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Purpose: The Entlebucher mountain dog (EMD) shows a high incidence of primary non-congenital cataracts (CAT).
Because of the late-onset of CAT, it is difficult to exclude affected animals from breeding. A screen of candidate genes
should help to identify the genes associated with CAT in EMD.
Methods: We genotyped 39 flanking microsatellite markers for 31 cataract candidate genes in 10 EMD families and tested
them for linkage and association. For delimitation of a linked chromosome region on canine chromosome 1 (CFA1), we
interrogated CFA1 by genotyping 30 additional microsatellites. We also sequenced the whole coding sequence with
flanking intronic and untranslated regions of two candidate genes on CFA1.
Results: We found a genome-wide significant genomic region on CFA1, which showed a significantly associated
haplotype with the CAT phenotype in the EMDs. Sequencing two candidate genes located on CFA1 revealed three single
nucleotide polymorphisms (SNPs), which were not associated with CAT.
Conclusions: We identified a putative CAT region that peaked at 96.07 Mb with genome-wide significant test statistics
and extended over 1.3 Mb on CFA1 in the EMD. A significant marker-trait association based on haplotypes corroborated
this CAT region. Further research is necessary to determine the gene responsible for CAT that is harbored by this linked
and associated genomic region.

Primary cataract is one of the most frequent genetic eye
diseases among purebred dogs. There are more than 120 dog
breeds in which cataracts are known or presumed to be
hereditary [1-7].

In the Entlebucher mountain dog (EMD), primary non-
congenital cataract (CAT) is the most frequently observed
hereditary eye disease with a prevalence of 23.5% [8]. Most
of the affected dogs develop bilateral symmetric
opacifications, which are mostly located capsular and
subcapsular in the posterior polar part of the lens along the
suture lines [9]. The first signs of CAT can be seen at a mean
age of 5.5±2.6 years [8].

When complex segregation analyses were employed for
pedigree analyses, a mixed major recessive gene model was
found to be the most likely mode of inheritance of CAT in
EMD (O. Distl and H. Hamann, unpublished results). The
heritability was h2=0.32±0.05 in an animal threshold model
[8]. The animal model uses all relationships of the pedigree
of the dogs with phenotypic records to calculate heritabilities,
and the threshold model takes into account the binomial nature
of the phenotypic trait.
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Because of the late-onset of CAT in this breed, it is
difficult to exclude either CAT susceptible affected animals
early in life from breeding or to ascertain unaffected carriers.
A DNA test, which shows whether the dog is homozygous for
a CAT-causing mutation or a heterozygous carrier or free from
CAT-causing mutations, would be very helpful. Combined
with an adequate breeding program, the prevalence of CAT
could be effectively decreased in this breed.

To date, there are more than 30 genes that have to be
considered as possible candidate genes for primary cataracts
in dogs because these genes were found to be associated with
hereditary cataracts in humans or mice [10-14]. These genes
encode structural or membrane transport proteins of the lens,
transcription factors, which are involved in eye and lens
development, or enzymes, which are necessary for lens
metabolism [12]. Altogether 28 candidate genes for CAT were
reported by Mellersh et al. [14] and Hunter et al. [13]. We
investigated these 28 candidate genes, and three further genes
were added in our analysis. The objective of the present
analysis was to evaluate 31 candidate genes for linkage and
association with primary non-congenital cataracts in the
purebred dog breed EMD. As a genomic region linked with
primary cataracts was identified on CFA1, a mutation analysis
of the two positional candidate genes was performed and
microsatellites were genotyped to confirm this CAT-linked
region.
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METHODS
Animals, phenotypic data, and DNA specimens: The
ophthalmologic examinations of the dogs were performed by
veterinary specialists of the Dortmunder Kreis, the German
panel of the European Eye Scheme, for diagnosis of inherited
eye diseases in animals (DOK).

