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Background: Hepatocellular carcinoma (HCC) is considered the most common type of
liver cancer and the fourth leading cause of cancer-related deaths in the world. Since the
disease is usually diagnosed at advanced stages, it has poor prognosis. Therefore, reliable
biomarkers are urgently needed for early diagnosis and prognostic assessment.

Methods:We used genome-wide gene expression profiling datasets from human and rat
early HCC (eHCC) samples to perform integrated genomic and network-based analyses,
and discovered gene markers that are expressed in blood and conserved in both species.
We then used independent gene expression profiling datasets for peripheral blood
mononuclear cells (PBMCs) for eHCC patients and from The Cancer Genome Atlas
(TCGA) database to estimate the diagnostic and prognostic performance of the identified
gene signature. Furthermore, we performed functional enrichment, interaction networks
and pathway analyses.

Results: We identified 41 significant genes that are expressed in blood and conserved
across species in eHCC.We used comprehensive clinical data from over 600 patients with
HCC to verify the diagnostic and prognostic value of 41-gene-signature. We developed a
prognostic model and a risk score using the 41-geneset that showed that a high
prognostic index is linked to a worse disease outcome. Furthermore, our 41-gene
signature predicted disease outcome independently of other clinical factors in
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multivariate regression analysis. Our data reveals a number of cancer-related pathways
and hub genes, including EIF4E, H2AFX, CREB1, GSK3B, TGFBR1, andCCNA2, that may
be essential for eHCC progression and confirm our gene signature’s ability to detect the
disease in its early stages in patients’ biological fluids instead of invasive procedures and its
prognostic potential.

Conclusion: Our findings indicate that integrated cross-species genomic and network
analysis may provide reliable markers that are associated with eHCC that may lead to
better diagnosis, prognosis, and treatment options.

Keywords: hepatocellular carcinoma, diagnosis, prognosis, gene signature, blood, transcriptome, early HCC, gene
network

INTRODUCTION

Hepatocellular carcinoma (HCC) is a leading cause of cancer-
related deaths worldwide (Bray et al., 2018; Yang et al., 2019a;
Villanueva, 2019). The disease is mostly diagnosed at advanced
stages, and therefore has poor prognosis. Liver biopsy is an
invasive technique with potential difficulties, including risk of
death, and is susceptible to sampling errors (Shi et al., 2014). HCC
is usually diagnosed using serum alpha-fetoprotein (AFP) and
ultrasound (Schütte et al., 2014; Tsuchiya et al., 2015) (Shi et al.,
2014). Since 1964, the AFP biomarker has been most commonly
used biomarker for HCC evaluation (Schütte et al., 2014;
Tsuchiya et al., 2015). However, AFP has low sensitivity and
specificity; therefore, the measurement of serum AFP levels has
been discarded from updated international surveillance
guidelines (Schütte et al., 2014). Hence, there is a significant
need to identify alternative or additional biomarkers that can be
used in effectively diagnosing patients in an early tumor stage.

The use of high-throughput technologies together with
bioinformatics approaches in cancer research gives the ability
to identify molecules implicated in complex pathways in
carcinogenesis. Several recent studies have used whole-genome
gene expression profiling, DNA methylation profiles, copy
number variations (CNVs) in HCC in order to achieve a
better understanding of the processes of hepatocarcinogenesis
(Colak et al., 2010; Budhu et al., 2013; Shi et al., 2014; Allain et al.,
2016; Wang et al., 2017; Guan et al., 2020; Li et al., 2020). It has
been reported that combining genomic and network-based
analysis could lead to reliable and accurate predictive
biomarkers for human diseases (Colak et al., 2013; Al-Harazi
et al., 2016). The molecular characteristics of HCC are
heterogeneous which results in dissimilarities in the outcome
of affected patients. Detecting the early stage tumors is essential as
liver resection, transplantation or local ablation are the most
effective treatment option for patients at early disease stages.
However, HCC is usually diagnosed at advanced stages, and
therefore, has poor prognosis (Waghray et al., 2015; Llovet
et al., 2016). Some of the key factors that have an effect on
patient survival include number and size of nodules, vascular
invasion, existence of extrahepatic metastases, and liver function
(Schütte et al., 2014). However, the survival of patients with the
identified tumor stages still remains heterogeneous and some

patients have early recurrence of disease after treatment or liver
transplantation. Therefore, it is essential to have knowledge on
high-risk profiles to guide personalized treatment.

