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The time-varying reproduction number (Rt: the average number of second-
ary infections caused by each infected person) may be used to assess
changes in transmission potential during an epidemic. While new infections
are not usually observed directly, they can be estimated from data. However,
data may be delayed and potentially biased. We investigated the sensitivity
of Rt estimates to different data sources representing COVID-19 in England,
and we explored how this sensitivity could track epidemic dynamics in
population sub-groups. We sourced public data on test-positive cases, hospi-
tal admissions and deaths with confirmed COVID-19 in seven regions of
England over March through August 2020. We estimated Rt using a model
that mapped unobserved infections to each data source. We then compared
differences in Rt with the demographic and social context of surveillance
data over time. Our estimates of transmission potential varied for each
data source, with the relative inconsistency of estimates varying across
regions and over time. Rt estimates based on hospital admissions and
deaths were more spatio-temporally synchronous than when compared to
estimates from all test positives. We found these differences may be linked
to biased representations of subpopulations in each data source. These
included spatially clustered testing, and where outbreaks in hospitals, care
homes, and young age groups reflected the link between age and severity
of the disease. We highlight that policy makers could better target interven-
tions by considering the source populations of Rt estimates. Further
work should clarify the best way to combine and interpret Rt estimates
from different data sources based on the desired use.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.
1. Background
Within six months of its emergence in late 2019, the novel coronavirus SARS-
CoV-2 had caused over six million cases of disease (COVID-19) worldwide
[1]. Its rapid initial spread and high death rate prompted global policy interven-
tions to prevent continued transmission, with widespread temporary bans on
social interaction outside the household [2]. Introducing and adjusting such
policy measures depend on a judgement in balancing continued transmission
potential with the multidimensional consequences of interventions. It is,
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therefore, critical to inform the implementation of policy
measures with a clear and timely understanding of ongoing
epidemic dynamics [3,4].

In principle, transmission could be tracked by directly
recording all new infections. In practice, real-time monitoring
of the COVID-19 epidemic relies on surveillance of indicators
that are subject to different levels of bias and delay. In
England, widely available surveillance data across the popu-
lation include: (i) the number of positive tests, biased by
changing test availability and practice, and delayed by the
time from infection to symptom onset (if testing is symp-
tom-based), from symptom onset to a decision to be tested
and from test to test result; (ii) the number of new hospital
admissions, biased by differential severity that triggers care
seeking and hospitalization, and additionally delayed by
the time to develop severe diseases; and (iii) the number of
new deaths due to COVID-19, biased by the differential risk
of death and the exact definition of a COVID-19 death, and
further delayed by the time to death.

Each of these indicators provides a different view on the
epidemic and therefore contains potentially useful infor-
mation. However, any interpretation of their behaviour
needs to reflect these biases and lags and is best done in com-
bination with the other indicators. One approach that allows
this in a principled manner is to use the different datasets to
separately track the time-varying reproduction number, Rt,
the average number of secondary infections generated by
each new infected person [5]. Because Rt quantifies changes
in infection levels, it is independent of the level of overall
ascertainment as long as this does not change over time or
is explicitly accounted for [6]. At the same time, the under-
lying observations in each data source may result from
different lags from infection to observation. However, if
these delays are correctly specified then transmission be-
haviour over time can be consistently compared via
estimates of Rt.

Different methods exist to estimate the time-varying
reproduction number, and in the UK a number of mathemat-
ical and statistical methods have been used to produce
estimates used to inform policy [7–9]. Empirical estimates
of Rt can be achieved by estimating time-varying patterns
in transmission events from mapping to a directly observed
time-series indicator of infection such as reported sympto-
matic cases. This can be based on the probabilistic
assignment of transmission pairs [10], the exponential
growth rate [11] or the renewal equation [12,13]. Alterna-
tively, Rt can be estimated via mechanistic models that
explicitly compartmentalize the disease transmission cycle
into stages from susceptible through exposed, infectious
and recovered [14,15]. This can include accounting for vary-
ing population structures and context-specific biases in
observation processes, before fitting to a source of observed
cases. Across all methods, key parameters include the time
after an infection to the onset of symptoms in the infecting
and infected, and the source of data used as a reference
point for earlier transmission events [16,17].

