confound regression, missing values in the convolved RV signals due to transducer 599 

malfunction were replaced with 0’s in the regression matrix. 600 

Signals from the WM and deep CSF may contain a mixture of neuronal and non-neuronal 601 
influences (e.g., motion and systemic vascular effects) and are often removed from the fMRI 602 

data (Caballero-Gaudes and Reynolds, 2017). The FV is in close proximity to several of the 603 

brainstem nuclei and may capture non-neuronal contamination in the seed time-courses (Turker 604 

et al., 2021). Likewise, the low-frequency physiological regressors may capture non-neuronal 605 

influences due to systemic vascular effects (e.g., changes in arterial pressure and CO2 606 
concentration) (Brooks et al., 2013; Chen et al., 2020). However, the physiological regressors 607 

may also covary with neuronal activity in the central nervous system involved in autonomic 608 

regulation, and regression of these signals may be detrimental to analysis of nuclei in the 609 

brainstem and basal forebrain (Chen et al., 2020). Therefore, we sought to characterize the 610 

impact of these preprocessing techniques on the FC of the seed regions. Global signal 611 
regression was not performed considering that neuromodulatory systems in the brainstem and 612 
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basal forebrain may be potential neuronal contributors of global signal fluctuations in resting-613 

state fMRI (Turchi et al., 2018; Turker et al., 2021). 614 

For each dataset, the voxel-wise correlation values were converted to z-scores with Fisher’s r-615 

to-z transformation, and linear mixed-effects (LME) models were fitted to the z-transformed 616 

correlation values across all the fMRI sessions using the REML method (Chen et al., 2013). The 617 

LME model per voxel was specified with the following formula: 618 

��� � � � �� � ��� 

where rij is the correlation value for subject i and session j, μ represents the group average 619 

correlation value across all subjects, δi is a random intercept term modeling the inter-subject 620 

variance, and �ij is the residual error term modeling the intra-subject variance. We then derived 621 

t-scores for the group average correlation from the LME models. To identify brain regions with 622 

the strongest correlation to the seed ROIs, the t-maps were thresholded at 40% of the top t-623 

values in the GM and at p < 0.05 (voxel-wise false-discovery rate [FDR]-corrected over the 624 

entire GM volume). The spatial reproducibility of the thresholded t-maps between each pair of 625 
datasets and each pair of preprocessing pipelines was evaluated using the Dice similarity 626 

coefficient (DSC) (Turker et al., 2021). The multiclass generalization of the DSC was 627 

implemented to account for positive and negative t-values in the t-maps (Taha and Hanbury, 628 

2015). The reproducibility was scored as poor (DSC < 0.4), moderate (0.4 ≤ DSC < 0.6), and 629 

good (DSC ≥ 0.6). 630 

For ease of visualization of the whole-brain FC patterns of the seed ROIs, we computed the 631 

spatial overlap of their thresholded FC t-maps with 16 canonical brain network templates from 632 

the FINDLAB and Melbourne atlases (Shirer et al., 2012; Tian et al., 2020). The spatial overlap 633 
values of each t-map were quantified with the Szymkiewicz-Simpson coefficient for the positive 634 

and negative t-values separately, and a signed version of the overlap coefficient was derived by 635 

taking the difference between the overlap coefficients of the positive and negative t-values. 636 

4.5. EEG-based vigilance-dependent connectivity analysis 637 

The simultaneous EEG data in the VU 3T-ME dataset provides a gold standard method of 638 
identifying time periods of alertness and drowsiness according to the spatial distribution of 639 

power changes in different frequency bands (Oken et al., 2006; Olbrich et al., 2009). For 640 

example, periods of alertness during relaxed wakefulness are characterized by dominant alpha 641 

power in the occipital region, and periods of drowsiness are characterized by greater power in 642 

the delta and theta bands (Olbrich et al., 2009). The VIGALL algorithm is an automated method 643 
for classification of scalp EEG into vigilance stages based on these spatial power distributions 644 