The cross-species comparative genomic approach has been
shown to be a powerful approach that may lead to key driver
genes involved in tumor development, invasion, and progression.
Indeed, several cancer driver genes and oncogenic pathways have
been identified using this approach (Sweet-Cordero et al., 2005;
Paoloni et al., 2009; Colak et al., 2010; Chen et al., 2013; Colak
et al., 2013; Jin et al., 2019). In this study, we performed integrated
transcriptomic and network analyses using several independent
genome-wide gene expression profiling of human eHCCs and a
rat model that we previously developed (Colak et al., 2010). Our
aim is to identify a gene signature that is conserved across species
and also expressed in blood and that may be involved in
development of earliest phase of the disease and disease
progression. We employed independent datasets of PBMC
gene expression profiling for eHCC samples as well as eHCC
dataset gathered from TCGA to estimate the diagnostic and
prognostic significance of the discovered gene signature. In
addition, functional network and pathway analyses were
performed to identify significantly altered pathways that may
be critical for early HCC transformation. Multivariate Cox
regression analysis demonstrated that the identified gene
signature predicted the disease outcome independent of other
clinical variables. Our results may provide our gene signature’s
potential to detect the disease in early stages by utilizing patients’
biological fluids, rather than using invasive procedures and
prognostic significance for differentiating the high-risk patient
group with a poor disease outcome from the low-risk group with
a more favorable outcome.

MATERIALS AND METHODS

Gene Expression Analysis
Integrated whole-genome gene expression analysis is performed
using a rat eHCC dataset as well as several other publically
available genomic datasets for human eHCC from
independent studies, such as Chiang et al. (GSE9843) (Chiang
et al., 2008) (n � 65) and Wurmbach et al. (GSE6764)
(Wurmbach et al., 2007) (n � 28). The rat eHCC dataset is
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from our previous study (Colak et al., 2010), which consisted of
22 samples (6 eHCC, 8 regenerated liver, and 8 normal samples)
that were probed using Applied Biosystems Rat Genome Survey
microarray. Chiang et al.‘s dataset contained 91 HCV-related

HCC tumor samples, of which 65 of them were eHCC that we
used in our analysis. Wurmbach et al.‘s dataset included 75
samples, 28 of which we used (18 eHCC and 10 normal
samples) in this study, hence included only data from patients

FIGURE 1 | Schematic flowchart illustrating the methodology.
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with eHCC. All samples were probed using Affymetrix HGU133
Plus 2.0 array. We performed ANOVA to identify significant
differentially expressed genes (DEGs) in each dataset. We
adjusted the p values for multiple comparisons by false
discovery rate (FDR) according to Benjamini-Hochberg step-
up procedure (Benjamini and Hochberg, 1995). Significantly
DEGs were defined as those with adjusted p-value < 0.05, and
absolute fold change >1.5. The Venn diagram approach was used
to find significant genes that are conserved in both rat and human
HCC datasets. The GTEx portal (https://gtexportal.org/home/) is
used to identify genes that are expressed in blood. An illustration
of our methodology is shown in Figure 1.

Functional Pathway, Gene Ontology
Enrichment and Network Analyses
Functional pathway, gene ontology (GO) enrichment, and gene
interaction network analyses were performed using (QIAGEN
Inc., https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis), (DAVID) (Dennis et al., 2003), Protein
Analysis Through Evolutionary Relationships (PANTHER™)
classification systems (Mi et al., 2017), and Network Analyst.
(Xia et al., 2014; Xia et al., 2015). The DEGs were mapped to its
corresponding gene object in the Ingenuity pathway knowledge
base and gene interaction networks. A right-tailed Fisher’s exact
test was used to calculate a p-value determining the probability
that the biological function (or pathway) assigned to the data set
is explained by chance alone (Colak et al., 2020).

Independent Gene Expression Datasets for
Validation
In order to validate the diagnostic value of our gene signature,
we used two independently performed microarray and
RNAseq datasets for early human HCCs. The first dataset
was a PBMC microarray (Affymetrix Human Genome U133 U
Plus 2.0 array) from Shi et al’s study (10 eHCCs and 10 normal
controls) (Shi et al., 2014). The second dataset was RNAseq
primary solid tumors from The Cancer Genome Atlas (TCGA)
database that contained data from 421 samples (371 HCCs and
50 normal controls), including cases with HBV-infected,
HCV-infected, and no virus infected HCCs. Among those
371 HCC samples, 171 were diagnosed as early HCC with
stage 1 (TCGA-eHCC), which we also used for validation. We
performed unsupervised PCA and two-dimensional
hierarchical clustering by Pearson correlation with average
linkage clustering using PARTEK Genomics Suite (Partek Inc.,
St. Louis, MO, United States). Moreover, we obtained an
independent microarray gene expression profiling dataset
from Gene Expression Omnibus database (GSE25097)
(Ivanovska et al., 2011; Lamb et al., 2011) to validate the
classifier built using our identified gene signature. The
dataset includes 511 samples (268 hepatitis B virus (HBV)
related HCC tumors and 243 adjacent normals). In order to
identify the association of our gene signature with HCC tumor
growth rate, we retrieved and reanalyzed a whole genome
microarray expression dataset (GSE54236) (Villa et al.,

2016). It contains 161 samples of HCC (n � 81) and normal
(n � 80) tissue. Samples were probed using Agilent Whole
Human Genome Oligo Microarrays. Tumor samples were
divided into fast-growing (n � 20) and slow-growing
tumors (n � 61) according to tumor doubling time, where
the first quartile is considered the fast-growing tumors and the
other three quartiles are the slow-growing tumors.