The Schweizer Sennenhund Verein für Deutschland e.V.
(SSV; kennel club for Swiss mountain dogs in Germany)
provided the ophthalmologic data recorded by the DOK and
the pedigree data for the EMDs. The pedigree data were
collated with the veterinary records to establish pedigrees with
multiple CAT-affected dogs.

For our study, we chose 88 purebred EMDs belonging to
10 families consisting of 36 paternal half-sib and 49 full-sib
groups. Full-sibs included between one and six dogs. For these
dogs, a blood sample was collected and preserved in EDTA.
Of these 88 dogs, 65 exhibited clinical signs of lens
opacifications. Fifty-four (61.54%) of these 65 dogs had a
posterior polar cataract (CAT) approved by a veterinary
ophthalmologist of the DOK. Progressive retina atrophy was
not seen in the dogs selected for our analysis. Dogs affected
by a posterior polar cataract were treated as affected and dogs
free from any signs of lens opacifications as non-affected. All
other dogs with a phenotype other than a posterior polar
cataract or missing phenotypic records were treated as
unknown phenotypes in the analysis. About 70% of the CAT-
affected dogs were in paternal half-sib groups with two to five
affected half-sibs. We had about 52% of the CAT-affected
dogs in full-sib groups with two to three affected full-sibs.
CAT was diagnosed at a mean age of 5.46±2.64 years. The
mean age of all dogs at the last ophthalmologic examination
was 6.00±2.79 years.

We performed a mutation analysis for dogs affected by
posterior polar cataract using two candidate genes on CFA1
because their flanking markers cosegregated with the CAT
phenotype. For this purpose, we chose 37 animals randomly
sampled from the population of EMDs. Of these dogs, 25 were
affected by a posterior polar cataract (CAT) and the 12
remaining dogs were unaffected.

Two milliliters of heparinized blood were obtained from
each dog, and DNA was extracted using a QIAamp 96 DNA
Blood Kit (Qiagen, Hilden, Germany).

For the cDNA analysis of the LIM2 gene, we used lens
tissue of a euthanized Tibetan terrier, which was unaffected
by CAT. After removal from the eye, the lens tissue was
preserved using RNA-later solution (Qiagen). The RNA was
extracted from dog lens tissue using the Nucleospin RNA II-
Kit (Macherey-Nagel, Düren, Germany) and transcribed in
cDNA using SuperScript III Reverse Transcriptase
(Invitrogen, Karlsruhe, Germany).
Genotyping of microsatellites and single nucleotide
polymorphism markers: For the investigation of 20 candidate
genes, we used microsatellites and polymerase chain reaction

(PCR) conditions according to Mellersh et al. [14]. For the
remaining 11 candidate genes, flanking microsatellites were
obtained by searching the dog genome assembly 2.1 for
known microsatellites with a distance of less than one
megabase (Mb) to the particular candidate gene. In total, 39
flanking microsatellite markers were genotyped for 31
cataract candidate genes. For the further analysis of the linked
region on canine chromosome 1 (CFA1), we chose 30
additional microsatellite markers from the dog genome
assembly 2.1. The PCR primers and conditions are shown in
Appendix 1.