In this study, we used a modelling framework based on
the renewal equation, adjusting for delays in observation to
estimate regional and national reproduction numbers of
SARS-Cov-2 across England. The same method was repeated
for each of three sources of data that are available in real time.
After assessing differences in Rt estimates by data source, we
explored why this variation may exist. We compared the
divergence between Rt estimates with spatio-temporal vari-
ation in case detection, and the proportion at risk of severe
disease, represented by the age distribution of test-positive
cases and hospital admissions and the proportion of deaths
in care homes.
2. Methods
(a) Data management
Three sources of data provided the basis for our Rt estimates.
Time-series case data were available by specimen date of test.
This was a de-duplicated dataset of COVID-19 positive tests
notified from all National Health Service (NHS) settings
(Pillar One of the UK Government’s testing strategy) [18] and
by commercial partners in community settings outside of
healthcare (Pillar Two). Hospital admissions were also avail-
able by date of admission if a patient had tested positive
prior to admission, or by the day preceding diagnosis if they
were tested after admission. Death data were available by
date of death and included only those that occurred within
28 days of a positive COVID-19 test in any setting. All data
were publicly available and taken from the UK government
source [19,20], and were aggregated to the seven English
regions used by the NHS.

To provide context for Rt estimates, we sourced weekly data
on regional and national test positivity (percentage positive tests
of all tests conducted) from Public Health England [21], available
as weekly average percentages from 10 May. From the same
source, we also identified the age distributions of cases admitted
to the hospital and all test-positive cases. Hospital admissions by
age were available as age bands with rates per 100 000, so we
used regional population data from 2019 [22] to approximate
the raw count. We separately sourced daily data on the
number of deaths in care homes by region from March 2020,
available from 12 April [23]. Care homes are defined as sup-
ported living facilities (residential homes, nursing homes,
rehabilitation units and assisted living units). Data were available
by date of notification, which included an average 2–3 days’ lag
after the date of death. We also drew on a database that tracked
COVID-19 UK policy updates by date and area [24].

(b) Rt estimation
We estimated Rt using EpiNow2 v. 1.2.0, an open-source package
in R [13,25,26]. This package implements a Bayesian latent vari-
able approach using the probabilistic programming language
Stan [27]. To initialize the model, infections were imputed prior
to the first observed case using a log-linear model with priors
based on the first week of observed cases. This means that the
initial observations both inform the initial parameters and are
then also fit, which makes the initial Rt estimates less reliable
than later estimates. This was a pragmatic choice to allow the
model to be identifiable when only estimating part of the
observed epidemic. We explored other parameterizations, but
these suffered from poor model identification. For each sub-
sequent time step with observed cases, new infections were
imputed using the sum of previous modelled infections
weighted by the generation time probability mass function,
and combined with an estimate of Rt, to give the prevalence at
time t [12]. The generation time was assumed to follow a
gamma distribution that was fixed over time but varied between
samples, with priors drawn from the literature for the mean and
standard deviation [28].

These infection trajectories were mapped to reported case
counts (Dt) by convolving over an incubation period distribution
and report delay distribution (ξ). We assumed a negative bino-
mial observation model for observed reported case counts (Ct),
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with overdispersion ϕ using an exponential prior with mean 1
and mean Dt. We combined this with a multiplicative day of
the week effect (ω(tmod7)) with an independent effect for each
day of the week. We controlled temporal variation using an
approximate Gaussian process [29] with a squared exponential
kernel (GP).

In mathematical notation:

Rt � Rt�1 � GP,

It ¼ Rt

X

t

wtIt�t,

Dt ¼
X

t

jtIt�t,

Ct � NB(Dtv(tmod7), f):

The length scale and magnitude of the kernel were estimated
during model fitting. We used an inverse gamma prior for the
length scale, optimizing shape and scale values to give a distri-
bution with 98% of the density between 2 and 21 days, and the
prior on the magnitude was standard normal. Each region was
fitted independently using Markov-chain Monte Carlo
(MCMC). Eight chains were used with a warmup of 1000
samples and 2000 samples post warmup. Convergence was
assessed using the R hat diagnostic.