Multivariate and Survival Analyses
Univariate and multivariate Cox regression analyses were used
to investigate the prognostic value of our gene signature along
with other clinical variables. A prognosis risk score for each
patient was calculated (Aguirre-Gamboa et al., 2013), which is
a linear combination of expression levels of our genes
multiplied by a regression coefficient (β) of each gene
extracted from the multivariate Cox proportional hazards
regression model, using the following formula: prognosis
risk score � expression of gene1 × β1+ expression of gene2 ×
β2 + . . . expression of genen × βn. We used an independent liver
cancer dataset with detailed clinical data from TCGA RNAseq
dataset that consisted of samples from 361 liver cancer
patients. We used the median as a cutoff value for
classifying patients into high and low risk groups.

Overall and recurrence free survival analyses were also
performed. Survival curves were plotted using the Kaplan-
Meier method, and significance between survival curves was
calculated by the log-rank test. The Cox proportional-hazards
regression for survival data was used to calculate hazard ratios. A
p-value< 0.05 was considered statistically significant.

HCC Classifier Model and Performance
Evaluation
We used different machine learning algorithms to develop a
predictive model for HCC using the 41 geneset. Several
classifiers were built using K-Nearest Neighbor (KNN),
Linear Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA) and Naïve Bayes (NB) to
achieve the optimal classifier. The standardized gene
expression values of our gene set were used as feature
values. We estimated the classification performance on
TCGA with 10-fold cross validation as well as training with
TCGA (early stage HCC samples only, n � 221) and testing on
an independent dataset (GSE25097) (n � 511 samples)
(Ivanovska et al., 2011; Lamb et al., 2011). Hence, we tested
the classifer performance on datasets that were not used for
signature identification to confirm if our gene set is able to
distinguish patients from normal controls. Four statistics
measures were used: accuracy, specificity, sensitivity, and
area under curve (AUC) that are defined as:

Accuracy � TP + TN

TP + FN + FP + TN

Sensitivity � TP

TP + FN

Specificity � TN

TN + FP
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The TP, TN, FP, FN indicate true positive, true negative, false
positive, and false negative, respectively. The classification
analyses were performed using PARTEK Genomics Suite
(Partek Inc., St. Louis, MO, United States).

Statistical Analysis
Statistical analyses were conducted using MATLAB software
packages (Mathworks, Natick, MA, United States) and
PARTEK Genomics Suite (Partek Inc., St. Lois, MO,
United States). All statistical tests were two-sided and p-value
< 0.05 was considered statistically significant.

RESULTS

Identification of a Blood-Based Gene
Signature for Early HCC (eHCC)
Genome-wide gene expression profiling provides valuable insight
into the transcriptional changes that appear during the
carcinogenic process beyond what may be obvious from
studies evaluating only clinicopathologic characteristics. The
investigation of human diseases using a combination of the
human genome-wide molecular data and interactome may
further provide an important viewpoint for understanding the

FIGURE 2 | (A) Venn diagram demonstrates that there are 41 up- or down-regulated DEGs common among three different datasets and expressed in blood. (B,C)
Unsupervised principal component analysis (PCA) and two-dimensional hierarchical clustering using our 41-geneset in microarray dataset derived from blood samples
from patients with early HCC and controls (Shi et al., 2014). The PCA clearly separated eHCC patients from normal controls. The hierarchical clustering revealed twomain
sample-clusters: one with eHCC patients and the other with healthy controls. Samples are denoted in columns and genes are in rows. The orange color refers to
eHCC samples, and blue for normal controls.
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molecular features of diseases (Al-Harazi et al., 2016; Al-Harazi
et al., 2019). Here, we used several genome-wide gene expression
profiling datasets from human eHCCs and a rat model of early
HCC to conduct an integrative analysis. We identified 307
differentially expressed genes (DEGs) using our previous rat
model of early HCC (Colak et al., 2010). We then analyzed
human HCC data, focusing only on patients with early HCC,
from Chiang et al. (Chiang et al., 2008) and Wurmbach et al.
(Wurmbach et al., 2007), that revealed 4,289 and 5,342 DEGs that
were significantly dysregulated in patients compared to normal
controls (adjusted p-value < 0.05 and absolute fold-change > 1.5).
The Venn diagram approach indicated 2,796 DEGs were shared
by both human datasets and 54 of which were conserved across
both species (Figure 1). Cross-species conserved genes in eHCC
that are also expressed in blood revealed 41 genes that we define
as “41-gene signature” (Figure 2A and Table 1). We then
performed functional and network analyses as well as

extensive validations for the diagnostic and prognostic
potential of the identified geneset (Figure 1).

