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Abstract: The Songkhla Lake Basin (SLB) located in Southern Thailand, has been increasingly polluted
by urban and industrial wastewater, while the lake water has been intensively used. Here, we aimed
to investigate cyanobacteria and cyanotoxins in the SLB. Ten cyanobacteria isolates were identified as
Microcystis genus based on16S rDNA analysis. All isolates harbored microcystin genes, while five
of them carried saxitoxin genes. On day 15 of culturing, the specific growth rate and Chl-a content
were 0.2–0.3 per day and 4 µg/mL. The total extracellular polymeric substances (EPS) content was
0.37–0.49 µg/mL. The concentration of soluble EPS (sEPS) was 2 times higher than that of bound EPS
(bEPS). The protein proportion in both sEPS and bEPS was higher than the carbohydrate proportion.
The average of intracellular microcystins (IMCs) was 0.47 pg/cell on day 15 of culturing, while
extracellular microcystins (EMCs) were undetectable. The IMCs were dramatically produced at the
exponential phase, followed by EMCs release at the late exponential phase. On day 30, the total
microcystins (MCs) production reached 2.67 pg/cell. Based on liquid chromatograph-quadrupole
time-of-flight mass spectrometry, three new MCs variants were proposed. This study is the first
report of both decarbamoylsaxitoxin (dcSTX) and new MCs congeners synthesized by Microcystis.

Keywords: Songkhla Lake Basin; Microcystis; extracellular polymeric substances; microcystins; saxitoxin

Key Contribution: This study is the first report of both decarbamoylsaxitoxin (dcSTX) and new MCs
congeners synthesized by Microcystis.

1. Introduction

The overgrowth of cyanobacteria leads to critical environmental problems and ecolog-
ical events, including hypoxia, reducing water clarity, and imbalance of food webs. Among
bloom-forming cyanobacteria, Microcystis sp. are the most abundantly reported [1]. The
organisms are capable of producing several toxins, including hepatotoxic microcystins
(MCs) [2] and neurotoxins (anatoxin-a, cyanopeptolin, and β-N-methylamino-L-alanine) [3].
MCs cause liver failure in humans and animals and increase the risks of primary liver
cancer in humans [4]. Co-production of MCs and other toxins has been reported in certain
Microcystis spp. Microcystis producing both MCs and saxitoxins (STXs) were isolated from
a Brazilian reservoir [5] and freshwaters in Scotland and Brazil [6]. Saxitoxins, comprising
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57 compounds, are a potent neurotoxin blocking ionic sodium and calcium channels, result-
ing in rapid paralysis and respiratory failure [7]. The passing of either MCs and/or STXs
through the aquatic food web leads to animal deaths and human poisonings [8,9]. The
World Health Organization (WHO) and the United States Environmental Protection Agency
(EPA) have set guidelines to minimize MCs’ hazards [10,11]. The drinking water guidelines
are 0.3 µg/L (bottle-fed infants and pre-school children) and 1.6 µg/L (school-age children
and adults) MCs. The cyanobacterial guidelines for recreational water have been set as
low effect (<20,000 cells/mL), moderate effect (20,000–100,000 cells/mL), and high effect
(100,000–10,000,000 cells/mL). An official guideline for STXs has been established in two
states in the U.S. (0.2 µg/L in Ohio and 0.3 µg/L in Oregon), and there is an Australia
drinking water guideline (3 mg/L).

The success of a Microcystis bloom is attributed to its ability to migrate rapidly and
defend against predation via colony formation and aggregation [12]. Extracellular polysac-
charide (EPS) plays a critical role in colony formation. EPS also facilitates aggregated
cyanobacteria floating near the water surface, known as scum formation [13]. The EPS com-
position and structure contribute to its matrix stability [14]. Its constituents (polysaccharide,
protein, lipids, and nucleic acid) are diverse among Microcystis species [15].

Microcystis blooms have predominantly occurred in freshwater when the temperature
rises [16]. Microcystis-harboring salt-tolerant genes has been reported in estuaries and
marine environments [2,17,18]. The accumulation and biomass are facilitated by carbon
fixation, availability of macronutrient nitrogen (N) and phosphorus (P), and physical
parameters [19]. Increasing N supply would promote Microcystis sp. population [20,21]
and increased MCs production [22].

Songkhla Lake Basin (SLB), a total area of 986.8 km2, is the largest natural lake in
Thailand and Southeast Asia. The SLB is a unique ecosystem, which combines freshwater,
brackish water, and saline water. The impurity in SLB originated from urbanization, in-
dustrialization, and artisanal fishing since along the shore are urban settlements, fishing
villages, shrimp ponds, seasonally flooded forests, and rice paddy fields. Biological studies
of the SLB have concentrated primarily on the taxonomy and biology of a few economically
important species [23–25]. The presence of chlorophyll a (Chl-a) content has been suggested
as a reason for phytoplankton propagation, including cyanobacteria in water bodies [26].
Algal blooms have occurred in SLB periodically, especially after rainy seasons [27]. The Ma-
rine and Coastal Resources Research Center, Lower Gulf of Thailand, revealed Chroococcus,
Merismopedia, Microcystis, Oscillatoria, and Spirulina in SLB without algal blooming. While
nutrient loading into SLB tends to increase dramatically, studies of harmful cyanobloom
conditions in the lake have been limited by a lack of contaminated cyanotoxin and toxic
Microcystis reports.