We used a gamma-distributed generation time with mean 3.6
days (standard deviation (s.d.) 0.7), and s.d. of 3.1 days (s.d. 0.8),
sourced from [28]. Instead of the incubation period used in the
original study (which was based on fewer data points), we
refitted using a lognormal incubation period with a mean of
5.2 days (s.d. 1.1) and s.d. of 1.52 days (s.d. 1.1) [30]. This incu-
bation period was also used to convolve from unobserved
infections to unobserved symptom onsets (or a corresponding
viral load in asymptomatic cases) in the model. When fitting
the model, the time interval distributions had independent
priors placed on the mean and standard deviation of their
respective lognormal distributions.

We estimated both the delay from symptom onset to positive
test (either in the community or in hospital) and the delay from
symptom onset to death as lognormal distributions using a sub-
sampled Bayesian bootstrapping approach (with 100 subsamples
each using 250 samples) from given data on these delays. Our
delay from the date of onset to date of positive test (either in
the community or in hospital) was taken from a publicly avail-
able linelist of international cases [31]. We removed countries
with outlying delays (Mexico and the Philippines). The resulting
delay data had a mean of 4.4 days and s.d. 5.6. Delays for hospi-
tal admissions and test positives were treated as having the same
delay from infection to onset and observation. For the delay from
onset to death we used data taken from a large observational UK
study [32]. We re-extracted the delay from confidential raw data,
with a mean delay of 14.3 days (s.d. 9.5). There were insufficient
data available on the various reporting delays to estimate
spatially or temporally varying delays, so they were considered
to be static over the course of the epidemic, although we discuss
the effects of this assumption. We have also discussed this
approach more extensively in [25].
(c) Comparison of Rt estimates
We compared Rt estimates by data source, plotting each by
region over time. To avoid the first epidemic wave obscuring
visual differences, all plots were limited to the earliest date that
any Rt estimate for England crossed below 1 after the peak. We
also identified the time at which each Rt estimate fell below 1,
the local minima and maxima of median Rt estimates and the
number of times in the time-series that each Rt estimate crossed
its own median, before comparing these across regions and
against the total count of the raw data.
We investigated correlations between Rt estimates and the
demographic and social context of transmission. We used
linear regression to assess whether the level of raw data count
influenced oscillations in Rt. We assessed the influence of local
outbreaks using test positivity. We used a 5% threshold for posi-
tivity as the level at which testing is either insufficient to keep
pace with widespread community transmission [33], or where
outbreaks have already been detected and tests targeted to
those more likely to be positive. We plotted this against raw
data and Rt, and also used linear regression to test the associ-
ation. We interpreted results in light of known outbreaks and
policy changes. We plotted and qualitatively assessed variation
in Rt estimates against the age distribution of cases over time,
and similarly explored patterns in Rt estimates against the quali-
tative proportion of cases to all deaths. The latter was not
assessed quantitatively due to differences in reference dates
[23]. With the exception of fitting the delay from onset to death
(held confidentially), code and data to reproduce this analysis
are available [34].
3. Results
Across England, the COVID-19 epidemic peaked at 4798
reported test-positive cases (on 22 April 2020), 3099 admis-
sions (1 April 2020) and 975 deaths (8 April 2020) per day
(figure 1a). Following the peak, a declining trend continued
for daily counts of admissions and deaths, while daily case
counts from all reported test-positive cases increased from
July and had more than tripled by August (from 571 on 30
June to 1929 on 1 September). Regions followed similar pat-
terns over time to national trends. However, in the North
East and Yorkshire, Midlands and North West, the incidence
of test-positive cases did not decline to near the count of
admissions as in other regions, and also saw a small tempor-
ary increase during the overall rise in case of counts in early
August.

Following the initial epidemic peak in mid-March 2020,
the date at which Rt estimates crossed below 1 varied by
both data source and geography (figures 1b and 2). The
first region to cross into a declining epidemic was London,
on 26 March according to an Rt estimated from deaths
(where the lower 90% credible interval (CrI) crossed below
1 on 24 March and the upper CrI on 28 March). However,
the data source used to estimate Rt was as important as
any regional variation in estimating the earliest date of epi-
demic decline. Rt estimated from hospital admissions gave
the earliest estimate of a declining epidemic, while using all
test-positive cases to estimate Rt took the longest time to
reach a declining epidemic, in all but one region (East of Eng-
land). This difference by data source varied by up to 21 days
in the North East and Yorkshire, where hospital admissions
gave a median Rt estimate under 1 on 1 April (90%CrIs 31
March, 2 April), but the median Rt estimate from test-positive
cases crossed 1 on only the 22 April (90%CrIs 1 April, 25
April).

