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Despite the abundance of research reporting the neurophysiological and behavioral effects
of transcranial direct current stimulation (tDCS) in healthy young adults and clinical
populations, the extent of potential neuroplastic changes induced by tDCS in healthy older
adults is not well understood. The present study compared the extent and time course
of anodal tDCS-induced plastic changes in primary motor cortex (M1) in young and older
adults. Furthermore, as it has been suggested that neuroplasticity and associated learning
depends on the brain-derived neurotrophic factor (BDNF) gene polymorphisms, we also
assessed the impact of BDNF polymorphism on these effects. Corticospinal excitability
was examined using transcranial magnetic stimulation before and following (0, 10, 20,
30 min) anodal tDCS (30 min, 1 mA) or sham in young and older adults. While the overall
extent of increases in corticospinal excitability induced by anodal tDCS did not vary reliably
between young and older adults, older adults exhibited a delayed response; the largest
increase in corticospinal excitability occurred 30 min following stimulation for older adults,
but immediately post-stimulation for the young group. BDNF genotype did not result in
significant differences in the observed excitability increases for either age group. The
present study suggests that tDCS-induced plastic changes are delayed as a result of healthy
aging, but that the overall efficacy of the plasticity mechanism remains unaffected.
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neurotrophic factor

INTRODUCTION
Transcranial direct current stimulation (tDCS) is a non-invasive
brain stimulation (NIBS) technique that induces transmem-
brane neuronal potential and thus influences the level of cortical
excitability (see review Nitsche et al., 2008; Zaghi et al., 2010). It is
thought that the neuronal changes associated with the persisting
effects of tDCS are analogous to activity-dependent synaptic plas-
ticity, i.e., long-term potentiation (LTP) and long-term depression
(LTD; Di Lazzaro et al., 2012). There are a number of lines of
evidence for the induction of LTP by DC stimulation. Fritsch
et al. (2010) showed that the synaptic effects of direct current
stimulation which induced LTP in mouse motor cortex (M1)
slices is dependent on N-methyl-D-aspartate (NMDA) receptor
activation. Ranieri et al. (2012) further demonstrated that DC
stimulation applied to rat brain slices modulated LTP in a polar-
ity specific manner, i.e., modulation of LTP was increased by
anodal and reduced by cathodal DC stimulation. Pharmacolog-
ical studies have also shown that tDCS after-effects are affected
by NMDA receptor antagonist dextromethorphane (Nitsche et al.,
2003a; Ranieri et al., 2012). These results strongly indicate that the
effects induced by tDCS share similarities with activity-dependent
synaptic plasticity, such as LTP and LTD (Di Lazzaro et al., 2012).
Furthermore, DC stimulation also modulates LTP induced by
other NIBS techniques and interferes with learning and mem-
ory processes which are strongly associated with LTP (Kim and

Linden, 2007). Thus tDCS is considered to have capacity to induce
LTP/LTD-like plasticity.

The application of tDCS over M1 elicits changes in corti-
cospinal excitability in a polarity specific manner: motor evoked
potentials (MEPs) evoked by transcranial magnetic stimulation
(TMS) are potentiated by anodal tDCS and suppressed by catho-
dal tDCS (Nitsche and Paulus, 2000). Furthermore, the technique
is extremely well tolerated by most individuals and allows an easily
applied sham condition to which the participant is readily blinded.
Finally, it has been shown that tDCS can be combined with motor
and cognitive tasks to facilitate learning.

Despite the abundance of research on the behavioral effects
of tDCS on motor function (see review Reis and Fritsch, 2011)
showing increased levels of performance in both healthy (Nitsche
et al., 2003b; Antal et al., 2004; Vines et al., 2006) and clini-
cal populations, such as stroke patients (Hummel et al., 2005;
Kim et al., 2009), only a limited number of studies have inves-
tigated the effects of tDCS over M1 in healthy older adults
(Hummel et al., 2010; Zimerman et al., 2013). These two studies
did not, however, assess the tDCS-induced changes in corti-
cospinal excitability. While the behavioral improvements suggest
that the plastic changes within M1 induced by tDCS were sub-
stantial enough to elicit behavioral change, it is unknown whether
these neural changes varied relative to the changes expected in
young adults. Indeed, there is some evidence that older individuals
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may have reduced neuroplasticity (Fathi et al., 2010), at least when
assessed by the paired-associative stimulation (PAS) technique.
The overall conclusion that can be drawn is that there is no con-
sensus on the degree to which neuroplasticity is affected by healthy
aging (Oliviero, 2010).