Diagnostic and Prognostic Significance of
the 41-Gene Signature
We employed two independent datasets for early human HCCs to
confirm the diagnostic significance of the 41-geneset. The first
dataset is a microarray data extracted from PBMC RNA samples
of patients with HCC (Shi et al., 2014). The unsupervised principal
components analyses (PCA) and two-dimensional hierarchical
clustering using our 41-geneset clearly distinguished patients as
either eHCC or normal controls in both datasets (Figures 2B,C,
respectively). Moreover, we also tested the 41-gene using mRNAseq
data from TCGA (n � 421). We selected only the patients with
eHCC and controls (n� 171 patients, 50 controls). The unsupervised
two-dimensional hierarchical clustering using the 41-geneset

TABLE 1 | The 41-gene signature identified in this study for early HCC.

Symbol Gene Title

ABHD5 Abhydrolase domain containing 5
ABI2 abl-interactor 2
AGPAT2 1-acylglycerol-3-phosphate O-acyltransferase 2
BPTF bromodomain PHD finger transcription factor
CARHSP1 calcium regulated heat stable protein 1, 24 kDa
CCNA2 cyclin A2
CENPK centromere protein K
CFP complement factor properdin
CREB1 cAMP responsive element binding protein 1
CYTH3 cytohesin 3
DHRS11 Dehydrogenase/reductase (SDR family) member 11
DNAJB14 DnaJ (Hsp40) homolog, subfamily B, member 14
EIF4E eukaryotic translation initiation factor 4 E
FAM133B family with sequence similarity 133, member B
FDX1 ferredoxin 1
FIGNL1 fidgetin-like 1
GAK cyclin G associated kinase
GNPTAB N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits
GSK3B glycogen synthase kinase 3 beta
H2AFX H2A histone family, member X
KLF3 Kruppel-like factor 3 (basic)
LIN7C lin-7 homolog C (C. elegans)
MDM2 MDM2 proto-oncogene, E3 ubiquitin protein ligase
P2RY13 purinergic receptor P2Y, G-protein coupled, 13
POLRMT Polymerase (RNA) mitochondrial (DNA directed)
PPM1K protein phosphatase, Mg2+/Mn2+ dependent, 1 K
PRPF3 pre-mRNA processing factor 3
PRPF38B pre-mRNA processing factor 38 B
RBM5 RNA binding motif protein 5
SLC39A9 solute carrier family 39, member 9
STAG2 stromal antigen 2
TGFBR1 transforming growth factor, beta receptor 1
THOC2 THO complex 2
TMEM30A transmembrane protein 30 A
TPP2 tripeptidyl peptidase II
TRA2A transformer 2 alpha homolog (Drosophila)
USP11 ubiquitin specific peptidase 11
VRK1 vaccinia related kinase 1
YLPM1 YLP motif containing 1
ZMAT3 zinc finger, matrin-type 3
ZXDC ZXD family zinc finger C
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separated samples into two main clusters with differing gene
expression patterns, one cluster with eHCC samples and the
other one mainly composed of controls (Figure 3A).

We confirmed the prognostic significance of our gene signature
using TCGA HCC cohort for overall as well as recurrence-free
survival. A prognostic risk score is calculated using our 41-gene as
described in themethods section and patients are classified as high or
low risk using the median risk score as cutoff. The survival analyses
demonstrated that high risk score cohort were significantly
associated with poor disease outcome (Figures 3B,C). Indeed,
patients in the high-risk group (n � 180) had a significantly
poorer prognosis with hazard ratio (HR) � 3.81 (p � 8.37 ×
10−11, 95% confidence interval [CI]: 2.54–5.7) for overall

survival (Figure 3B) and HR � 2.81 (95% CI � 1.92–4.12;
p � 1.1 × 10-7) for the recurrence-free survival (Figure 3C).