Our study provides proper identification of taxa and an evaluation of cyanotoxin
accumulation in SLB for setting sound management procedures to reduce/prevent the
exposure risk. Here, we aimed to investigate water parameters and toxin-producing
Microcystis in several locations around the SLB. The toxin production and release were also
determined as aquatic animal and human health benefits. This study aimed to indicate the
potential harmful cyanobacteria in this unique environment and contribute to the discovery
of novel toxic compounds.

2. Results
2.1. General Water Quality Parameters and Bacterial Isolation

A total of five water samples were obtained and used in this study. Four water
samples were collected along accessible shores of Songkhla Lake Basin (SLB) (Figure 1).
The sample sites are located close to urban settlements. One wastewater sample was
collected from Hat Yai municipal wastewater treatment plant (HMWTP), which was ef-
fluent water drained to SLB (Figure 1). All samples were collected in January, the end
of the rainy season (September–December). Nutrients easily load and accumulate in the
lake, favoring cyanobacterial proliferation [28]. For all samples, biochemical oxygen de-
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mand (BOD) and chemical oxygen demand (COD) were 1.58–5.4 mg/L and 28–50 mg/L,
respectively (Table 1). Total phosphorous and total nitrogen were 0.08–0.24 mg/L and
0.58–1.15 mg/L, respectively. Other water quality characteristics included dissolved oxy-
gen (DO) of 1.82–7.02 mg/L, pH of 6.7–8.34, and salinity of 0.1–0.3 g/L. The lowest DO
level (1.82 mg/L) that appeared at SG might have resulted from restricted water exchange,
wind calm, and high tidewater. Salinity (0.3 g/L) indicated that two water samples from
Songkhla Lake, Songkhla, were brackish. The onsite temperature of the samples ranged
from 29 to 32 ◦C.
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Figure 1. Map of Songkhla Lake. The map shows the locations of water sampling. PB = Thale Noi,
Pattalung, Thailand; SF, SG, and SH = Songkhla Lake, Songkhla; W = Hat Yai municipal wastewater
treatment plant.

Table 1. Water quality results.

Water
Characteristics Songkhla Lake, Songkhla, Thailand Thale Noi, Pattalung,

Thailand

Hat Yai Municipal
Wastewater Treatment

Plant (HMWTP)

BOD (mg/L) 4.62 4.62 Below LOD * 3.63 5.4
COD (mg/L) 46 50 28 35 37.6

TP (mg/L) 0.11 0.32 0.08 0.11 0.24
TKN (mg/L) 1.15 1.1 0.78 0.69 0.58
DO (mg/L) 4.37 1.82 4.58 7.02 5.8

Temperature (◦C) 32 32 31 29 30
pH 8.34 8.1 7.23 7.38 6.7

Salinity (g/L) 0.3 0.3 0.1 0.1 0.1

Coordinates 7◦47′335.9′′ N
100◦15′28.0′′ E

7◦4610.0′′ N
100◦18′08.8′′ E

7◦41′11.0′′ N
100◦12′31.1′′ E

7◦46′40.6′′ N
100◦07′22.1′′ E

7◦46′40.6′′ N
100◦07′22.1′′ E

Isolates SF11 SG03, SG10,
SG11, SG12 SH12, SH13 PB07 WOT01, WIN01

* 1.56 mg/L biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total Kjeldahl nitrogen (TKN),
and dissolved oxygen (DO).
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Cyanobacteria were isolated from the water samples. Ten green colonies were selected
and observed under an optical microscope. The cells ranged from 1 to 5 µm in diameter
with a round shape and green color. The 16S rDNA analysis indicated that all strains fell
into Microcystaceae family and Microcystis genus. The phylogeny based on 16S rDNA se-
quences was generated by the neighbor-joining tree method; compared with M. aeruginosa,
M. panniformis, M. ichthyoblabe, M. wesenbergii, M. viridis, and Gloeothece membranacea; and
deposited in the NCBI database (Figure 2). Most Microcystis isolates were closely related
to M. aeruginosa strains NIES-843 (NR_074314.1), except WIN01. SG12, SG03, and SG11
isolated from the exact location were in the same phylogenic group. SH13, SH12, and
SF11 also showed similar 16S rDNA gene sequences. Three Microcystis strains isolated
from Songkhla Lake (SG10), Thale Noi (PB07), and HMWTP (WOT01) fell into the same
cluster. Our results reveal that despite the absence of cyanobacterial bloom, Microcys-
tis was detected. Cyanoblooom is facilitated by other environmental factors, including
nutrients, carbon dioxide, weather conditions, water bodies, salinity, heavy metals, and
sunlight [29,30].
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2.2. Microcystin Genes and a Saxitoxin Gene Analysis