Recently, brain-derived neurotrophic factor (BDNF) a neu-
rotrophin within the secretory protein family, has been suggested
to play a crucial role in neuroplasticity and associated learning
(Pascual-Leone et al., 2011). The most common forms of BDNF
polymorphism are Val66Met and Val66Val (Lu, 2003). These
BDNF polymorphisms have been shown to differentially mod-
ulate human cortical plasticity as a response to training (Kleim
et al., 2006), brain stimulation (Cheeran et al., 2008), and motor
learning (Fritsch et al., 2010). Thus, the BDNF example suggests
that individuals with a certain genetic predisposition may show a
different response to interventions that modulate brain plasticity –
either in a use-dependent manner (i.e., motor or cognitive train-
ing) or induced via NIBS techniques. The relationship between
tDCS induced aftereffects and BDNF genotype, however, is still
unclear.

Given the current uncertainty as to the effects of aging on neu-
roplasticity in M1 and its interaction with BDNF genotype, the
present study investigated, for the first time, age-related changes
in the degree of plasticity following anodal tDCS (facilitatory)
and the influence of BDNF gene polymorphisms on neuroplastic-
ity in the aging brain. Recently, large inter-individual variability
in response to NIBS techniques has been recognized (Müller-
Dahlhaus et al., 2008; Datta et al., 2012; Hamada et al., 2012;
López-Alonso et al., 2014; Wiethoff et al., 2014). Of further inter-
est in the present study, therefore, was to determine whether the
responsiveness to anodal tDCS is affected by age and explore
whether this inter-individual variation is associated with BDNF
genotype.

MATERIALS AND METHODS
PARTICIPANTS
Forty healthy volunteers, consisting of 20 older adults recruited
from the local community (7 males, 13 females, age M = 68.3,
SD = 7.9 years) and 20 young adults recruited from stu-
dents at the University of Tasmania (10 males, 10 females, age
M = 22.7, SD = 3.3 years), participated in the study. Within
the older group, participants had similar socio-economic sta-
tus and were involved in active social activities and/or paid
employment. All participants completed at least high school
education. The Mini-Mental State Examination (Dick et al.,
1984) was used to screen for cognitive deficits in the sam-
ple of older adults. All participants scored within the normal
range (score ≥ 26) and were free of any neurological, symp-
tomatic cardiovascular disease, diabetes or hypertension. Ethics
approval for the study was obtained from the Human Research
Ethics (Tasmania) Network and written informed consent was
obtained prior to participation in the study. All participants
were screened for contra-indications to TMS. We also consid-
ered the effect of physical activity on the response to tDCS.
Participants completed the International Physical Activity Ques-
tionnaire (IPAQ) which assesses the amount of time during
the previous seven days spent engaging in a range of physical

activities. The IPAQ has been shown to produce reliable and
repeatable measures of physical activities in young (Craig et al.,
2003; Hagstromer et al., 2006) and older adults (Tomioka et al.,
2011).