When not undergoing a clear state change, Rt estimates
from all data sources oscillate, with oscillations damped
when Rt estimates were transitioning to new levels. In
England and all NHS regions, test-positive cases showed evi-
dence of larger damped oscillations from July when a state
change occurred to Rt over 1. In England, Rt estimates from
test-positive cases increased from 0.99 (90%CrI 0.94–1.04)
on 30 June to 1.37 (90%CrI 1.31–1.1.44) on 27 August. Mean-
while, the timing and duration of oscillations did not align
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Figure 1. Epidemic dynamics across (a) England and (b–h) seven English National Health Service regions, 5 April through 27 August 2020. (a1–h1): Daily counts of
confirmed cases by data source, as centred 7 days moving average. Counts marked with vertical dashes (on the green lines—see figure parts (a1,b1,c1,d1,e1))
indicate dates within weeks that averaged greater than 5% test-positivity ( positive/all tests per week). Vertical dotted line indicates the start of national mass
community testing on 3 May. (a2–h2): Estimates of Rt (median, with 50% (darker shade) and 90% (lightest shade) credible interval), derived from each data
source. Data sources include all test-positive cases, hospital admissions and deaths with a positive test in the previous 28 days.
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between Rt estimates (figure 1b). In some regions, the differ-
ence between Rt estimates was consistent over time, such as
between Rt from admissions and deaths in the South East.
In other regions such as the Midlands, this was not the
case, with the divergence between the Rt estimates from
test-positive cases, admissions, and deaths each varying
over time. Rt estimates from test-positive cases were the
most likely to differ from estimates derived from other data
sources across all regions. Across all regions, Rt estimates
from deaths had slower damped oscillations compared to
estimates from test-positive cases or hospital admissions.
However, oscillations in Rt estimates did not appear to be
linked to the level of raw data counts in each source (electronic
supplementary material, figure S2).
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More rapid oscillations in Rt estimates from test-positive
cases appeared to be linked to targeted testing of case clus-
ters, seen in high test positivity (electronic supplementary
material, table SI2). Both the North East and Yorkshire and
the Midlands saw more frequent oscillations in Rt estimates
from test-positive cases than other regions. The Rt estimates
from cases crossed its own median 10 times over the time-
series in both regions, while in all other NHS regions this
averaged 6 times, and oscillations in Rt estimates from cases
also had a shorter duration in the North East and Yorkshire
and the Midlands compared to other regions (electronic sup-
plementary material, table SI1). Across all regions, 84% of
weeks with over 5% positivity (N = 19) were in the North
East and Yorkshire and the Midlands. In these regions, posi-
tivity peaked on the week of 9 May 2020 at 14% and 12%,
respectively, and overall averaged 6% (95%CI 4.4–7.6%) and
5.9% (95%CI 4.6–7.2%, weeks of 10 May to 22 August),
respectively. High test positivity is likely to have resulted
from targeted testing among known local outbreaks in these
regions. In the Midlands, these included local restrictions
and increased testing across Leicester and in a Luton factory
(restrictions between 4 and 25 July [35]). In Yorkshire case clus-
ters were detected with local restrictions in Bradford,
Calderdale and Kirklees (with restrictions from 5 August [36]).

In England, a divergence between Rt estimated from cases
versus Rt estimated from deaths and admissions coincided
with a decline in the age distribution among all test-positive
cases in England to a younger population (electronic sup-
plementary material, figure SI2A). From mid-April to June
2020, national estimates of Rt from test-positive cases
remained around the same level as those from admissions
or deaths, while after this, cases diverged to a higher
steady state (figure 1a). On 23 May, the median Rt estimated
from cases matched that of deaths at 0.83 (both with 90%CrIs
0.78–0.89), but this was followed by a 78 day period before
the two estimates were again comparable, on 8 August.
Over this period the median Rt estimate from cases was on
average 14% higher (95%CI 12–15%). Meanwhile, the share
of test-positive cases under age 50 increased from under
one-quarter of cases in the week of 28 March (24%, N = 16
185), to accounting for nearly three-quarters of cases by 22
August (77%, N = 6733). While the percentage of test-positive
cases aged 20–49 increased consistently from April to August,
the 0–19 age group experienced a rapid increase over mid-
May through July, increasing by a mean 1% each week over
9 May through 1 August (from 4% of 18 774 cases to 14.8%
of 5017 cases).