Microcystin genes and a saxitoxin gene were investigated in all 10 strains. The MC
gene cluster is arranged in two divergently transcribed operons (ORFs), mcy A-C and mcy
D-J. The mcy A-C operon is engaged in synthesizing amino acids attached to Adda through
a subsequent modification or tailoring by mcyJ, mcyE, and mcyF genes [31]. The mcyA genes
are widely employed to detect the toxigenic Microcystis genus [32–34]. Our results show
that all isolates carried mcyA (Table 2). The mcyAa primers detected the target gene in 5 out
of 10 strains, while the mcyA gene was detected in 9 of 10 strains by mcyAb primers. The
mcyAb primers were created based on nucleotides of toxigenic Microcystis and Planktothrix
strains [35]. However, certain non-toxic strains harbor the mcy genes [36,37]. Our study
suggests that the mcyA primers might be restricted by a small nucleotide database of the
toxic strains and that mcyA sequences are divergent among Microcystis isolates [32]. A
report on MCs detection in Greece revealed that despite the presence of the toxin, the
mcyA gene was not detected in freshwater samples [38]. Therefore, MCs prediction strictly
based on molecular assay might be insufficient. Combining molecular techniques (PCR)
and other techniques such as chemical methods (HPLC) and immunoassay will assure the
MC presence.
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Table 2. Genotypic and phenotypic characteristics of Microcystis spp.

Microcystis Sp.
Genotypes Phenotypes

mcyAa mcyAb stxtA The Specific Growth
Rate *, µ (Day−1)

Chlorophyll a
(Day 15, µg/mL)

MCs Production
(Day 15, µg/mL)

SF11 - + - 0.291 3.386 194
SG03 + + + 0.312 4.139 314
PB07 - + - 0.332 3.514 188
SG10 + + - 0.312 4.182 210
SG11 + - + 0.312 4.024 306
SG12 + + + 0.329 4.37 281
SH12 + + - 0.211 3.889 43
SH13 - + - 0.209 4.173 142

WOT01 - + + 0.271 3.982 279
WIN01 - + + 0.261 4 273

* The specific growth rate was calculated based on cell number.

Our results show that 5 of 10 strains were positive for sxtA and also carried mcyA
(Table 2). The STXs biosynthesis initiates via PKSs-like enzymes encoded by sxtA [39]. The
sxtA is a core gene among the gene clusters for the synthesis of STX and analogs [40,41].
This gene has been widely used to detect STX producers [42].

2.3. Growth and EPS Composition

The Microcystis density and Chl-a content were measured. The specific growth rate of
all isolates was 0.2–0.3 day−1, as shown in Table 2. As a general metric for algal biomass,
Chl-a was employed as a reference for cyanoblooms [43]. Our results show that Chl-a
production was consistent with bacterial growth. Chl-a was 0.1 to 4 µg/mL from day 0 to
day 15.

Extracellular polymeric substance (EPS) of Microcystis is produced as part of the
metabolism process. It forms and surrounds the cell surface as a protective barrier between
the cell and the external environment [12,44,45]. The content, types, and composition
of EPS also facilitate colony formation, impacting the distribution and persistence of
cyanobacteria [46–48]. A study by Holland et al. suggested that Microcystis with increased
colony size contained higher MCs [49]. Therefore, correlations between MCs and the
content and composition of EPS are needed to be revealed.

Here, we determined EPS content and composition in 10 Microcystis isolates (Figure 3).
The total EPS varied from 0.37 to 0.49 µg/mL. The highest total EPS concentration was
found in SG10. For all isolates, the average soluble EPS (sEPS) concentration (Figure 3b)
was roughly twice higher than the average bound EPS (bEPS) concentration (Figure 3a)
(0.27 vs. 0.14 µg/mL). Our results confirm the finding by Xiao et al. (2018), that Microcystis
are commonly unicellular cells under an axenic condition [12]. High sEPS content was
found in unicellular cells, while increasing bEPS content could be concluded for colony
formation [46]. The proportion between protein and carbohydrate in sEPS in 10 isolates
was similar. In contrast, the protein proportion in bEPS was higher, ranging from 2.014
to 3.056 at an average value of 2.369, which was in agreement with a previous study [50].
However, the proportions of bEPS in this study were inconsistent with Xu et al. (2013),
which revealed a higher polysaccharides content than protein. The EPS composition also
depends on cyanobacterial species, including Synechocystis sp. (FACHB898), Synechococcus
7942 (FACHB805), Microcystis flosaquae (FACHB1028), Scytonema hofmanni (FACHB 248),
and Nostoc sp. (FACHB106) [51].