BDNF GENOTYPING
Three young and one older participant did not feel com-
fortable undergoing the characterization of the genotype.
The remaining 36 participants gave written informed con-
sent prior to participation in the DNA sampling. ARMS-PCR
(Sheikh et al., 2010) was performed to amplify the BDNF gene
region containing rs6265. Using the four primers P1 for-
ward CCTACAGTTCCACCAGGTGAGAAGAGTG, P2 (reverse)
TCATGGACATGTTTGCAGCATCTAGGTA, P3 (G allele specific)
CTGGTCCTCATCCAACAGCTCTTCTATAAC and P4 (A allele
specific) ATCATTGGCTGACACTTTCGAACCCA we could dis-
tinguish two allele specific amplicons 253 bp (val) and/or 201 bp
(met) along with the 401 bp amplicon (entire rs6265 region
as internal control). The ARMS-PCR reaction was carried out
in a total volume of 12 μl containing 1× REDExtract-N-
AmpTM PCR ReadyMixTM (Sigma-Aldrich, USA), 1 μM of
each of the four primers (P1, P2, P3, and P4) and 10 ng
of genomic DNA. Thermocycling conditions were: denatu-
ration at 94◦C for 3 min, 30 cycles of 95◦C for 45 s,
62◦C for 60 s and 72◦C for 60 s, with a final exten-
sion at 72◦C for 2 min. ARMS-PCR products were then
resolved on a 4% agarose gel. The samples could then be
classified as Val/Val (253/253 bp), Val/Met (253/201 bp), or
Met/Met (201/201 bp) based on the observed banding pat-
tern. All samples should have the rs6265 internal control
(401 bp) band present. Every sample was genotyped from at
least two independent PCR reactions to ensure fidelity. Par-
ticipants were divided into two groups according to their
genotype, either (i) homozygous for the val allele (Val/Val)
or (ii) homozygous and heterozygous for the Met allele
(Met/Met, Val/Met), respectively. Participants and examiner were
blinded with respect to the genotype at the time of examina-
tion.

TMS PROCEDURE AND EMG RECORDING
TMS was used to compare corticospinal excitability of projections
from the cortical representation of the right forearm flexor, flexor
carpi radialis (FCR), within the left M1, before (baseline), immedi-
ately after and at 10, 20, and 30 min intervals following tDCS (see
Transcranial Direct Current Stimulation section below). Single-
pulse TMS was applied using a standard figure of eight coil (7 cm
diameter of each wing) connected to a Magstim 200 (Magstim
Company, Dyfed, UK). The TMS coil was held tangentially over
the scalp to induce a posterior–anterior current flow and to opti-
mally elicit MEPs in the right FCR. We chose a forearm flexor
muscle rather than an intrinsic hand muscle, as proximal muscles
of the upper limb are often the targets of rehabilitation (Carson
et al., 2013). EMG surface electrodes (Ag/AgCl) were placed over
the right FCR in a belly tendon montage and signals were amplified
with a gain of 1000, band pass filtered (10–500 Hz) and sampled
at 2000 Hz using a 16-bit AD system (CED 1902, Cambridge, UK).
EMG data were fed to disk for offline analysis. At the beginning
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of each session each individual’s resting motor threshold (rMT)
was determined as the lowest intensity that evoked MEPs of greater
than 50 μV in at least three out of five consecutive trials for the FCR
(e.g., Carroll et al., 2008). The optimal scalp position for induction
of MEPs in the right FCR was marked on the participant’s head
using a felt tip pen. With both upper limbs relaxed and resting on
a pillow in the participant’s lap, baseline MEP recruitment curves
were constructed by applying stimuli in steps of 10% between 90%
and 160% of rMT. At each intensity, six pulses were delivered with
an inter-stimulus interval of 5 s (Carson et al., 2013); thus each
recruitment curve took approximately 4 min to collect. For thirty
participants, the order of stimulus intensities was randomized;
however, due to a technical problem, for the 10 participants (five
males), the randomization of intensities was replaced with coun-
terbalanced intensity steps. As no differences between recruitment
curves obtained in a ramping (systematically increased stimu-
lus intensity) and random manner have been observed (Pearce
et al., 2013), it is unlikely that the changes to recruitment curve
acquisition influenced the results obtained.

TRANSCRANIAL DIRECT CURRENT STIMULATION (tDCS)
The direct current was generated by a battery-driven constant-
direct current stimulator (Magstim Company, Dyfed, UK).
The current was delivered to the participant through anodal
(5 cm × 5 cm) and cathodal (6 cm × 8.5 cm) conductive rub-
ber electrodes that were placed inside pre-saline soaked and gelled
sponges with conductive gel. Following the baseline measure-
ment, either anodal stimulation or sham stimulation was applied.
The anodal stimulation involved an initial two-second “ramp-
up” period during which the current was brought from 0 to
1 mA. The current then remained at 1 mA for 30 min (Lin-
denberg et al., 2013). The sham stimulation involved the same
initial ramp. However, the current was then immediately ramped
down to zero over a 30 s period (Nitsche et al., 2008). The
participants were blinded to tDCS conditions and were instructed

in both sessions that they may feel a mild itching sensation
under the electrodes. That is, the participants were led to believe
they were receiving tDCS in both sessions (Kessler et al., 2012).
For both anodal tDCS and sham conditions the center of the
anodal electrode was placed over the FCR representation in the
left primary motor cortex, the location of which was identified
in the initial setup phase of the experiment, while the catho-
dal electrode was positioned over the contralateral supraorbital
region.