Similarly, Rt estimates from admissions in England oscil-
lated over June through July 2020, potentially linked to the
age distribution of hospital admissions. From 0.92 (90%CrI
0.87–0.98) on 11 June, Rt estimated from admissions fell to
0.8 (90%CI 0.75–0.85)) on 27 June. By contrast, this transition
was not observed in the Rt estimate based on test-positive
cases (figure 1a). Older age groups dominated COVID-19
hospital admissions, where 0–44 years never accounted for
more than 12.8% of hospital-based cases (a maximum in
the week of 22 August, N = 690; electronic supplementary
material, figure SI2B). While the proportion of hospital admis-
sions aged 75+ remained steady over May through mid-June,
this proportion appeared to oscillate over July through
August (standard deviation of weekly percentage at 6.1 over
June–August, compared to 5.4 in months March–May). These
variations were not seen in the proportion aged 70+ in the
test-positive case data, which saw a continuous decline from
30% at the start of June to 7% by August.

Rt estimated from either admissions or deaths experi-
enced near-synchronous local peaks across regions over
April and May 2020. We compared this Rt estimated from
deaths with its source data and a separate regional dataset
of deaths in care homes. In the South East and South West,
the Rt estimates from deaths rose over April, with a peak in
early May. In the South West, the median Rt estimate from
deaths increased by 0.04 from 22 April to 7 May (from 0.8
(90%CrI 0.72–0.88) to 0.84 (90%CrI 0.76–0.95)); and by 0.06
from 17 April to 4 May in the South East (from 0.82 (90%
CrI 0.77–0.9) to 0.88 (90%CrI 0.72–0.88)). In both these
regions, this early May peak in Rt estimates from deaths
coincided with similarly rising Rt estimates from hospital
admissions, while the reverse trend was seen in Rt estimates
from cases. In all regions, care home deaths peaked over
22–29 April (by date of notification; electronic supplementary
material, figure SI3). This was later than regional peaks in the
raw count of all deaths in any setting (which peaked between
8 and 16 April, by date of death), even accounting for a 2–3
day reporting lag. This meant that the proportion of deaths
from care homes varied over time, where in the South East
and South West, deaths in care homes appeared to account
for nearly all deaths for at least the period mid-May to July.

4. Discussion
We estimated the time-varying reproduction number for
COVID-19 over March through August 2020 across England
and English NHS regions, using test-positive cases, hospital
admissions and deaths with confirmed COVID-19. Our esti-
mates of transmission potential varied for each of these
sources of infections, and the divergence between estimates
from each data source was not consistent within or across
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regions over time, although estimates based on hospital
admissions and deaths were more spatio-temporally synchro-
nous than compared to estimates from cases. We compared
differences in Rt estimates to the extent and context of trans-
mission and found that the difference between Rt estimated
from cases, admissions and deaths may be linked to uneven
rates of testing, the changing age distribution of cases and
outbreaks in care home populations.

Rt estimates varied by data source, and the extent of vari-
ation itself differed by region and over time. Following the
initial epidemic peak in mid-March, the date at which Rt esti-
mates crossed below 1 varied by both data source and
geography, following which Rt estimates from all data
sources varied when not undergoing a clear state change.
The differences in these oscillations by data source may indicate
different underlying causes. This implies that each data source
was influenced differently by changes in subpopulations
over time.

Increasingly rapid oscillations in Rt estimates from test-
positive cases were associated with higher test-positivity
rates. Increasing test-positivity rates could be an indication
of inconsistent community testing, with the observation of
an initial rise in transmission amplified by expanded testing
and local interventions where a cluster of new, mild cases
had been identified [18]. This targeted testing may have
driven regionally localized instability in case detection and
resulting Rt estimates but may not reflect changes in under-
lying transmission. This is a limitation of monitoring
epidemic dynamics using test-positive surveillance data in
areas where testing rates vary across the population and over
time. This also suggests that Rt estimates from admissions
may be more reliable than that from all test-positive cases for
indicating the relative intensity of an epidemic over time [37].