During cyanobloom, large aggregated colonies form scum floating on a water body’s
surface [52]. This upward cell migration is enhanced by photosynthetic activity resulting in
O2 saturation and nucleation into bubbles [13,53] and gas vesicles in Microcystis cells [47].
The O2 bubble is trapped inside EPS, indicating that scum formation is highly correlated
with the amount of EPS production [13,54]. Here, the scum formation was enhanced
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by culturing in high concentration media and was found in SG03, SG11, and SH13 after
culturing for 2 to 7 days, in agreement with previous studies [13,53]. The remaining isolates
did not generate scums over the incubation period. Future work should be conducted to
determine the effects of EPSs composition on scum formation and large aggregated colonies.
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2.4. Microcystins Production of Microcystis Sp.

After 15 days of culturing intracellular microcystins (IMCs) and extracellular mi-
crocystins (EMCs), production in all Microcystis isolates was determined by ELISA. This
technique is recommended to quantify several MCs variants in cyanobacterial cells and
to track MCs production in water bodies [55,56]. The test kit is designed to detect Adda,
which is a non-protein amino acid at position 5 in MCs, with cross-reactivity between
different MCs variants [57]. Our results show that high IMCs production ranging from
210 to 314 µg/mL was observed in Microcystis isolated from Songkhla Lake. Microcystis
sp. isolated from HMWTP was approximately 280 µg/mL of MCs (Table 2). The EMCs
were not detected in any isolates. The absence of EMCs might be the result of low cell
density after 15 days of culturing (107 CFU/mL) and the kit’s sensitivity. More prolonged
cultivation than 15 days resulted in EMCs production (Figure 4b). SG03 produced IMCs at
the highest concentration of 1.3 pg/cell, while SH13 was the lowest in IMCs production at
0.14 pg/cell. Microcystis SG03 was observed under SEM. As seen in Figure 4a, with round
shape, cell diameter ranged from 3 to 5 µm.

2.5. Kinetics of MCs Production Based on Microcystis Growth

Growth and MCs kinetics of SG03 were investigated from day 0 to day 30 (Figure 4b). The
initial IMCs content at 0.03 pg/cell on day 0 was detected in the inoculum (6 × 106 CFU/mL).
On day 5, the specific growth rate (µ) based on cell number was 0.522 day−1, indicating
that the exponential growth phase followed the late exponential growth phase from day
5 to 15 (µ = 0.186 day−1). The stationary growth phase spanned from day 20 to day 30
(µ = 0.002 day−1). MCs production was determined along the growth curve. The IMCs
were dramatically produced at 1.94 pg/cell during the exponential growth phase (day 10),
and then the production was steady when cyanobacteria entered the stationary growth
phase (Figure 4b). The EMC production (0.06 pg/cell) was measured in the late exponential
growth phase and dramatically rose on day 20 (0.66 pg/cell) during stationary growth,
indicating cell death. Our results suggest that the MCs were the primary metabolite
produced intracellularly at the log phase. Our finding is well supported by previous work
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in which the maximum MCs production of Microcystis was found in the log phase and
persisted for months [43,58,59]. Studies have shown that MCs production rescues the cells
from damage by photosynthesis, reactive oxygen species [60], and imbalance of C:N by
redirecting primary metabolism in cells [61].
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2.6. Identification of Cyanotoxins

The cyanotoxin profiles of SG03 were investigated by LC-QTOF MS. Here, the emer-
gence of both MCs and decarbamoylsaxitoxin (dcSTX)-producing Microcystis SG03 is
reported (Table 3). At 14.579 min of the retention time, compound 1 was detected with
m/z 257.1357, ∆ −0.63 ppm. This compound was annotated as dcSTX with a score of
85% (Table 3; Figure 5a). The other three compounds were previously unreported MCs
based on their probable chemical composition/structure and mass properties [62]. As
shown in Figure 5b, they were: C57H77N7O16 ([M + 2H]2+ mass 1115.5409, ∆ 1.56 ppm);
C52H71N7O15([M + 2H]2+ mass 1033.5005, ∆ 0.29 ppm); and C49H71N7O13([M + 2H]2+

mass 965.5125, ∆ −1.17 ppm); designated as compounds 2, 3, and 4, respectively. The mass
accuracy tolerances (∆ < 5 ppm) between found mass and calculated mass of compounds 2,
3, and 4 were ∆ 1.61 ppm, ∆ 0.29 ppm, and ∆ −1.55 ppm, respectively.
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Table 3. Identification of cyanotoxin detected by LC-QTOF MS analysis in Microcystis strains SG03 isolated from SLB, their
retention times (Rt), observed m/z values, and mass accuracy tolerances (Diff, ppm).