PROCEDURE
Participants received sham and anodal tDCS in two separate ses-
sions, one week apart at a similar time of day. The order of sham
and anodal tDCS was counterbalanced across participants. Dur-
ing each session the participants were comfortably seated in a chair
with their left arm supported and stabilized on a pillow with the
elbow in a semi-flexed position to ensure no muscle activations
in the forearm and hand muscles. After establishing the rMT, the
baseline MEP recruitment curve was recorded. This was followed
by 30 min of either sham or anodal tDCS. MEP recruitment curves
were then obtained immediately (0 min), 10, 20, and 30 min after
cessation of tDCS (Figure 1).

DATA PROCESSING AND ANALYSIS
In presenting the results, the data are expressed as mean
(M) ± 95% confidence intervals (CI). Using spearman’s bivariate
correlations we investigated whether IPAQ score was linearly cor-
related with normalized area under the recruitment curve (AURC)
values. We also considered gender in responses to tDCS, given
that there is evidence that PAS-induced neuroplasticity may be
reduced in older females (Tecchio et al., 2008). Resting motor
thresholds were examined by a 2(AGE: Young, Older) × 2(SEX:
male, female) × 2(GENOTYPE: Val66Val, met-carrier) × 2(STIM:
anodal tDCS, Sham) repeated measures ANOVA.

FIGURE 1 | Example of motor evoked potentials (MEPs) evoked in the right flexor carpi radialis (FCR) at pre and post (0, 10, 20, and 30 min) anodal

tDCS from a typical young (top) and older (bottom) participant. Average MEPs at each stimulus intensity (90–160% of rMT) were overlaid on top of each
other.
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MEP amplitude was measured by calculating the peak-to-peak
amplitude in a time window 20–100 ms following TMS. MEPs were
subsequently averaged across all trials at each stimulation intensity
at each time point (pre, post 0, post 10, post 20, post 30) and for
each participant. Trials in which root mean square (RMS) EMG
exceeded 10 μV (Carson et al., 2004) during the 40 ms immediately
preceding the TMS pulse were discarded. The mean MEP ampli-
tude at each intensity and time point was then used to calculate
the AURC for each time point. The curve was bounded by TMS
intensity using the trapezoidal rule (Potteiger et al., 2002; Carson
et al., 2013). More specifically, the following formula was used,
∑ 10(a+b)

2 , where a and b represent MEP amplitudes at consecutive
stimulus intensities, e.g., 90% rMT and 100% rMT. AURC for each
post-stimulation time point was then normalized for each partici-
pant to AURC obtained at the baseline pre stimulation (anodal or
sham) for that participant.

A mixed factorial ANOVA was undertaken to assess post-
stimulation normalized AURC (dependent variable) using AGE
(Young, Older), SEX (Male, Female), GENOTYPE (Val66Val, met-
carrier), STIM (anodal tDCS, Sham), and TIME (post 0, post
10, post 20, post 30) as independent variables. If the sphericity
assumption was violated, Greenhouse-Geisser’s degrees of free-
dom adjustment was applied. Planned contrasts between groups
(AGE, SEX, and GENOTYPE) at each time point and across
time points for each group separately were conducted to explore
significant main and interaction effects.

We performed chi-square tests to evaluate the percentage of
responders and non-responders in two groups divided on the basis
of BDNF, age, or sex. Non-responders were defined operationally
according to the ratio between pre and grand average of the post-
anodal tDCS AURC values across time points (post 0, 10, 20,
and 30) below 1 (Hamada et al., 2012). We chose this criterion to
accept any increases in AURC as a possible neuroplastic response
to anodal tDCS.