The PCR for genotyping the microsatellites started at
94 °C for 4 min followed by 38 cycles at 94 °C for 30 s, at
optimum annealing temperature for 1 min, at 72 °C for 30 s,
and at 4 °C for 10 min. All PCR reactions were performed in
11.5-µl reactions using 6 pmol of each primer, 0.2 µl dNTPs
(50 μM), and 0.1µl TaqDNA polymerase (5 U/µl; Roche,
Mannheim, Germany) in the reaction buffer supplied by the
manufacturer for 1.5 μl of template DNA. The forward
primers were labeled fluorescently with IRD700 or IRD800.
For the analysis of the marker genotypes, PCR products were
size-fractionated by gel electrophoresis on an automated
sequencer (LI-COR, Lincoln, NE) using 4% polyacrylamide
denaturing gels (Rotiphorese Gel40, Carl Roth, Karlsruhe,
Germany). Allele sizes were detected using an IRD700- and
IRD800-labeled DNA ladder. The genotypes were assigned
by visual examination.
Non-parametric linkage analysis and association analysis: A
non-parametric multipoint linkage analysis was employed for
the EMD families using the MERLIN 1.1.1 software (Center
for Statistical Genetics, Ann Arbor, MI) [15]. This multipoint
analysis is based on allele sharing among affected individuals
by identical-by-descent methods [16]. The approach
employed appears useful for traits under complex inheritance
models because no assumptions have to be made for the
genetic parameters. The Whittemore and Halpern non-
parametric linkage (NPL) pairs statistics, Z-mean, and LOD
score according to Kong and Cox [16] were used for the
multipoint chromosome-wide search for allele sharing among
affected family members. In the case of no linkage, the Z-
mean approaches the minimum achievable value due to an
equal distribution of alleles among affected relatives. When
linkage is present under the alternative hypothesis, the
proportion of alleles identical-by-descent (IBD) deviates
significantly from the expected IBD proportions of the null
hypothesis. We employed multipoint analyses to make use of
all marker information from CFA1 to linked informative
markers and to increase power of linkage analysis. Thus, the
test statistics are dependent of the usefulness of the markers,
their distance to each other, and the number of markers
employed in the analysis. This means that Z-means and LOD
scores of the same markers can achieve higher values in
multipoint analyses when the information content of the
linked haplotype is increased through markers with high
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information content and in close proximity to the causal gene.
In contrast to multipoint analyses, Z-means and LOD scores
from two-point analyses are not changing when the number
of markers is increased and are independent of neighboring
markers. For the genome-wide type-I error probability (pg), a
Bonferroni correction was applied for the chromosome-wide
error probability (p) with pg=1-(1-p)1/r where r is the ratio of
the length of CFA1 (126 Mb) to the total length of the canine
genome with 2425 Mb. We used Bonferroni’s procedure to
strictly control the overall type-I error rate of genome-wide
error probabilities. Haplotypes were estimated using
MERLIN 1.1.1 with the option “best.” A case-control analysis
based on χ2-tests for genotypes, alleles, and trend of the alleles
was also performed for the EMDs. The CASECONTROL,
HAPLOTYPE, and ALLELE procedures of SAS/Genetics
(SAS Institute Inc, Cary, NC) were used for association tests
for single markers, marker-trait association tests for
haplotypes, tests for Hardy–Weinberg equilibrium of
genotype frequencies, and the estimation of allele frequencies
[17]. We screened all possible haplotypes of CFA1, including
two to four adjacent markers, for association with the CAT
phenotype.
Mutation analysis of candidate genes: We searched the dog
expressed sequence tag (EST) archive for ESTs by cross-
species BLAST searches with the corresponding human
reference mRNA sequences for FTL (NM_000146) and LIM2

(NM_030657). We found a canine EST (CN000212) isolated
from dog brain tissue with 88% identity to the human FTL
mRNA sequence. A significant match to this canine EST was
identified on canine chromosome 1 (NC_006583) by means
of BLASTN searches of this canine EST against the dog
genome assembly (dog genome assembly 2.1). We also found
two canine ESTs (DN868840 and DN864011) isolated from
beagle lens tissue, which together cover the human LIM2
mRNA sequence (NM_030657). Significant matches to these
canine ESTs were identified on canine chromosome 1
(NC_006583) of the dog genome assembly (dog genome
assembly 2.1). The canine LIM2 ESTs were verified by
sequencing the cDNA of LIM2 that was isolated from the dog
lens tissue. The genomic structures of the canine FTL and
LIM2 genes were determined using the Spidey mRNA-to-
genomic alignment program. The PCR primers are listed in
Table 1. PCR primers were designed using the Primer3
program based on the genomic sequence for canine
chromosome 1 (NC_006583) and the canine EST sequences
of FTL (CN000212) and LIM2 (DN868840 and DN864011).