(Huang et al., 2015; Jawinski et al., 2019; Sander et al., 2015). In this study, the VIGALL 2.1 645 

add-on of Brain Vision Analyzer 2 was implemented to stage each 1 second epoch of the 646 

preprocessed EEG data into five vigilance stages (i.e., A1, A2, A3, B1, B2/3) corresponding to 647 

decreasing levels of alertness. Before the vigilance staging, spherical spline interpolation was 648 
used to reconstruct EEG channels in the VIGALL standard that were not present in the data, 649 

and the EEG signals were re-referenced to the common average. 650 
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The staged EEG data were segmented into epochs of 63-s duration (30 TRs; 19 epochs per 651 

session), and a custom algorithm was used to assign each epoch into one of three vigilance 652 

states (i.e., alert, intermediate, or drowsy). First, the five VIGALL stages were converted to 653 
integer values from 1 (most drowsy) to 5 (most alert), and the Wilcoxon signed-rank test was 654 

applied to the integer values of each epoch to test for a significant difference of the median 655 

away from a (weighted) center value of 2.75. Next, a threshold of ±1.5 for the z-statistic of the 656 

signed-rank test was used to assign epochs to the three vigilance states, and adjacent epochs 657 

belonging to the same state were concatenated. The epochs were then shifted forward by 5 658 

seconds (~2 TRs) to account for the temporal delay between the peak BOLD response and 659 
neural activity. Our algorithm identified 21 subjects with alert epochs (n = 51 epochs; 178 ± 215 660 

TRs per epoch) and 25 subjects with drowsy epochs (n = 75 epochs; 191 ± 208 TRs per epoch). 661 

The accuracy of the vigilance staging algorithm was assessed by comparing the alert and 662 

drowsy classifications with a previously validated quantitative index of vigilance (i.e., the EEG 663 

alpha/theta power ratio) (Goodale et al., 2021; Oken et al., 2006). The U-Sleep deep learning 664 
algorithm was also used to perform automatic sleep staging of the EEG data (Perslev et al., 665 

2021), and we determined that the drowsy epochs primarily consisted of awake drowsy and light 666 

sleep (N1/N2) stages. 667 

We then employed the EEG-derived vigilance states to investigate the vigilance-dependent FC 668 

of the seed regions in the fMRI data for each pipeline. The seed-based correlation of the 669 

brainstem and basal forebrain ROIs was computed for each alert and drowsy epoch, and two-670 

state LME models were fitted to the voxel-wise correlation values across all the epochs after 671 

applying Fisher’s r-to-z transformation. The two-state LME models were specified with the 672 

following formula: 673 

��� � �� � �� � 	�� � 
 � ��� � �� � ��� 

where rij is the correlation value for subject i and epoch j, α0 is the fixed intercept, α1 represents 674 

the fixed effect of vigilance state cij (i.e., alert or drowsy), and β represents a fixed slope 675 

covarying for the number of TRs per epoch xij. We then derived t-scores for the fixed effect of 676 

vigilance state (referenced to the alert state) from the two-state LME models. For each state 677 

separately, single-state LME models were also fitted to the z-transformed correlation values: 678 

��� � � � 
 � ��� � �� � ��� 

where μ represents the group average correlation value across all subjects in a single vigilance 679 

state. We derived t-scores for the group average correlation from the single-state LME models. 680 

The t-maps for the two- and single-state models were thresholded at 40% of the top t-values in 681 
the GM and at p < 0.05 (voxel-wise FDR-corrected over the entire GM volume). The DSC was 682 

then used to evaluate the spatial reproducibility of the two- and single-state t-maps between the 683 

mCSF/WM, physio, and aCompCor pipelines. 684 

4.6. Pupillometry-based state-dependent connectivity analysis 685 

The simultaneous eye-tracking recordings in the HCP 7T dataset provide a measure of vigilance 686 

and autonomic activity (Schneider et al., 2016; Wang et al., 2016). Previous studies have 687 

suggested that periods of drowsiness result in increased blink duration and more frequent and 688 
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longer periods of extended eye closure (Abe, 2023; Shekari Soleimanloo et al., 2019; Soon et 689 