The critical p-value was set at 0.05. Cohen’s d, Cramer’s V and
partial eta squared (η2

p) values are provided as measure of effect
size, where appropriate. Cut-offs ≥ 0.1 small, ≥0.3 medium, ≥0.5
large were applied for Cramer’s V, ≥0.2 small, ≥0.5 medium, ≥0.8
large were applied for Cohen’s d and ≥0.01 small, ≥0.06 medium,
and ≥0.14 large were applied for η2

p (Sink and Stroh, 2006).

RESULTS
Due to a technical error resulting in MEPs not being recorded,
data from one young participant was excluded from all analyses.
Table 1 summarizes demographic information, BDNF geno-
type, and motor thresholds in each session. The BDNF genotype
analysis for the remaining 35 participants for whom we had
genetic data revealed that 24 were homozygous for the Val allele
(Val66Val), while 11 were Met-carriers including seven Val66Met
heterozygotes and four homozygous for the Met allele.

RESTING MOTOR THRESHOLD
Resting motor threshold (defined as a percentage of maxi-
mum stimulator output) was significantly higher in Met car-
riers (51.27 ± 3.25%) than Val66Val group (46.48 ± 2.01%),
F1,30 = 4.83, p = 0.04, η2

p= 0.14. rMTs did not vary reli-
ably as a function of age group (Young, 48.37 ± 2.87%; Older,

Table 1 | Summary of demographic information and BDNF genotype.

Age Sex BDNF genotype∗

M ± SD Male Female Val66val Val66Met Mat66Met

Young 22.7 ± 3.2 11 9 11 3 2

Older 68.3 ± 7.9 7 13 13 4 2

∗Three young and one older participant did not consent to genotype determina-
tion.

49.10 ± 2.03%) or session (anodal, 48.63 ± 2.32%; sham,
48.93 ± 2.49%), Fs < 0.91, ps > 0.34, η2

p = 0.02.

THE EFFECT OF AGE AND GENOTYPE ON PLASTICITY INDUCED BY
ANODAL tDCS
Repeated measures ANOVA for normalized AURC data revealed
that there was a main effect of STIM, F1,30 = 4.97, p = 0.03,
η2

p = 0.12, indicating, as expected, that the increase in AURC
induced by anodal tDCS (1.34 ± 0.16; +34%, significant increase,
p < 0.001, d = 0.70) was significantly larger than AURC changes
following sham tDCS (1.14 ± 0.16). The main effect of AGE
was not significant, F1,30 = 0.11, p = 0.74, η2

p = 0.002, indi-
cating that overall the magnitude of changes in post-tDCS AURC
values were not statistically different between young and older
adults. However, young and older adults showed different pat-
terns in the modulation of AURC post-tDCS as indicated by a
significant interaction of AGE x TIME, F3,90 = 4.68, p = 0.004,
η2

p = 0.11, which is best interpreted with reference to the signifi-
cant three-way interaction of AGE x STIM x TIME, F3,90 = 2.84,
p = 0.04, η2

p = 0.07. For young adults, although within the
anodal condition AURC values were not significantly differ-
ent between the different time points (ps > 0.17, ds < 0.32),
AURC values at only post 0 and post 10 following tDCS were
significantly higher than respective time points in the sham
condition (ps < 0.008, ds > 0.41). A different response pat-
tern was observed in older adults with AURC values at post
20 (1.40 ± 0.33) and post 30 (1.53 ± 0.35) being significantly
higher than post 0 (1.04 ± 0.14) and post 10 (1.13 ± 0.20;
ps < 0.02, ds > 0.58) as well as at the respective post-sham time
points (ps < 0.02, ds > 0.34; Figure 2). Within the sham con-
dition, AURC values at each time point were not significantly
different, ps > 0.13, ds < 0.22. Finally, an important find-
ing was that the only between-group difference was observed
at post 0 where the AURC value in young adults was signif-
icantly larger than the value obtained for older adults at that
time point (p = 0.01, d = 0.85; Figure 2). Thus, the interaction
between AGE and TIME was predominantly driven by older group
showing AURC value changes in time-dependent manner (i.e.,
delayed response to anodal stimulation), whereas the responses
in young group were unchanged across time points following
stimulation.