We hypothesized that variations in Rt estimates were also
related to changes in the age distribution of cases over time,
because age is associated with severity [38,39]. If each data
source represented a different sample of this age-severity gra-
dient, and transmission also varied by age or severity, Rt

estimates from each source would diverge. Early in the epi-
demic, tests were largely limited to hospital settings, and
disproportionately represented healthcare workers compared
to the general population. This sampling bias would be
reflected in the Rt from test-positive cases. The early peak
in Rt could then represent a substantial separate route of
transmission in healthcare settings, in a wave of nosocomial
infections [40]. If healthcare workers were less susceptible
to severe disease than those older than working age, an
early peak in Rt estimated from test-positive cases would
not have been represented in Rt estimated from hospital
admissions or deaths. Meanwhile, either hospital admissions
or deaths data would be more representative of sampling a
separate route of transmission among the general population.
If infections spread through the general population later than
nosocomial infections, then the timing of peaks in Rt

estimates from each data source would not have matched.
From late spring, outbreaks in care homes may have con-

tributed to a divergence between Rt estimates from test-
positive cases and other data sources. All regions saw a
near-synchronous local peak in Rt estimated from hospital
admissions over spring, which was not seen in Rt estimated
from test-positive cases. This may have reflected the known
widespread regional outbreaks in care homes. The care
home population is on average older and more clinically
vulnerable than the general population, while also being
less likely to appear for community testing [41,42]. Increased
transmission in care homes would then be seen in an
increased Rt from hospital admissions, but not observed in
an Rt from test-positive cases.

Similarly, the age-severity gradient may have impacted
transmission estimates later in the epidemic when commu-
nity testing became more widely available. We found that
from June 2020 onwards, Rt estimates from all test-positive
cases appeared to increasingly diverge away from Rt esti-
mates from admissions and deaths, transitioning into a
separate, higher, steady state. This was followed by the
observed age distribution of all test-positive cases becoming
increasingly younger, while the age distribution of admis-
sions remained approximately level. Because of the severity
gradient, this suggested that the Rt estimates from all test-
positive cases and admissions were more biased by the rela-
tive proportion of younger cases and older cases, respectively,
than the Rt estimates from admissions or deaths.

Our analysis was limited where data or modelling
assumptions did not reflect underlying differences in trans-
mission. Rt estimates can become increasingly uncertain
and unstable with lower case counts. Further, estimated
unobserved infections were mapped to reported cases or
deaths using two delay distributions: the time from infection
to test in the community or hospital, and a longer delay from
infection to death. Mis-specification of the priors would have
created bias in the temporal distribution of all resulting Rt

estimates, with estimated dates of infection and Rt incorrectly
shifted too much or too little in time compared to the true
infection curve, and decreased accuracy of Rt estimates [43].

We used the same distribution priors for both delays after
symptom onset to positive test, and to hospital admission.
This may be inaccurate where cases with mild symptoms
take longer to present for testing than severe cases presenting
for hospital admission, or vice versa. The difference between
the two delays over time may also have varied, with a poss-
ible decrease in delay to reported tests when mass
community testing became available over the summer of
2020. This would have had a differential impact on the accu-
racy of Rt estimates over time in either direction, which could
explain some of the oscillations in Rt estimates from test-posi-
tive case data compared to hospital admissions. We had no
data over time on delays from symptom onset to reporting
in each data source with which to test this hypothesis. How-
ever, we have mitigated some of the impact of this by using a
sub-sampled bootstrap of the available delay data when esti-
mating the delay distribution priors. This inflated the
uncertainty of these priors in line with the hypothesis that
they varied over time. This adjustment may be conservative
if the delay distributions are stable over time.