al., 2021). However, unlike scalp EEG, analysis of eye-tracking data does not have a clear 690 

method for automatic identification of alert and drowsy periods, and zero pupil diameter values 691 
may be confounded by instances of voluntary eye closure or device malfunction. Therefore, we 692 

characterized the state-dependent FC of the seed regions in an unsupervised manner (Wang et 693 

al., 2016), and we compared the FC patterns between the VU 3T-ME and HCP 7T datasets for 694 

the mCSF/WM pipeline. 695 

The seed-based correlation of the brainstem and basal forebrain ROIs in the HCP 7T dataset 696 

was computed for sliding time windows of 4-minute duration and 50% overlap, and the 697 

correlation values were converted to z-scores with Fisher’s r-to-z transformation. For each ROI, 698 

the dynamic whole-brain correlation patterns were concatenated across all the 522 sessions 699 
with available pupillometry data, and k-means clustering was employed to spatially cluster the 700 

correlation patterns into different states. The distance metric was chosen to be the cityblock 701 

distance according to the recommendation of previous fMRI studies (Allen et al., 2014), and the 702 

optimal number of clusters (k = 2) was selected based on the silhouette and variance ratio 703 

criteria for a representative ROI (i.e., the LC). For the LC, the clustering analysis was repeated 704 
for window sizes of 1-minute duration. However, because no appreciable difference was 705 

observed between the clustering results for the different window sizes, 4-minute windows were 706 

selected for computational efficiency. 707 

The percent duration of eye closure was computed for each sliding window after applying a 708 

forward shift of 4 seconds to account for the temporal delay between the peak pupil and BOLD 709 

response to neural activity (Schneider et al., 2016). The percent eye closure was calculated 710 

based on the proportion of missing (zero) pupil diameter values in each 4-minute window and 711 

includes periods of blinking and prolonged eye closure. A two-state LME model was fitted to the 712 
percent eye closure values across all the time windows to test for a significant effect of state 713 

(referenced to state 1) after applying a logit transformation to ensure normality. 714 

The dynamic FC analysis (4-min sliding windows, 50% overlap) and k-means clustering 715 

procedure (k = 2) was repeated for each seed region in the VU 3T-ME dataset. The VIGALL-716 

based alert/drowsy staging algorithm (described in section 4.5) was applied to the EEG data in 717 

each sliding window to derive scores of vigilance (i.e., z-scores), and a two-state LME model 718 

was fitted to test for a significant effect of state on the vigilance scores. The proportion of 719 

windows in each state that were classified as alert or drowsy was also computed after 720 

thresholding the vigilance z-scores at ±1.5. 721 

For both the HCP 7T and VU 3T-ME datasets, LME models were fitted to the voxel-wise 722 
dynamic correlation values of each seed region to derive t-maps for the effect of state (state 2 723 

versus 1) on the correlation values and t-maps for the group average correlation in each state 724 

separately. The t-maps were thresholded at 40% of the top t-values in the GM and at p < 0.05 725 

(voxel-wise FDR-corrected over the entire GM volume). The DSC was then used to evaluate the 726 

spatial reproducibility of the two- and single-state t-maps between the HCP 7T and VU 3T-ME 727 

datasets. 728 

  729 
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FIGURE CAPTIONS 745 

Fig. 1. Static functional connectivity of the subcortical arousal nuclei. (a) Static functional 746 

connectivity (FC) t-maps of the locus coresuleus (LC), cuneiform/subcuneiform nucleus (CSC), 747 

and nucleus basalis of Meynert (NBM) in the VU 3T-ME, HCP 3T, and HCP 7T datasets for the 748 

mCSF/WM preprocessing pipeline. The FC t-maps were thresholded at 40% of the top t-values 749 

in the gray matter and at p < 0.05 (voxel-wise false discovery rate [FDR]-corrected over the 750 
entire gray matter volume). AFNI was used for visualization of the t-maps (@chauffeur_afni 751 

function; upper functional range set to the 98th percentile). (b) Spatial overlap of the thresholded 752 

static FC t-maps of the subcortical arousal regions with 16 canonical brain network templates 753 

from the FINDLAB and Melbourne atlases (Shirer et al., 2012; Tian et al., 2020). (c) Spatial 754 

reproducibility (Dice similarity coefficient) of the thresholded static FC t-maps between the three 755 

fMRI datasets. 756 

Fig. 2. Vigilance-dependent functional connectivity of the subcortical arousal nuclei. (a) 757 