Interestingly, all main effects and interactions including SEX
and/or BDNF as a factor were not statistically significant, Fs < 1.47,
ps > 0.23, η2

p < 0.04, and all were associated with small effect
sizes, suggesting that these factors may not be associated with the
neuroplastic changes following anodal tDCS.
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FIGURE 2 | Mean normalized AURC for young and older adults across post-stimulation [(A) anodal tDCS and (B) sham] time points. Error bars (95% CI)
which include the value 1 (baseline: dotted horizontal line) indicate non-significant differences at that time relative to baseline. Asterisks indicate a significant
difference between groups (**p < 0.01).

INTER-INDIVIDUAL VARIABILITY OF RESPONSES TO ANODAL tDCS
Inspection of each individual’s data revealed that despite group
effects indicating a significant effect of stimulation, there were
some individuals who did not display the anticipated increase in
AURC following anodal tDCS (Figure 3). Approximately 20% of
total participants, specifically four young (two males, two females,
M = 24.5, SD = 3.3 years) and four older females (M = 69.0,
SD = 9.3 years), were identified as non-responders exhibit-
ing AURC values across post-anodal tDCS time points below
1. Responders consisted of 16 (seven males and nine females)
older adults (age range: 60–88 years, M = 67.7, SD = 7.8)
and 15 young (nine males and six females) participants (age
range: 19–29 years, M = 23.0, SD = 3.1). Response to anodal
tDCS did not differ by BDNF genotype (17 Val66Val and 10
Met-carriers in responders), χ2(1, N = 35) = 1.72, p = 0.19,

V = 0.22, age, χ2(1, N = 39) = 0.01, p = 0.94, V = 0.01,
or sex, χ2(1, N = 39) = 0.82, p = 0.37, V = 0.15. In non-
responders, normalized AURC values between anodal and sham
conditions at each time point were not statistically different
(ps > 0.16, ds < 0.41). In both older and younger respon-
ders, there were no significant correlations between total IPAQ
score and AURC values at any time point following anodal tDCS
(rs < 0.38, ps > 0.16). Physical activity, therefore, did not appear
to be associated with corticospinal excitability changes induced
by tDCS.

DISCUSSION
The present study was designed to investigate the age-related
changes in the extent of neural plasticity of the corticospinal pro-
jections from primary M1 in response to anodal tDCS. For young

FIGURE 3 | Mean (black square with error bars denoting SD) and individual AURC ratios (pooled AURC across post-time points divided by baseline

pre stimulation) in the anodal tDCS condition for young and older adults. A ratio larger than 1 indicates AUC increase following anodal tDCS.
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adults the largest potentiation in excitability was observed imme-
diately following a 30 min application of anodal tDCS. Although
AURC values were not significantly different between the post-
stimulation time points, only up to 10 min post-anodal tDCS
showed significantly higher corticospinal excitability than sham
condition. Although this result is inconsistent with a recent find-
ing (Monte-Silva et al., 2013), in which a reduction in corticospinal
excitability relative to baseline was observed following a 26 min
period of anodal stimulation, consistent with the present data is
a report of increased corticospinal excitability following a 40 min
bout of anodal tDCS (Williams et al., 2010). Although we believe
it is extremely unlikely that the single-blinded approach utilized
in the current study affected the results, it may be desirable to
use double-blinded approach in the future studies to remove the
possibility of any confound.

For older adults, in contrast, post-stimulation potentiation was
delayed with the largest response occurring 30 min after the stim-
ulation. Indeed, potentiation immediately after stimulation and
10 min thereafter was significantly different to neither sham nor
baseline. Importantly, neither BDNF nor sex appeared to influence
the neuroplastic changes induced by anodal tDCS. In light of this
finding, implications for the use of tDCS in older populations are
discussed below.