The 41-Gene Signature Is an Independent
Prognostic Factor
We used Cox’s regression models to determine whether 41-gene
signature could prognosticate disease outcome independent of other
clinical factors. Univariate regression analysis of the TCGA dataset
showed that the 41-gene risk score (HR � 3.81, 95% CI � 2.54–5.70;
P� 8.37× 10-11), stage (HR� 2.56, 95%CI� 1.75–3.7; P� 1.38× 10-
6), and macrovascular invasion (HR � 2.20, 95% CI � 1.00–4.84; P �
0.05) were significantly associated with patient prognosis, while age,

FIGURE 3 | (A) Unsupervised two-dimensional hierarchical clustering of TCGA using our 41-gene signature. The hierarchical clustering distinguished samples as
either eHCC or normal controls. Samples are indicated in columns, while genes are in rows. Orange indicates eHCC and blue control samples. The expression level of
each gene across the samples is normalized to (−3, 3). Overall (B) and recurrence free survival (C) of 41-gene signature using TCGA dataset. Kaplan-Meier curves for risk
groups, “+”mark indicates censoring samples. Horizontal axis denotes time to event. Red/Green curves indicate High/Low-risk groups respectively. The red and
green numbers below horizontal axis represent the number of individuals not presenting the event of the corresponding risk group along time.
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gender, grade and AFP showed no significant association with
overall survival. However, the multivariate regression analysis
revealed that only the 41-gene signature predicted the outcome of
HCC independent of other clinical variables (HR � 3.24, 95% CI �
1.95–5.38; P � 5.58 × 10-6) (Table 2).

Association of the 41-Gene Signature With
the HCC Dynamic Progression
We also investigated if genes in 41-geneset are involved in dynamic
progression of the disease using a transcriptomic dataset that
included information on HCC patients at presentation according
to fast- or slow-growth speed (Villa et al., 2016).The tumor doubling
times ranged from 30 to 621 days were divided into quartiles and

classified as fast-growing (≤53 days; n � 19) and slow-growing (>54
days; n � 59) (Villa et al., 2016). Testing the mRNA expression of
genes in 41-geneset revealed thatCCNA2,CENPK,CYTH3, FIGNL1,
and H2AFX have significantly higher level of expression in fast-
growing tumors compared to slow-growing tumors and AGPAT2,
CFP, and FDX1 have significantly lower level of expression in fast-
growing tumors compared to slow-growing tumors (Figure 4).

Gene Ontology Enrichment, Pathway and
Network Analyses
Gene ontology enrichment and functional analyses of the blood-
based gene signature revealed that 41-gene signature is enriched for
functional categories related toDNA replication, recombination, and

TABLE 2 | Univariate and multivariate analyses associated with overall survival (OS).

Variables Univariate analysis Multivariate analysis

p value HR (95% CI) p value HR (95% CI)

Age (years) < 50 vs ≥ 50 0.71 0.92 (0.57–1.46) 0.19 0.68 (0.39–1.20)
Gender Female vs Male 0.25 1.25 (0.85–1.84) 0.98 0.99 (0.63–1.56)
Stage III-IV vs I-II 1.38e-06 2.56 (1.75–3.7) 0.06 1.58 (0.98–2.63)
Grade G3-4 vs G1-2 0.41 1.18 (0.8–1.72) 1.35 1.07 (0.69–1.69)
AFP (ng/ml) < 400 vs ≥ 400 0.86 0.96 (0.59–1.57) – –

Macrovascular invasion vs None 0.05 2.20 (1.00–4.84) 0.37 1.47 (0.63–3.42)
Microvascular invasion vs None 0.49 1.18 (0.75–1.85) 0.75 1.08 (0.66–1.78)
Risk score High vs Low 8.37e-11 3.81 (2.54–5.70) 5.58e-06 3.24 (1.95–5.38)

Bold indicates significance. Abbreviations: CI, confidence interval; HR, hazard ratio; AFP, serum alpha-fetoprotein.

FIGURE 4 |Boxplots displaying the gene expression levels of selected genes in fast-growing (≤53 days; n � 19) and slow-growing (>54 days; n � 59) using dataset
by (Villa et al., 2016).
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repair, RNA metabolic process, cell cycle, tissue development, cell
death, and survival (Figure 5A; Table 3). The significantly altered
canonical pathways include a number of cancer pathways, including
Cell Cycle: G1/S Checkpoint Regulation, ATM Signaling,
Antiproliferative Role of TOB in T Cell Signaling, PI3K/AKT
Signaling, Wnt/β-catenin and Wnt/Ca2+ pathways. The gene
interaction network of 41-gene is displayed in Figure 5B.
Furthermore, network analysis indicated hub genes that may be

potentially important in eHCC transformation, including EIF4E,
GSK3β, CCNA2, H2AFX, TGFBR1 and CREB1 (Figure 5C).