An adapted version of the Vigilance Algorithm Leipzig (VIGALL) algorithm was used to perform 758 

automatic vigilance staging of the simultaneous EEG recordings in the VU 3T-ME dataset 759 

(Huang et al., 2015; Jawinski et al., 2019; Sander et al., 2015). The accuracy of the algorithm 760 

was assessed by comparing the alert and drowsy classifications with a previously validated 761 

quantitative index of vigilance (i.e., the EEG alpha/theta power ratio) (Goodale et al., 2021; 762 

Oken et al., 2006). (b) Vigilance-dependent functional connectivity (FC) t-maps of the locus 763 
coresuleus (LC), cuneiform/subcuneiform nucleus (CSC), and nucleus basalis of Meynert 764 

(NBM) in the VU 3T-ME dataset for the mCSF/WM preprocessing pipeline. The FC t-maps were 765 

thresholded at 40% of the top t-values in the gray matter and at p < 0.05 (voxel-wise false 766 

discovery rate [FDR]-corrected over the entire gray matter volume). AFNI was used for 767 

visualization of the t-maps (@chauffeur_afni function; upper functional range set to the 98th 768 
percentile). (c) Spatial overlap of the thresholded vigilance-dependent FC t-maps of the 769 

subcortical arousal regions with 16 canonical brain network templates from the FINDLAB and 770 

Melbourne atlases (Shirer et al., 2012; Tian et al., 2020). 771 

Fig. 3. Cross-modality reproducibility of the vigilance-dependent functional connectivity. 772 

(a-b) State-dependent functional connectivity (FC) t-maps of the locus coreuleus (LC) and 773 

nucleus basalis of Meynert (NBM) in the VU 3T-ME and HCP 7T datasets for the mCSF/WM 774 

preprocessing pipeline. Unsupervised clustering of the dynamic whole-brain correlation patterns 775 

of each subcortical arousal nuclei was used to derive the two states. The FC t-maps were 776 
thresholded at 40% of the top t-values in the gray matter and at p < 0.05 (voxel-wise false 777 

discovery rate [FDR]-corrected over the entire gray matter volume). AFNI was used for 778 

visualization of the t-maps (@chauffeur_afni function; upper functional range set to the 98th 779 

percentile). (c) Comparison of vigilance metrics (i.e., EEG vigilance score in the VU 3T-ME 780 

dataset and percent eye closure in the HCP 7T dataset) between the two states. Asterisks 781 
indicate a significant difference at ***p < 1e-3 (FDR-corrected across the six subcortical arousal 782 

regions). (d) Spatial reproducibility (Dice similarity coefficient) of the thresholded state-783 

dependent FC t-maps between the VU 3T-ME and HCP 7T datasets. 784 

 785 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.11.623092doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623092
http://creativecommons.org/licenses/by-nd/4.0/


22 
 

SUPPLEMENTARY FIGURE CAPTIONS 786 

Supplementary Fig 1. Temporal signal-to-noise ratio (tSNR) of the brain regions-of-interest 787 

(ROIs) in the VU 3T-ME, HCP 3T, and HCP 7T datasets. The tSNR is averaged over all the 788 

subjects in each fMRI dataset, and the boxplots depict the distribution of the tSNR across the 789 

ROIs. The arousal ROIs include 9 brainstem regions from the Harvard Ascending Arousal 790 

Network (AAN) atlas Version 1.0 (Edlow et al., 2024; Edlow et al., 2012) and two bilateral basal 791 
forebrain regions from the Jubrain Anatomy Toolbox (Zaborszky et al., 2008). The cortical ROIs 792 

are defined from the Schaefer atlas (200 ROIs, 17 networks) (Schaefer et al., 2018), and the 793 

subcortical ROIs are defined from the Melbourne atlas (32 ROIs) (Tian et al., 2020). 794 