DELAYED INCREASE IN CORTICOSPINAL EXCITABILITY FOLLOWING
ANODAL tDCS IN OLDER ADULTS
We found that the magnitude of anodal tDCS-induced plasticity
in older adults was not significantly reduced (as inferred by way of
inferential statistics) relative to young adults. Although the aver-
age level of potentiation (averaged over the four post-tDCS time
points) was lower in older adults (29% relative to pre-stimulation
levels) than younger adults (41%), the difference was not statisti-
cally significant. What was most striking, however, was our novel,
and potentially important, finding that older adults exhibited a
delayed response to anodal tDCS relative to young adults. As seen
in Figure 2, corticospinal excitability in older adults did not peak
until 30 min after cessation of stimulation, whereas young adults
exhibited their peak potentiation immediately following stimula-
tion. Indeed, at 0 and 10 min after tDCS older adults’ corticospinal
excitability was not different from baseline, while young adults
showed significant potentiation at these early time points. At 20
and 30 min post-anodal tDCS both groups exhibited significant
potentiation relative to baseline.

A number of previous studies have reported a decreased capac-
ity for neuroplastic changes within the motor network with
advancing age, both in response to motor training (Sawaki et al.,
2003; Rogasch et al., 2009 ) and in response to NIBS techniques
including PAS (Fathi et al., 2010) and repetitive TMS (rTMS;
Müller-Dahlhaus et al., 2008; Fathi et al., 2010; Todd et al., 2010).
While PAS and rTMS, including theta burst stimulation (TBS),
protocols are thought to elicit LTP- or LTD-like plasticity by
changing NMDA-dependent glutamatergic transmission (Stefan
et al., 2000; Wolters et al., 2003; Huang et al., 2005, 2007; Zie-
mann et al., 2008), tDCS influences resting membrane potentials
by affecting sodium and calcium channels or by shifting electri-
cal gradients which influence the electrical balance of ions across
the neural membrane (Liebetanz et al., 2002). It could therefore

be the case that the delayed, but not diminished, tDCS-induced
plastic changes evident in older adults is a result of the stimula-
tion targeting different plasticity mechanisms than those targeted
by rTMS, TBS and PAS, where age-related declines in plasticity
have been observed. That said, it must be noted that age-related
decline in plasticity is not a ubiquitous finding, as a number of
papers indicate preserved neural plasticity in response to motor
training (Cirillo et al., 2010, 2011; Hinder et al., 2011, 2013a,b) or
NIBS paradigms (e.g., TBS; Di Lazzaro et al., 2008). These dis-
crepancies between individual studies may perhaps reflect large
inter-individual variability in response to training programs or
brain stimulation interventions.

VARIABILITY OF INDIVIDUALS’ RESPONSE TO tDCS
Consistent with recent reports using tDCS (Datta et al., 2012;
López-Alonso et al., 2014; Wiethoff et al., 2014), rTMS (Maeda
et al., 2000; Hamada et al., 2012; López-Alonso et al., 2014), and
PAS (Müller-Dahlhaus et al., 2008; López-Alonso et al., 2014), we
observed that a number (8 out of 39, or approximately 20% of par-
ticipants) of participants did not show the expected corticospinal
excitablity increase following anodal tDCS. The aftereffects of
rTMS protocols including TBS have also been reported to be
highly variable between individuals, irrespective of age (Hamada
et al., 2012). As a consequence, some recent studies have separated
participants into responders and non-responders (e.g., Müller-
Dahlhaus et al., 2008; Hamada et al., 2012). It should be noted that
all those participants in the current study who exhibited reduc-
tions in excitability following anodal tDCS lie within 2 SDs of
the mean response for their age group. As such, given a spread
of responses within a normal distribution, it might be that these
participants did not necessarily display atypical responses. That is,
there was not a bimodal distribution in the present data reflecting
those individuals who responded to tDCS in the expected manner,
and those who showed the opposite effect. We suggest, therefore,
that rather than indicating a clear pattern of “responders” and
“non-responders,” the present data indicate variability around the
expected response.