We sequenced the complete genomic sequence of the
canine FTL gene and the exonic sequences with flanking
intronic and untranslated regions of the LIM2 gene for the 37
animals mentioned above. All PCRs were performed in 50-µl
reactions using 50 pmol of each primer, 100 μM dNTPs, and
2 U TaqDNA polymerase (Q-BIOgene, Heidelberg,
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TABLE 1. AMPLIFICATION PRIMERS FOR FTL AND LIM2.

Gene Target Primer Sequence (5’-3’) of primers Ta (°C) Product size
(bp)

FTL 337 bp before
start codon, exon
1, and intron 1

FTL_1_F CAGCTCGGATTGGTCAATAG 58 725
FTL_1_R CGCTGGTTTTGCATCTTC

Exon 2, intron 2,
and exon 3

FTL_2_F GCAGCCTTTGTCTCGTTG 58 689
FTL_2_R AAACCTGCCCGATTAAATTC

Intron 3, exon 4,
and 315 bp after
stop codon

FTL_3_F GGATCCCCATGTAAGTACCC 58 594
FTL_3_R TAGGCCTTCCAGAACAACAG

LIM2 5’UTR, exon 1,
and exon 2

LIM2_1_F GGAGGCTTAAGGGATTTGG 58 780
LIM2_1_R TCATGCCAGGAAATGTCAC

Exon 3 LIM2_2_F CACCCATTAGCAAACCAAAC 58 599
LIM2_2_R GAGAAGAAACACCCCAGAAAG

Exon 4 LIM2_3_F TACACAGCACTGGCCTGAC 58 645
LIM2_3_R AGTGGCCCCATTCTAACTTC

Exon 5 and
3’UTR

LIM2_4_F TGAGCCAGAAGACAGACTCC 58 667
LIM2_4_R AGAATTTGACCTATACATCTGTTTCC

cDNA LIM2_F AGGCTCCAGTCCCTTCCTC 59 660
LIM2_R CTCCCCCTCCTTTTCAGTG

PCR primers, their product size, and annealing temperature (Ta) for the amplification of the genomic sequence of canine FTL
and for the amplification of the genomic and cDNA sequence of canine LIM2 are presented.
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Germany) in the reaction buffer supplied by the manufacturer
and 10X PCR Enhancer (Invitrogen) for 2 μl template DNA.
The PCR conditions were 95 °C for 4 min followed by 38
cycles of 94 °C for 30 s, annealing temperature of 58 °C for
45 s, 72 °C for 60 s, and 4 °C for 10 min. All PCR products
were cleaned using the Nucleo-Fast PCR purification kit
(Macherey-Nagel) and directly sequenced with the
DYEnamic ET Terminator kit (GE Healthcare, Freiburg,
Germany) and a MegaBACE 1000 capillary sequencer (GE
Healthcare). Sequence data were analyzed with Sequencher
version 4.7 (GeneCodes, Ann Arbor, MI).