Classification Model for HCC and Validation
Analysis
We used several classification algorithms, including KNN, SVM,
LDA, and NB, to design an optimal classifier for HCC with the

FIGURE 5 | (A) The GO and functional, and (B) gene interaction network analyses of the gene signature. Red/green indicates higher/lower expression in eHCCs
compared to controls. Straight lines are for direct interactions and dashed lines for indirect ones. (C) A subnetwork of the 41-gene signature with the hub genes labelled.
The size of nodes is proportional to their betweenness centrality values.

TABLE 3 | The enriched GO Biological Processes associated with the identified 41- gene signature.

GO Term %* p-value Selected Genes

Cell cycle 24 1.13E-02 VRK1, EIF4E, TGFBR1, GSK3B, MDM2, H2AFX, CENPK, CCNA2, STAG2, GAK
Regulation of cell development 17 1.19E-02 EIF4E, TGFBR1, GSK3B, CREB1, MDM2, TMEM30A, GAK
RNA splicing 12 1.27E-02 TRA2A, RBM5, PRPF3, THOC2, PRPF38B
Response to growth factor 15 1.40E-02 BPTF, TGFBR1, GSK3B, CREB1, MDM2, CCNA2
Macromolecular complex subunit organization 29 1.85E-02 VRK1, BPTF, TGFBR1, GSK3B, CREB1, RBM5, ABI2, MDM2, H2AFX, PRPF3, CENPK, GAK
Neuron differentiation 20 1.94E-02 EIF4E, TGFBR1, GSK3B, CREB1, MDM2, THOC2, TMEM30A, GAK
RNA metabolic process 44 1.95E-02 CARHSP1, TGFBR1, CREB1, YLPM1, TRA2A, ZXDC, RBM5, PRPF3, POLRMT, EIF4E, BPTF,

GSK3B, MDM2, H2AFX, THOC2, CCNA2, PRPF38B, KLF3
Viral process 17 2.11E-02 EIF4E, CREB1, ABI2, MDM2, H2AFX, THOC2, CCNA2
Multi-organism cellular process 17 2.18E-02 EIF4E, CREB1, ABI2, MDM2, H2AFX, THOC2, CCNA2
Gene expression 46 3.29E-02 CARHSP1, TGFBR1, CREB1, YLPM1, TRA2A, ZXDC, RBM5, PRPF3, CFP, POLRMT, EIF4E,

BPTF, GSK3B, MDM2, H2AFX, THOC2, CCNA2, PRPF38B, KLF3

*Indicates the percentage of genes among the identified blood-based gene signature that are involved in each GO biological process term.
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41-gene signature. The KNN (k � 1 and Pearson’s Dissimilarity
distance measure) has outperformed the others and displayed the
best classification power. We developed multiple KNN classifiers
using different parameters and then tested their performance on
independent validation datasets (Table 4). First, we used the
Chiang et al. dataset as training and the TCGA dataset (consisting
of only early stage HCC cases and controls; the TCGA-eHCC
dataset) as testing. The clasisifcation model achieved a high
prediction accuracy of 95% and sensitivity, specificity and
AUC of 95, 96 and 95%, respectively. We then used the
TCGA dataset that included all HCC samples with all disease
stages (n � 421) as well as using only early stage HCC samples (n
� 221) as a training dataset to develop the KNN classifier and
performed 10-fold cross-validations. The 41-gene classifier
displayed high prediction accuracy of 95 and 93% using all
HCC samples and early HCC samples, respectively, and both
displayed much superior performance compared to using serum
biomarker AFP (Table 4). Finally, we trained the classifier on
early stage HCC samples from TCGA (n � 221) and tested the
classifier performance on an independent validation dataset
(GSE25097) that included 511 samples (268 HBV-infected
HCC tumors and 243 normals). Again, the designed 41-gene
model has achieved a superior classification performance
(accuracy of 90%) compared to using AFP (accuracy � 53%)
alone (Table 4).

DISCUSSION

Hepatocellular carcinoma (HCC) is the fourth leading global
cause of cancer-related death in the world (Bray et al., 2018). It is a
malevolent disease that develops furtively and is frequently
diagnosed at advanced stages, resulting in a poor prognosis.
Robust early detection biomarkers are needed to detect the
disease at its onset as well as to enable prognostic estimation
to improve the outcomes of the patients with HCC (Colak et al.,
2010; Shi et al., 2014; Allain et al., 2016; Wang et al., 2017; Guan