Supplementary Fig 2. (a-b) Static functional connectivity (FC) of the subcortical arousal 795 

regions with each other in the VU 3T-ME, HCP 3T, and HCP 7T datasets for the mCSF/WM 796 

preprocessing pipeline. The FC is depicted as the Pearson correlation averaged across all the 797 

subjects in each dataset and as t-values derived for the group average correlation in each 798 
dataset. (c) Spatial similarity (Dice similarity coefficient) of the whole-brain static FC t-maps of 799 

the subcortical arousal ROIs with each other. 800 

Supplementary Fig. 3. (a, c) Static functional connectivity (FC) t-maps of the locus coresuleus 801 

(LC), cuneiform/subcuneiform nucleus (CSC), and nucleus basalis of Meynert (NBM) in the VU 802 

3T-ME, HCP 3T, and HCP 7T datasets for the physio and aCompCor preprocessing pipelines. 803 

The FC t-maps were thresholded at 40% of the top t-values in the gray matter and at p < 0.05 804 

(voxel-wise false discovery rate [FDR]-corrected over the entire gray matter volume). AFNI was 805 

used for visualization of the t-maps (@chauffeur_afni function; upper functional range set to the 806 
98th percentile). (b, d) Spatial overlap of the thresholded static FC t-maps of the subcortical 807 

arousal regions with 16 canonical brain network templates from the FINDLAB and Melbourne 808 

atlases (Shirer et al., 2012; Tian et al., 2020). 809 

Supplementary Fig 4. (a) Spatial reproducibility (Dice similarity coefficient) of the thresholded 810 

static functional connectivity (FC) t-maps between the VU 3T-ME, HCP 3T, and HCP 7T 811 

datasets for each preprocessing pipeline (mCSF/WM, physio, and aCompCor). (b) Spatial 812 

reproducibility (Dice similarity coefficient) of the thresholded static FC t-maps between the 813 

mCSF/WM, physio, and aCompCor pipelines for each fMRI dataset. 814 

Supplementary Fig 5. (a, c) Vigilance-dependent functional connectivity (FC) t-maps of the 815 

locus coresuleus (LC), cuneiform/subcuneiform nucleus (CSC), and nucleus basalis of Meynert 816 
(NBM) in the VU 3T-ME dataset for the physio and aCompCor preprocessing pipelines. The FC 817 

t-maps were thresholded at 40% of the top t-values in the gray matter and at p < 0.05 (voxel-818 

wise false discovery rate [FDR]-corrected over the entire gray matter volume). AFNI was used 819 

for visualization of the t-maps (@chauffeur_afni function; upper functional range set to the 98th 820 

percentile). (b, d) Spatial overlap of the thresholded vigilance-dependent FC t-maps of the 821 
subcortical arousal regions with 16 canonical brain network templates from the FINDLAB and 822 

Melbourne atlases (Shirer et al., 2012; Tian et al., 2020). 823 

Supplementary Fig 6. Spatial reproducibility (Dice similarity coefficient) of the thresholded 824 

vigilance-dependent functional connectivity (FC) t-maps between the mCSF/WM, physio, and 825 

aCompCor pipelines in the VU 3T-ME dataset.  826 
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Fig. 1.

(a) Static FC t-maps of the three fMRI datasets (b) Brain networks in the static FC t-maps
(c) Cross-modality reproducibility 

of the static FC t-maps
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Fig. 2.

(b) Vigilance-dependent FC t-maps in 

the VU 3T-ME dataset

(c) Brain networks in the vigilance-

dependent FC t-maps

(a) EEG-based vigilance staging
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Fig. 3.

(a) State-dependent FC t-maps in the VU 3T-ME dataset

(b) State-dependent FC t-maps in the HCP 7T dataset

(c) Comparison of vigilance metrics between the two states

(d) Cross-modality reproducibility of the 

state-dependent FC t-maps
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