Compound Name Neutral
Formular Confidence Rt (min) m/z Mass Diff.

(ppm)

1 Decarbamoylsaxitoxin C9H16N6O3 Confirmed 6.431 257.136 256.1286 −0.63
2 [Gly1,D-Asp3,(EtOH)Mdhb7]MC-Y(H2)Y(OMe) C57H77N7O16 Tentative 4.132 558.778 1115.5409 1.56
3 [L-Ser1,D-Asp3]MC-LY(OMe) C52H71N7O15 Tentative 4.926 517.7576 1033.5005 0.29
4 [DMAdda5,Mglu6,Mala7]MC-Y(H4)A C49H71N7O13 Tentative 4.929 483.764 965.5125 −1.17
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3. Discussion

Microcystis blooms cause ecosystem loss as well as threats to public health and ani-
mals. Microcystis possesses a well-known hepatotoxin, MCs; a few strains also produce
neurotoxin (β-N-methylamino L-alanine and paralytic shellfish poison) [63]. However, no
STX biosynthesis genes have been identified in Microcystis.
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Various factors facilitate the abundance of cyanobacteria in aquatic environments.
EPSs prolong cyanobacterial persistence in water and protect cells from the environ-
ment. Cyanobacterial aggregation and scum formation can be promoted by higher EPS
content [13,47,64]. The EPS composition involves colony size and colony formation [12,65].
Microcystis with increased colony size was reported to produce higher MCs [49]. Our results
show that the average sEPS concentration was higher than the average bEPS concentration
as a unicellular cell under an axenic condition. There was no statistical difference between
EPS content and composition among all isolates. Therefore, correlations between MCs and
EPS content and composition cannot be defined in this study. Associations of MCs and
EPS types, content, and composition still need to be discovered.

The MCs can contaminate different environmental compartments, including sedi-
ment, animals, and aquatic and terrestrial plants [66]. MCs produced by Microcystis could
persist for months in axenic cultures [67]. In our study, IMC production of Microcystis
SG03 remained constant after 20 days of incubation. The averaged MCs production was
1.91 pg/cell on day 30 of culturing, with stable cell density. Under low nutrient/starvation
conditions with sufficient light, the SG03 cells entered the stationary phase without chang-
ing MCs production. However, other studies reported increasing MCs production under
nutrient starvation [68,69]. During stress conditions, MCs synthesis is enhanced by phy-
cobilisomes degradation and by the toxins combined with phycobilins, stabilizing cell
integrity [68,70]. Furthermore, MCs might protect the cells from oxidative stress under
insufficient nutrients [71]. Our study indicates that Microcystis can produce MCs and
survive for a long time, suggesting a need for a vigilant surveillance program on toxigenic
Microcystis and MCs in aquatic areas.

To date, at least 279 MCs have been reported with various formulas: C44–47 H63–84
N7–13 O12–17 [72,73]. MCs structures are composed of cyclic oligopeptides consisting
of seven amino acids, including D–Ala1–X2–D–MeAsp3–Z4–Adda5–D–Glu6–Mdha7 [31].
The X and Z are variable L amino acids. Adda is a 3-amino-9-methoxy-2, 6,8-trimethyl-
10-phenyl-deca-4,6-dienoic acid, and Mdha is N-methyldehydroalanine. In our study,
two compounds (2 and 3) showed characteristics of MCs containing Adda at position
5, while compound 4 consisted of DMAdda (Table 3 and Figure 5). D-Ala is mostly
found in position 1 [72], consistent with compound 4. Position 1 of compounds 2 and
3 contained Gly and L-Ser, which have been found in MCs produced by Nostoc sp. and
cyanobacterial mat samples [74,75]. In position 3 of MCs, D-erythro-β-methyl isoaspartic
acid (D-MeAsp) and D-erythro-isoaspartic acid (D-Asp) are conserved with approximately
56% and 44%, respectively [72]. Our study shows that D-Asp was presented in compounds
2 and 3. Another highly conserved amino acid is D-Glu at position 6 [31]. The D-Glu
could become Glu(OMe) from an extraction step through methanolic solutions [76–78].
Here, Glu(OMe) was found in compounds 2 and 4. The amino acid residue in position 7
is variable with commonly found N-methyldehydroalanine (Mdha). The Mdhb existed
in compound 2, while compound 4 possessed tentative Mala. Even though several MC
congeners have been presented in the environment and laboratories, their toxicity has been
inadequately assessed.