RESULTS
Non-parametric linkage analysis: The results of the non-
parametric linkage analysis and the association tests for all 88
EMDs and all candidate gene flanking microsatellites are
shown in Appendix 2. The highest Z-means of 1.94, 2.01, and
2.08 were obtained for the markers LIM2_1_107.53,
LIM2_1_108.39, and FTL_1_109.84, which are located
closely to the candidate genes, FTL and LIM2, on CFA1
(Appendix 2). These markers were significantly associated
with CAT. Thus, we genotyped 30 additional microsatellite
markers located on CFA1 to verify linkage with CAT and to
delimit the linked region on CFA1. After that, the highest Z-
mean and LOD score of 3.58 and 1.29 were obtained for
marker ABGc006, which is located about 14 Mb proximal of
LIM2_1_108.39 and FTL_1_109.84 (Appendix 3). The
chromosome-wide error probabilities for this linked marker
were at 0.0002 and 0.007, and the genome-wide error
probability of the Z-mean was at 0.004. The test statistics Z-
mean and LOD score for LIM2_1_107.53, LIM2_1_108.39,
and FTL_1_109.84 also increased through the high marker
density in the neighborhood and their high information
content. Recombinations of CFA1 were mostly observed in
the proximal part and only a few in the distal part, and thus,
markers distal of ABGc006 often shared the same haplotype
with ABGc006. The maximum achievable Z-mean was 88.24,
and the corresponding value for the LOD score was 9.97,
indicating that the power of the analysis was high enough to
detect genome-wide significant linkage. These maximum
values can only be reached when all markers employed are
fully informative for all affected relatives. We could not
achieve such high values for the Z-mean and LOD score in
our analysis because we used multi-generation pedigrees,
which means the information content among affected relatives
decreased due to long pedigrees pathways among affected
relatives in the families. The genome-wide significantly
linked region on CFA1 extended between 95.105 and 96.397
Mb, and this region was delimited by ABGc005 at 95.105 Mb
and FH3883 at 96.397 Mb.

A haplotype on CFA1 including the microsatellites
ABGc006, ABGc007, REN211B17, and C01.643 was
significantly associated with primary cataracts at p=0.0133
(χ2=20.85). The markers delimiting this haplotype were

located from 96.07 to 102.041 Mb and spanned the linked
region and the regions ~4 Mb distal of the linked region. The
haplotypes containing the alleles ‘264–296–159–218’, ‘266–
304–155–220’, and ‘276–300–155–220’ were associated with
higher incidences of posterior polar cataract whereas the
haplotypes including the alleles ‘262–308–155–228’ and
‘276–304–155–220’ showed lower incidences of posterior
polar cataract. Further haplotypes had very low frequencies
(<1%) and were not meaningful for association.

The microsatellite marker for canine SIX5 (FH2598), the
third candidate gene on this chromosome that is located about
2.5 Mb distal of FTL, achieved a considerably lower,
insignificant Z-mean and LOD score in the linkage analysis.
Mutation analysis of candidate genes FTL and LIM2 on
CFA1: We performed a mutation analysis for the FTL and
LIM2 genes due to the significant linkage of the flanking
markers. The canine FTL gene (LOC477042) consists of four
exons, which could also be affirmed through a canine EST
(CN000212). These four exons are interrupted by three short
introns. Although we sequenced the whole genomic sequence
of the canine FTL gene including more than 300 bp upstream
of the start codon and downstream of the stop codon, we did
not find polymorphisms in the animals investigated here. We
also sequenced all exons with their flanking intronic regions
of the LIM2 gene. This gene is located about two megabases
(Mb) proximal of FTL on CFA1. The canine LIM2 gene
(LOC611737) consists of five exons of which the first exon
is untranslated. In comparison to the human LIM2 gene, exon
3 of the canine LIM2 gene is 126 bp shorter. This result could
be verified using cDNA analysis of the lens tissue of a Tibetan
terrier. We did not find any exonic polymorphisms in the
LIM2 gene, but three single nucleotide polymorphisms
(SNPs) in the non-coding regions were found. A significant
association of these SNPs with primary cataracts in the EMD
was not evident (Table 2).

DISCUSSION
We could show putative linkage for a genomic region on
CFA1 with canine posterior polar cataract. This primary
cataract formation is typical for EMDs, and a recessive major
gene was shown to be involved in development of this
condition. Genotyping of 31 microsatellites on CFA1
delimited the putatively linked region to about 1.3 Mb. In
addition, a significantly associated haplotype including this
linked region corroborated the results of the linkage analysis.
Genome-wide and chromosome-wide linked markers
supported this linked interval on CFA1. We sequenced the
complete coding sequence and flanking intronic and
untranslated regions of candidate genes, LIM2 and FTL, on
CFA1, but we could not find any polymorphism associated
with the CAT phenotype in the EMD. We therefore ruled out
the sequence investigated in these two genes for harboring the
causative mutation for CAT. As the flanking marker