Recently, it has been hypothesized that the inter-individual
variability in response to NIBS may be the result of different popu-
lations of neurons being stimulated more easily in different people
at different times (Hamada et al., 2012). Variability in the response
to TMS may not be due to differences between individuals in the
plasticity of cortical synapses, but instead may result from indi-
vidual differences in the recruitment of cortical neurons (Hamada
et al., 2012). Furthermore, recent modeling analysis has shown
that the current flowing from anodal tDCS is highly influenced by
variations in cortical gyri/sulci, suggesting that the effects may not
be homogeneous throughout the stimulated area for an individual
and depend on the anatomical characteristics in the individual M1
(Datta et al., 2012). Therefore, the observed variability to anodal
stimulation in the present study could, at least in part, be explained
by individual differences in the anatomical structure of the brain.
In addition, we cannot rule out a possibility that other factors
played roles in the inter-individual variability in the response to
anodal stimulation. Since, for example, emotional states (Baum-
gartner et al., 2007; Coombes et al., 2009) and motor activities
(Koeneke et al., 2006) modulate corticospinal excitability, it may
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be useful to apply a questionnaire to investigate emotional state
and activities prior to the assessment.

We also examined whether BDNF gene polymorphism affects
the efficacy of anodal tDCS to induce plasticity. In the human
brain, BDNF is thought to modulate NMDA receptor-dependent
LTP and LTD (Antal et al., 2010). Neuronal activity in response
to experience and environmental demand appears to enhance
the local synthesis/secretion of neurotrophins, which in turn
regulates synaptic efficacy or growth (Rossini et al., 2007). In
contrast to Antal et al. (2010), we did not find that individu-
als carrying the Val66Met polymorphism had enhanced anodal
tDCS-induced plasticity compared to Val66Val carriers. Rather,
our results are consistent with two previous studies showing no
difference between BDNF genotypes with regard to corticospinal
excitability changes following cathodal tDCS over M1 (Cheeran
et al., 2008; Di Lazzaro et al., 2012). In the present study, the only
group difference observed was in rMT, with Met carriers showing
significantly higher rMT than the Val66Val group. Similarly, we did
not find any sex difference in response to anodal tDCS. Although
the present sample was larger than previous studies examining the
relationship between NIBS induced plasticity and BDNF genotype,
studies using much larger sample sizes with a balanced number of
participants across the polymorphism are clearly required before
a definite conclusion can be drawn regarding the impact of BDNF
on neuroplasticity mechanisms.

POSSIBLE MECHANISMS UNDERLYING DELAYED RESPONSE TO tDCS
AND IMPLICATIONS
Although the neurophysiological mechanisms underlying the
delayed response to anodal stimulation in older adults are
unknown, one possibility is that deterioration at the microstruc-
tural level in the aging brain may contribute to the delayed
response. During aging there is progressive accumulation of dam-
aged molecules and impaired energy metabolism in brain cells (Yu
et al., 2002). The aging process compromises neuroprotective and
neurorestorative mechanisms involving glial cells (Yu et al., 2002).
Recently, it has been speculated that tDCS may affect glial cells
rather than neurons directly (Ruohonen and Karhu, 2012). There-
fore, the degradation process with advancing age in glial cells may
be associated with the delayed response to anodal stimulation in
older adults. The next important question is whether the observed
response to anodal tDCS in older adults is as long lasting as the
increased corticospinal excitability relative to baseline in young
adults which persisted for up to 30 min after the stimulation.

Recent studies investigating the effect of tDCS on motor learn-
ing have utilized a “gating” strategy in which the excitability of
M1 is transiently increased via DC stimulation concurrent with
motor task performance(Ziemann and Siebner, 2008). In gating
studies, tDCS is often applied at the initial stage of the learning
(e.g., Waters-Metenier et al., 2014). Given that older adults showed
delayed potentiation in corticospinal excitability, it may be worth
considering the application of stimulation prior to motor training
in older adults to elicit greatest changes in behavior during motor
performance.

In summary, young adults exhibited the largest potentiation in
corticospinal excitability immediately after the anodal tDCS, while
the potentiation in corticospinal excitability was delayed in older

adults. Notably, we failed to observe differences in neuroplastic
changes following atDCS by BDNF subtypes and sex, suggesting
neuroplastic response following atDCS is possibly independent
from these factors. Future work is warranted to investigate the
association between neuroplasticity induced by NIBS techniques
and skill acquisition in older adults. Further understanding of
the neurophysiological mechanisms underlying neuroplasticity in
older adults has significant clinical implications for the improving
of motor function in aging populations and recovery following
stroke.
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