Dominant STXs producers are filamentous cyanobacteria, including Anabaena, Aphani-
zomenon, Cylindrospermopsis, Lyngbya, Phormidium, Planktothrix, Raphidiopsis, Scytonema, and
Woronichinia [79–85]. Only three unicellular Microcystis isolates were reported to produce
STXs [5,6]. One of them co-produced mono-sulfated STX (GTX 1-4) and [L-ser7] MC-RR [5].
The other two isolates from eutrophic lakes (Arresø, Bagsværd Sø and Lyngby Sø) and
mesotrophic lakes (Furesø and Esrum Sø) in Denmark produced STX without MCs produc-
tion information [6]. Our study is the second to report the co-production of MCs and STX
(by SG03). However, we, for the first time, discovered that Microcystis also synthesized
dcSTX. Currently, 57 natural STX analogs have been identified [41]. The toxin divergence
depends on PST-transforming enzymes between toxigenic organisms and contaminated
bivalves [86]. Carbamoyl groups of the STXs are decarbamoylated, resulting in the presence
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of dcSTX. The enzymatic decarbamoylation of STX was a major presence in mussels and
human metabolically active tissues [86,87].

The SLB has a unique ecosystem as fresh, brackish, and saline water lead to plenty of
bioresources and high biodiversity. This area has benefited aquaculture, agriculture, facto-
ries, tourist resorts, and housing developments. Here, we isolated toxigenic Microcystis,
which produced both MCs and STXs, from SLB with no observed blooms. Christensen et al.
(2019) reported the production of both toxins before visible blooms [88]. When season
changes combine with other environmental factors, harmful cyan blooms occur. In Thai-
land, MC accumulation was found in prawn farms [89,90], fish ponds [90–92], and recre-
ational reservoirs [93,94], especially in the temperate region of the country with high N and
P concentrations. In contrast, the reports of STX from Thailand were associated with only
freshwater puffers [95,96]. The observation of MCs- and STXs-producing cyanobacteria
in our study calls for more research on harmful cyanobacterial communities and toxin
distribution in recreation areas and aquaculture farms in Songkhla Lake.

4. Conclusions

This is the first report of Microcystis in Songkhla Lake, Thailand. In axenic culture,
Microcystis produced sEPS 2 times more than bEPS. The ratio of protein and carbohydrate
was equal in sEPS, while the protein fraction was higher than carbohydrate in bEPS. All
isolates produced MCs. One isolate (SG03) presented both MCs and dsSTX. SG03 produced
three new tentative MC variants as undescribed congeners. The MCs accumulation in SG03
was observed until 30 days of incubation, and the toxin was released extracellularly on
day 15. The IMCs were synthesized mainly in the middle exponential growth phase, while
the EMCs were initially produced at the stationary growth phase. The rising of total MCs
synthesis was observed during the exponential growth phase and was constantly produced
during the stationary growth phase. This study indicates that harmful cyanobacteria
could present in water bodies without visible blooms. The unique complexity of SLB
provided groups of Microcystis producing novel toxic compounds. We exhibited that
Microcystis extended some distance into brackish and/or marine water bodies. Further
studies should focus on the effects of water quality parameters, including N and P on
Microcystis aggregation, scum formation, and toxin production, thereby preventing harmful
effects of cyanobacteria and their toxins.

5. Materials and Methods
5.1. Water Quality Characterization

Four lake water samples from Songkhla Lake Basin (SLB), Thailand (7687 km2 of land
area and 1042 km2 of the Lake surface), were collected on 25 January 2019, without visible
blooms (Figure 1). These locations were located close to urban settlements. Effluent water
drained to the SLB was collected from the Hat Yai municipal wastewater treatment plant
(HMWTP) on 25 January 2019 (Figure 1). The 5 samples containing 1 L with duplicates were
taken at a 50 cm depth and kept on ice during transportation. The water quality, including
biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus
(TP), total Kjeldahl nitrogen (TKN), temperature, pH, and salinity was characterized. All
samples were used for Microcystis isolation in further experiments.

5.2. Microcystis Spp. Isolation

Ten milliliters of water samples and the duplicates were enriched in 10 ml of 2× BG-11
broth (pH 7.5) [97]. The samples were incubated under a 12:12 h light/dark cycle (25 µmol
photon m−2/s, cool fluorescent light) at 25 ◦C for 14 days and hand-shaken three times
a day. The enriched samples were then streaked onto BG-11 agar plates supplemented
with imipenem (10 µg/mL) [97], followed by incubation for 7–14 days under the above
conditions. The isolated green bacterial colonies were obtained, and their morphology
was documented. Characteristics of the cyanobacterial cells were observed under an
optical microscope.
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5.3. Cyanobacterial DNA Extraction