Spatial dependence in delay distributions may also have
contributed to their mis-specification and increased uncer-
tainty in Rt estimates. We observed that the variation in Rt

estimates from admissions and deaths often showed compar-
able levels and patterns in oscillations over time but were out
of phase with each other. This may have been due to using
data sources from different populations for each delay
estimate. To estimate the delay between symptom onset to
either a positive test or hospitalization, we used a linelist of
all patients publicly reported globally, which had a mean
delay of 5.4 days (s.d. 5.6). This varied only slightly from
an early estimate in the UK epidemic, where the delay from
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onset to hospitalization had a mean of 5.14 days (s.d. 4.2) in
confidential Public Health England (FF100) data [44]. Mean-
while, the same global public linelist contained few records
with delay from onset to death, with mean 11.4 (s.d. 16.5). We
compared this to confidential UK data from an observational
study that had mean delay 14.3 days (s.d. 9.5) [32].

Comparing each type and source of delay, we judged the
benefits of using open data to outweigh the minor observed
spatial variation of the delay from onset to test or admission,
although at the expense of increased uncertainty. However,
we judged that the difference in delay from onset to death
in the UK compared to public (international) data was suffi-
ciently meaningful to justify using confidential UK data in
order to maintain the accuracy of the Rt estimate from
deaths. The difference in the geographical source of delay dis-
tributions should not have substantially altered our
conclusions about discrepancies between central estimates of
Rt from either test-positives or admissions, compared to Rt

estimated from deaths. However, using the international
public linelist for the delay to test or admission may have
introduced additional uncertainty around the respective Rt

estimates, compared to greater accuracy (reduced uncertainty)
in estimates of Rt from deaths based on a UK-specific delay
distribution.

The data sources themselves may also have been inaccur-
ate or biased, which would change the representation of the
population we have assumed here. For example, we excluded
data from other nations of the UK (Wales, Scotland and
Northern Ireland) in our analysis, as these differed in both
availability over time and in data collection and reporting
practices [19,45]. English regional data may also contain
bias where new parts of the population might be under
focus for testing efforts, or the population characteristics of
hospital admissions from COVID-19 may have changed
over time with changes in clinical criteria or hospital capacity
for admission. This would mean that an Rt estimate from
these data sources would represent different source popu-
lations over time, limiting our ability to reliably compare
against Rt estimates from other data sources. Where possible
we highlighted this by comparing Rt estimates to known
biases and changes in case detection and reporting.

Our approach is unable to make strong causal conclusions
about varying transmission, and assumptions about sampling
and the representation of subpopulations remain implicit.
Alternatively, varying epidemics in subpopulations could
have been addressed with mechanistic models that explicitly
consider transmission in different settings and are fitted to
multiple data sources. However, these require additional
assumptions, detailed data to parameterize and may be
time-consuming to develop. In the absence of data, the
number of assumptions required for these models can intro-
duce inherent structural biases. Our approach contains few
structural assumptions and therefore may be more robust
when data are sparse, or information is required in real-time.

We conclude that when estimating Rt, the choice of data
source should be guided by the policy context in which the
estimates will be used and interpreted. This work highlights
that there is no clear superior choice of data source, while Rt

estimates are sensitive to assumptions about the underlying
population of each data source. This means that both produ-
cers and users of Rt estimates should understand relevant
biases in the data source’s population sampling strategy,
such as by community case detection or patient severity,
before drawing conclusions about transmission in the
population as a whole.

We also recommend presenting concurrent Rt estimates
jointly, rather than pooling estimates of Rt from different
data sources. Pooling estimates would both suffer from
unclear weighting and lose useful information about vari-
ation in subpopulation transmission. Although the
reconstruction of the underlying transmission process from
the reporting processes is robust, it is unclear how weights
would be assigned based on likelihood to estimates from
different data sources. Further, the variation in concurrent
Rt estimates provides more information about population
transmission than any single estimate, when considered in
light of the sampling biases of each data source. This
additional information can be useful to identify transmission
intensity by subpopulation where access to high quality dis-
aggregated data may not be available in real time. While this
can be difficult to interpret without specific knowledge of
population structure and dynamics, this information would
be lost altogether in a single or pooled estimate of Rt. By con-
trast, if the policy were to be based on either a single or an
averaged Rt estimate, it would be unclear what any
recommendation should be and for whom.