et al., 2020; Li et al., 2020). Currently there are a number of
biomarkers that have been used as HCC diagnostic markers, such
as AFP that has been commonly used for its feasibility and low
cost. Other biomarkers include AFP-L3, des-gamma-
carboxyprothrombin (DCP), glypican-3, insulin-like growth
factor (IGF)-1, and hepatocyte growth factor (HGF) (Schütte
et al., 2014). However, alpha-Fetoprotein bears low specificity
owing to its presence in other cancer types (Schütte et al., 2014).
Recent genomic works focus on using RNA-related approaches
such as mRNA (Wang et al., 2017; Guan et al., 2020; Zhou et al.,
2020) and miRNA signatures (Liu et al., 2017; Bai et al., 2018a),
long non-coding RNAs (Arun et al., 2018; Ma et al., 2020)
targeted mRNAs for critical genes (Lin et al., 2016), and DNA
based approaches such as driver mutations or circulating tumor
DNAs (Yang et al., 2019b; Cai et al., 2019). However, some of the
highly predictive biomarkers suffer from requiring invasive
procedures or not able to detect the early HCC development.
Therefore, there is clear and unmet need for biomarkers that are
more informative and sensitive with high accuracy for the early
detection and prognostication of HCC. In this study, we
performed an integrated transcriptomic and network-based
analyses of eHCC using several whole-genome gene expression
profiling datasets from human eHCCs and rat model of eHCC
that we developed previously (Colak et al., 2010). We aimed to
identify a gene signature that is conserved across species that
detect the disease in early stages in patients’ biological fluids
instead of using invasive techniques and also have prognostic
significance for differentiating the high-risk patient group from
the low-risk group.

We identified 41-gene signature and validated its diagnostic
and prognostic potential using independent datasets from large
cohort of HCC patients (over 600 cases), including gene
expression profiling of PBMC from patients with eHCC as
well as the eHCC cohort in TCGA. As we used comparative
genomic analysis of rat and human eHCCs, the resulting gene
signature had conserved genomic profile of the tumor. The
previous studies have demonstrated that cross-species

TABLE 4 | Classification analyses. Prediction performance of KNN classification on different validation datasets.

Accuracy Sensitivity Specificity AUC

Chiang et al as training (n � 65) and TCGA (Stage 1) dataset for validation (n � 221)
41 genes 0.95 0.95 0.96 0.95
AFP 0.75 0.90 0.16 0.54
41 genes + AFP 0.95 0.94 0.96 0.95

TCGA with 10-fold cross validation (n � 421)
41 genes 0.95 0.95 0.98 0.96
AFP 0.82 0.90 0.26 0.58
41 genes + AFP 0.95 0.95 0.98 0.97

TCGA (Stage 1) with 10-fold cross validation (n � 221)
41 genes 0.93 0.92 0.94 0.93
AFP 0.71 0.81 0.38 0.60
41 genes + AFP 0.93 0.94 0.92 0.93

TCGA (Stage 1) as training (n � 221) and GSE25097 for validation (n � 511)
41 genes 0.90 0.97 0.83 0.90
AFP 0.53 0.72 0.34 0.53
41 genes + AFP 0.90 0.98 0.82 0.90

*Abbreviations: AUC, area under curve; TCGA, The Cancer Genome Atlas; AFP, serum alpha-fetoprotein.
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comparative genomic method is a robust methodology for
identifying essential genes that are involved in tumorigenesis,
invasion and progression, and hence has therapeutic promise
(Sweet-Cordero et al., 2005; Paoloni et al., 2009; Colak et al., 2010;
Colak et al., 2013). Several driver mutations and critical pathways
in disease progression have been identified using this approach
(Sweet-Cordero et al., 2005; Jin et al., 2019).

Our results reveal alterations in several cancer-related
pathways as well as key hub genes, including EIF4E, GSK3β,
CCNA2, H2AFX, TGFBR1, CREB1, TGFBR1, THOC2, ZMAT3,
and STAG2, potentially critical in early HCC transformation and
progression. The EIF4E aids in translation initiation by uniting
the 4 F complex. EIF4E behaves as a proto-oncogene involved in
transformation and tumorigenesis. EIF4E have previously been
linked to human cancer. It has been reported that EIF4E protein
contributes to malignant transformation and progression by
enhancing translation of cancer-related mRNAs in eukaryotic
cells (Jiang et al., 2016). In addition, there are several studies
investigated the association of EIF4E and human tumors such as
lung cancer (Seki et al., 2010), colorectal cancer (Niu et al., 2014;
Diab-Assaf et al., 2015; Slattery et al., 2017), breast cancer
(Heikkinen et al., 2013; Hu et al., 2014), and head and neck
carcinoma (Nathan et al., 1997; Culjkovic and Borden, 2009). In
patients with HCC, the high expression of EIF4E is associated to
tumorigenesis (Jiang et al., 2016). Moreover, patients with
increased EIF4E expression had a poorer prognosis compared
to patients with decreased EIF4E expression (Jiang et al., 2016).
Moreover, it is also found in another study that patients with high
expression levels of EIF4E had more recurrent liver metastasis (Li
et al., 2016). However, the molecular role of EIF4E in eHCC blood
samples has not been well-defined. Herein, we found that EIF4E is
one of the significant genes that show high expression in blood
samples from eHCC compared to normal samples (Figure 2C
and Supp Figure 1). The functional analysis indicates that EIF4E
is associated with several GO biological functions including the
cell cycle, regulation of cell development, RNA metabolic
processes, viral processes, and gene expression (Table 2).