Molecular Vision 2008; 14:883-888 <http://www.molvis.org/molvis/v14/a106> © 2008 Molecular Vision

886

http://www.molvis.org/molvis/v14/a106/app-2.pdf
http://www.molvis.org/molvis/v14/a106/app-2.pdf
http://www.molvis.org/molvis/v14/a106/app-3.pdf
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NC_006583.2&from=110306079&to=110307172&strand=2&dopt=gb
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucest&id=45763891
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NC_006583.2&from=108472760&to=108479318&dopt=gb
http://www.molvis.org/molvis/v14/a106


(FH2598) of SIX5, which is also located on CFA1, is not
included in the associated haplotype, we assumed that SIX5
is not involved in the pathogenesis of CAT in the EMD. To
date, there are no other cataract candidate genes known in this
putatively linked region, and we also could not find any further
cataract candidate genes by searching this region in the current
dog genome assembly 2.1. Further development and
genotyping of SNPs for this putatively linked region and for
the region significantly associated with the CAT phenotype is
necessary to refine the haplotype shared by the CAT-affected
dogs, which will enable the ability to identify associated genes
and to screen these genes for CAT-causing mutations in the
EMD.

ACKNOWLEDGMENTS
The authors express their gratitude to the Schweizer
Sennenhund Verein für Deutschland e.V. (SSV) for providing
the pedigree data and blood samples. The authors thank the
veterinary ophthalmologists of the Dortmunder Kreis (DOK)
for providing the ophthalmologic data. The authors also thank
Stefan Neander for expert technical assistance.

REFERENCES
1. Genetics Committee of the American College of Veterinary

Ophthalmologists. Ocular disorders presumed to be inherited
in purebred dogs. 3rd ed. ACVO; 1999.

2. Rubin LF, Satterfield TS. Inherited eye diseases in purebreed
dogs. Baltimore: Williams & Wilkins; 1989. p. 101–7.

3. Gelatt KN. The canine lens. In: Gelatt KN, editor. Veterinary
Ophthalmology. 3rd ed. Philadelphia: Lippincott/Williams &
Wilkins; 1999. p. 429–60.

4. Davidson MG, Nelms SR. Diseases of the lens and cataract
formation. In: Gelatt KN, editor. Veterinary Ophthalmology.
3rd ed. Philadelphia: Lippincott/Williams & Wilkins; 1999.
p. 797–825.

5. Slatter D. Fundamentals of Veterinary Ophthalmology. 3rd ed.
Philadelphia: W.B. Saunders; 2001. p. 381–410.

6. Helper LC. Magrane’s Canine Ophthalmology. 4th ed.
Philadelphia: Lea & Febiger; 1989. p. 215–37.

7. Gelatt KN, MacKay EO. Prevalence of primary breed-related
cataracts in the dog in North America. Vet Ophthalmol 2005;
8:101-11. [PMID: 15762923]

8. Heitmann M, Hamann H, Brahm R, Grußendorf H, Rosenhagen
CU, Distl O. Analysis of prevalences of presumed inherited
eye diseases in Entlebucher Mountain Dogs. Vet Ophthalmol
2005; 8:145-51. [PMID: 15910366]

9. Spiess BM. Vererbte Augenkrankheiten beim Entlebucher
Sennenhund. Schweiz Arch Tierheilkd 1994; 136:105-10.
[PMID: 8171308]

10. Beby F, Morle L, Michon L, Bozon M, Edery P, Burillon C,
Denis P. [The genetics of hereditary cataract]. Transmission
génétique de la cataracte congénitale. J Fr Ophtalmol 2003;
26:400-8. [PMID: 12843900]

11. Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT.
Molecular genetic basis of inherited cataract and associated
phenotypes. Surv Ophthalmol 2004; 49:300-15. [PMID:
15110667]