Future work could explore systematic differences in the
influence of data sources on Rt estimates by extending the
comparison of Rt by data source to other countries or infec-
tious diseases. Additionally, work should also clarify the
potential for comparing Rt estimates in real-time tracking of
outbreaks and explore the inconsistencies in case detection
over time and space, where a cluster of cases leads to a
highly localized expansion of community testing, creating
an uneven spatial bias in transmission estimates. These find-
ings may be used to improve Rt estimation and identify
findings of use for epidemic control. Based on the work pre-
sented here we now provide Rt estimates, updated each day,
for test positive cases, admissions, and deaths in each NHS
region and in England. Our estimates are visualized on our
website, are available for download, and are produced
using publicly accessible code [46,47].

Tracking differences by data source can improve under-
standing of variation in testing bias in data collection,
highlight outbreaks in new subpopulations, indicate differen-
tial rates of transmission among vulnerable populations and
clarify the strengths and limitations of each data source.
Our approach can quickly identify such patterns in develop-
ing epidemics that might require further investigation and
early policy intervention. Our method is simple to deploy
and scale over time and space using existing open-source
tools, and all code and estimates used in this work are
available to be used or re-purposed by others.
5. In context
In the UK, public policy and the media have prominently
used the effective reproduction number (Rt) of COVID-19 to
summarise ongoing pandemic transmission. Several teams
in the UK have been contributing estimates of Rt that are
aggregated into a consensus range, but the methods,
approaches, and data sources for estimating transmission
have varied among teams and over time. For example, data
sources could, amongst others, include counts of test-positive
cases, hospital admissions, or deaths due to COVID-19. In
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our team’s submissions to the Scientific Pandemic Influenza
Group on Modelling (SPI-M) from March onwards, we saw
that even when using a consistent method, Rt estimates
were not a single, clear-cut number, but varied depending
on the source of data.

In late May, we started to explore whether these differ-
ences in transmission estimates from each data source could
be a policy-relevant indicator of biased data sampling and
subpopulation epidemics. We first presented a summary of
the differences in our team’s Rt estimates by data source to
SPI-M as a short note in early June. From June onwards we
used all three data sources to estimate Rt and contributed
them separately to the weekly reproduction number esti-
mates published by SPI-M and considered by the Scientific
Advisory Group for Emergencies (SAGE). Over this time,
we have adapted our work to support the changing UK
policy context. This has meant there are several differences
in available data, methods, and implications of this work
between the time we first generated the SPI-M report and
the time of this publication.

As COVID-19 data became more openly accessible, we
started to publish a daily comparison of UK Rt estimates
by data source (epiforecasts.io/covid/posts/national/
united-kingdom). This had initially been impossible as
there were very few sources of public subnational data.
Thanks to the Public Health England dashboard (corona-
virus.data.gov.uk), public data sources for England
increased in both quantity and quality and from October
we were able to produce subnational Rt estimates using a
variety of public data sources. We felt that presenting
these estimates publicly would be useful given the high
level of interest in the government’s claimed use of Rt as a
policy decision tool.

Between generating the original SPI-M submission and
this publication, we significantly developed and improved
the software we have built to estimate Rt (“EpiNow2”). We
continue to refine our methods for estimating Rt, although
the improved methods did not substantially change the
trend or direction of differences between estimates and our
resulting conclusions.

Our interpretation of the differences in Rt estimates has
changed over time as we saw new evidence for concentrated
transmission in subpopulations. In the earliest paper pre-
sented to SPI-M, discussion centred on the likely effects
of hospital-acquired infection and testing availability on
differences between Rt from test-positives compared to
admissions or deaths over March and May. However, increas-
ing evidence for a widespread and severe epidemic in care
homes provided an alternative explanation for such differ-
ences. We realised that, even without disaggregated data by
age or residence, simply identifying the differences in Rt esti-
mates could have been an early indicator of the epidemic in
this vulnerable subpopulation. We therefore continued to
track these differences, which once again became wider
over the summer as transmission moved between age
groups after restrictions were lifted and mass testing
became available.

Most importantly, we continue to find new insights into
the state of the UK pandemic from comparing Rt estimates.
One of the clearest trends we have seen in varying Rt esti-
mates by data source has followed from the National
Health Service vaccination campaign. Rt estimates from
deaths are now consistently below those from
hospitalisations and cases. This is a strong indicator of the
positive impact of vaccination, and an encouraging further
use for this work.
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