All cyanobacterial isolates were cultivated in 50 mL BG-11 under the above conditions
for 10 days. Then, DNA from each isolate was extracted. The DNA extraction method
was modified from Hisbergues et al. (2003) and Rogers and Bendich (1989). Briefly, the
culture was centrifuged at 10,000× g for 5 min, and the pellet was resuspended in 300 µL
suspension buffer (50 mM Tris-HCL (pH 8), 5 mM EDTA (pH 8), and 50 mM NaCl),
followed by the addition of lysozyme (2 mg/L) and proteinase K (2 mg/mL). The cell
suspension was incubated at 37 ◦C for 30 min and at 60 ◦C for 10 min. The mixture was
added with an equal volume of lysis buffer (2% CTAB, 2% SDS, 1.4 M NaCl, 20 mM EDTA
(pH 8), 100 mM Tris-HCl (pH 8), 2% 2-mercaptoethanol) and incubated at 70 ◦C for 1 h. The
DNA was separated by adding an equal volume of phenol/chloroform/isoamyl alcohol
(25:24:1, v/v), followed by centrifugation at 10,000× g for 15 min. The supernatant was
collected and mixed with an equal volume of chloroform/isoamyl alcohol (24:1, v/v). Then,
the mixture was centrifuged at 10,000× g for 15 min. The supernatant containing DNA
was precipitated with 0.3 volume of 3 M sodium acetate and 1 volume of isopropanol and
kept at −20 ◦C for 2 h. After centrifugation at 10,000× g for 20 min, the DNA pellet was
obtained and washed with 1 mL of 70% ethanol. The pellet was air-dried and dissolved
with 30 µL sterilized deionized water and kept at −20 ◦C.

5.4. Detection of Microcystin Genes, Saxitoxin Gene and 16S rDNA by PCR

Microcystin gene (mcyA), saxitoxin gene (stxA) [98], and 16S rDNA were investigated
by PCR. Two sets of mcyA primers were applied: mcyAa primers [35] and mcyAb primers [32].
PCR amplifications were performed using a 25 µL mixture of 5 µL buffer (dNTP, Mg2+)
(Bioline Reagents Ltd, London, UK), 3 µL each of primer-F and primer-R (1 µM), 0.25 µL
MyTaq polymerase (1 unit), 1 µL DNA template (20 ng/mL), and 12.75 µL deionized
water. The PCR thermal cycling programs included initial denaturation at 94 ◦C for 2 min,
followed by 30 cycles at 94 ◦C for 30 s, annealing for 30 s, and extension at 72 ◦C for
1 min, with a final extension at 72 ◦C for 10 min. The PCR products were observed by
electrophoresis on 1.5% agarose gels in 0.5 TBE buffer at 100 V for 40 min, with 1 kb DNA
Ladder (Solis BioDyne) as the molecular-sized marker. The agarose gel was stained with
ethidium bromide and imaged under a benchtop UV transilluminator (LUMIstar® Omega.
Ortenberg, Germany).

Cyanobacterial identification was based on 16S rDNA sequencing. Briefly, the 16S
rDNA was amplified using the primer 27F and 809R [99]. The PCR product was purified
using a GenepHlowTM Gel/PCR kit and sequenced (Novogene co. Ltd., Cambridge, UK).
Sequences were aligned using ClustalW followed by comparing their similarity with the
other sequences in the Genbank database. A phylogenetic tree was constructed via a
neighbor-joining (NJ) method by MEGA 7.0 software with 1000 replicates of bootstrap.

5.5. Measurements of Specific Growth Rate and Chlorophyll a (Chl-a)

The cyanobacteria isolate was transferred into 100 mL of BG-11 medium and adjusted
to 106 CFU/mL. The culture was incubated under a 12:12 h light/dark cycle (25 µmol
photon m−2/s) at 25 ◦C for 15 days. Eleven milliliters were collected at three-day intervals.

To measure the cyanobacterial growth, 10 µL of each sample was dropped on a
hemocytometer, and cell numbers were counted under a microscope. The specific growth
rate (µ) was calculated from

µ = (ln N2 − ln N1) × (t2 − t1)−1 (1)

where N1 and N2 are the cell numbers at times t1 and t2, respectively.
To evaluate chl-a content, 10 mL of the culture was centrifuged at 3600× g for 10 min.

The pellets were resuspended in 400 µL of acetone (90%, v/v) and kept at 4 ◦C for 24 h in
darkness. After centrifugation at 3600× g for 30 min, the supernatant was measured for
optical density (OD) using a UV–vis spectrophotometer (LUMIstar® Omega, Ortenberg,
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Germany) at 630, 645, 663, and 750 nm, and 90% acetone solution was used as a blank [100].
The concentration of Chl-a was calculated as

Chl-a (µg/mL) = [11.64 × (OD663 − OD750)) − 2.16 × (OD645 − OD750) + 10 × (OD630 − OD750)] × 25 (2)

5.6. Microcystins Production

To measure the MCs, 10 Microcystis isolates were grown in 30 mL of BG-11 medium
for 15 days, as described above. The culture was centrifuged at 6000× g for 10 min. The cell
pellet and supernatant were collected to measure intracellular MCs (IMCs) and extracellular
MCs (EMCs), respectively. The pellet was resuspended in 10 mL 50% methanol–water
solution in order to extract IMCs [101]. Then cell suspension in the methanol solution
was sonicated for 10 min, followed by incubation in 50 ◦C water for 20 min [102]. After
centrifugation at 10,000× g for 5 min, the supernatant was filtered through a 0.22 µm
pore-size polyethersulfone filter (Sartorius, Surrey, UK), and the filtrate was used for IMCs
determination. An Abraxis Microcystin Kit (520011) was used to determine IMCs and
EMCs concentrations following the manufacturer’s instructions. The medium was used as
blank. All measurements for MCs were done in duplicate, according to the instructions.