12. Graw J. Congenital hereditary cataracts. Int J Dev Biol 2004;
48:1031-44. [PMID: 15558493]

13. Hunter LS, Sidjanin DJ, Johnson JL, Zangerl B, Galibert F,
Andre C, Kirkness E, Talamas E, Acland GM, Aguirre GD.
Radiation hybrid mapping of cataract genes in the dog. Mol
Vis 2006; 12:588-96. [PMID: 16760895]

14. Mellersh CS, Pettitt L, Forman OP, Vaudin M, Barnett KC.
Identification of mutations in HSF4 in dogs of three different
breeds with hereditary cataracts. Vet Ophthalmol 2006;
9:369-78. [PMID: 16939467]

15. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-
rapid analysis of dense genetic maps using sparse gene flow
trees. Nat Genet 2002; 30:97-101. [PMID: 11731797]

16. Kong A, Cox NJ. Allele-sharing models: LOD scores and
accurate linkage tests. Am J Hum Genet 1997; 61:1179-88.
[PMID: 9345087]

17. SAS Institute. SAS/Genetics, Version 9.1.3, Cary, NC, USA,
2007.

TABLE 2. ENTLEBUCHER MOUNTAIN DOG LIM2 POLYMORPHISM INFORMATION.

SNP Location PIC (%) HET (%) χ2 genotype P genotype χ2 allele P allele
LOC611737 g.4367G>A Intron 2 35.5 58.6 1.67 0.43 1.20 0.27
LOC611737 g.4396A>G Intron 2 20.3 14.7 3.67 0.16 4.32 0.04
LOC611737 g.6430T>G 3’UTR 19.9 14.3 3.50 0.17 4.13 0.04

Heterozygosity (HET), polymorphism information content (PIC), χ2-tests of the case-control analysis with their corresponding
error probabilities (P) for the single nucleotide polymorphisms (SNPs) in the LIM2 gene in the Entlebucher mountain dogs are
presented.

Molecular Vision 2008; 14:883-888 <http://www.molvis.org/molvis/v14/a106> © 2008 Molecular Vision

887

http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15762923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15910366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=8171308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=8171308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12843900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15110667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15110667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15558493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16760895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16939467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11731797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9345087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9345087
http://www.molvis.org/molvis/v14/a106


Molecular Vision 2008; 14:883-888 <http://www.molvis.org/molvis/v14/a106> © 2008 Molecular Vision

888

Appendix 1. Oligonucleotide primer sequences.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a pdf archive that
contains the file. Shown are PCR primers with their product

size range and the annealing temperature (Ta) for the
amplification of markers flanking the canine cataract
candidate genes.

Appendix 2. Candidate gene flanking microsatellites in the Entlebucher
mountain dog.

To access the data, click or select the words “Appendix
2.” This will initiate the download of a pdf archive that
contains the file. Shown are non-parametric test statistics Z-
mean and LOD score, their error probabilities (PZ, PL), χ2-tests

for allele and genotype distribution of the case-control
analysis, degrees of freedom (DF) and their corresponding
error probabilities (P) for the candidate gene flanking
microsatellites in the Entlebucher mountain dog.

The print version of this article was created on 13 May 2008. This reflects all typographical corrections and errata to the article
through that date. Details of any changes may be found in the online version of the article.

Appendix 3. Microsatellites on canine chromosome 1 (CFA1) in the
Entlebucher mountain dog.

To access the data, click or select the words “Appendix
3.” This will initiate the download of a pdf archive that
contains the file. Shown are non-parametric test statistics Z-
mean and LOD score, their error probabilities (PZ, PL), χ2-tests
for allele and genotype distributions of the case-control

analysis with their degrees of freedom (DF), and
corresponding error probabilities (P) for all microsatellites on
canine chromosome 1 (CFA1) in the Entlebucher mountain
dog.
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