Our findings indicated that the expression of GSK3β is
significantly lower in eHCC tumor samples in comparison to
normal samples in blood (Figure 2C and Supp Figure 1).
Previous studies indicated that the GSK-3 gene family plays a
significant role in various human cancers, including
hepatocarcinoma (McCubrey et al., 2014; Mancinelli et al.,
2017). The authors have also reported that GSK-3 has an
effect on tumor progression by stabilizing the beta-catenin
complex components (McCubrey et al., 2014; Mancinelli et al.,
2017). Furthermore, it has been reported that the dysregulation of
GSK3β phosphorylation and inhibition of GSK3β activity
contributes to hepatocarcinogenesis (Desbois-Mouthon et al.,
2002; McCubrey et al., 2014). Previous studies indicate that
GSK3β is possibly a suppressor gene in HCC tumors, due to
the loss ofGSK3β expression and/or activity participating in HCC
progression (McCubrey et al., 2014; Cervello et al., 2017; Fang
et al., 2019).

Our results also revealed that CCNA2 and H2AFX have
significantly higher level of mRNA expression in both tissue
and blood samples from eHCC (Figure 2C, 3A, and Supp

Figure 1). CCNA2 is considered a biomarker for ER-positive
breast cancer prognosis and it can help monitor tamoxifen
efficacy (Gao et al., 2014). In some recent studies, CCNA2 was
suggested to be a prognostic biomarker for liver carcinoma, as it
may help in developing an effective therapeutic and/or
preventative approach for HCC (Bai et al., 2018b; Zhang et al.,
2018; Wu et al., 2019). The H2AFX and its phosphorylated
C-terminal (c-H2AX) are potential regulators of DNA repair
and are essential in DNA damage response (Celeste et al., 2003;
Bassing and Alt, 2004; Fernandez-Capetillo et al., 2004). Matsuda
et al. reported that histological grades of HCC are associated with
the level of labeling index (LI) of c-H2AX, which indicates that
c-H2AX may play a significant role in the development of HCC,
particularly throughout the early stages of carcinogenesis
(Matsuda et al., 2013). Interestingly, we also found that
CCNA2 and H2AFX have significantly higher level of
expression in fast-growing tumors compared to slow-growing
tumors (Figure 4), indicating their association with rapid tumor
growth.

Gene ontology, gene network and pathway analyses of the
41-gene signature revealed enrichment of biological functions
including DNA replication, recombination and repair, cellular
response to therapeutics, cell cycle, cell death and survival, and
regulation of cell development (Figure 5A). DNA repair genes
are overexpressed in cancer tissues, and hence develop larger
DNA repair capacity compared to normal tissues (Kirkali et al.,
2011; Lin et al., 2016). Consequently, numerous DNA damage
signals and DNA repair pathways may have a major influence
on prognosis and response to therapy for different types of
cancers (Dizdaroglu, 2015; Lin et al., 2016). The cell death
process appears in almost all types of human liver diseases
including HCC, and it is considered a sensitive parameter for
the detection of disease (Luedde et al., 2014). Our results
revealed significantly dysregulated genes that are associated
with cell death and survival, including TGFBR1, RBM5,
THOC2, USP11, MDM2, TPP2, EIF4E, VRK1, CCNA2,
ZMAT3, AGPAT2, H2AFX, CREB1, FIGNL1, and GSK3B.
Identifying the characteristics of these genes and their
network of interaction is important to understand the
pathophysiology of HCC and discover new therapeutic
targets for the disease.

CONCLUSION

In summary, our study reveals several genes and pathways that
are essential for eHCC transformation and validate our gene
signature’s potential to detect the disease in patients’ biological
fluids instead of utilizing invasive techniques and predict the
disease prognosis. Having genomic biomarkers with diagnostic
and prognostic potential is invaluable for HCC patients for
early detection of the disease at its earliest stage as well as
differentiating the high risk patient group with poor disease
outcome from the low risk ones. Our results suggest that the
integrated cross-species transcriptomic analysis with the gene
networks may provide a robust methodology for
understanding the key biological programs in eHCC and
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may lead to better diagnosis, prognosis and therapeutic
choices.
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