5.7. Extracellular Polymeric Substances Determination

Soluble EPS (sEPS) and bound EPS (bEPS) concentrations were determined for protein
and carbohydrate content, according to the method described elsewhere [103,104]. Briefly,
30 mL of cyanobacteria was cultured as described above for 15 days. After centrifugation
at 11,550× g for 15 min, sEPS and bEPS were determined in the supernatant and pellet,
respectively. To obtain bEPS, the pellet was resuspended in 5 mL distilled water and
incubated at 45 ◦C for 4 h. The mixture was centrifuged at 11,550× g for 15 min, and the
supernatant containing bEPS was collected. The protein and carbohydrate concentrations
of the sEPS and bEPS were quantified by Lowry [105] and phenolsulfuric [106] assays,
respectively. The determination was done in triplicate.

Data obtained were analyzed by ANOVA with the post hoc Tukey test using SPSS
statistical software version 17.0 for Windows EDU to investigate the significance of EPS
content and composition at p ≤ 0.05.

5.8. Scum Formation

Scum formation was determined by observing cell migration to the water surface.
Scum formation pictures were illustrated elsewhere [13,53]. Cyanobacteria culture was
prepared for 7 days, as previously described. After centrifugation at 10,000× g for 5 min,
the pellet was resuspended with 5 mL of 8× concentrated BG-11 medium. The OD580
of the culture was adjusted to 1, followed by incubation under the constant fluorescent
light of 20 µmol photons m−2/s. Scum formation was observed daily for 7 days with the
naked eye.

5.9. Dynamic of MCs Production and Growth

Microcystis SG03 was cultured in 500 mL BG-11 medium under the above conditions for
30 days. Thirty-one milliliters was collected every 5 days during the cultivation. To measure
cyanobacterial growth, cell numbers from 10 µL of each sample were counted under a
microscope using a hemocytometer. IMCs and EMCs were determined, as previously
described. The experiment was conducted in independent duplicate.

5.10. Analyses of Cyanotoxins

Microcystis SG03 was cultured in 300 mL BG-11 medium for 10 days, as described
above. After centrifugation at × g for 5 min, the pellet was resuspended in 5 mL 50%
methanol–water solution. The IMCs were extracted using the same method, as previ-
ously described. Cyanotoxins were analyzed by a liquid chromatograph-quadrupole
time-of-flight mass spectrometer (LC-QTOF MS) (G6545A, Agilent Technologies, CA,
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USA) [107] equipped with a Zorbax Eclipse plus C18 Rapid Resolution column HD
(150 mm length × 2.1 mm inner diameter and particle size 1.8 µm). The column was
held at 40 ◦C with gradient elution: high-purity water containing 0.1% formic acid (solvent
A) and 11.5% acetonitrile solution (solvent B). The elution steps were: (1) 70% A and 30% B
for 2 min; (2) 5% A and 95% B for 14 min; (3) 70% A and 30% B for 14.20 min; and (4) 70% A
and 30% B for 20 min at a flow rate of 0.2 mL/min. The UHPLC system was connected with
a quadrupole time-of-flight mass spectrometer, equipped with a Dual Agilent Jet Stream
Electrospray Ionization (Dual AJS ESI). The positive electrospray ionization parameters
were as follows: gas temp, 325 ◦C; gas flow, 13 L/min; nebulizer, 35 psig; sheath gas temp.,
275 ◦C; capillary voltage (VCap), 4000 V; nozzle voltage, 2000 V: fragmentor, 175 V: skim-
mer, 65 V; octopole RF peak, 750 V; mass ranges were set at 100–1500 m/z for the TOF-MS
scan and the MS/MS experiments. In the auto MS/MS experiment, the collision energies
were set at 10, 20, and 40 V. Continuous internal calibration was performed during analyses
by using the signals at m/z 121.0509 (protonated purine) and m/z 922.0098 (protonated
hexakis (1 H,1 H,3H-tetrafluoropropoxy) phosphazine or HP-921) in positive ionization.
Acquisition and data processing were achieved using MassHunter WorkStation LC/MS
Data Acquisition software and MassHunter WorkStation Qualitative Analysis Workflows
software (version B.08.00, Agilent Technologies, CA, USA), respectively. Identification of
the cyanotoxins was based on MS/MS standard: Cayman Chemical Item Number 10445
and available microcystin database Toxinmasslist_com_v15b [62].
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