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A B S T R A C T

On March 11, 2020, the World Health Organization declared the coronavirus outbreak a pandemic. Since
December 2019, the world has experienced an outbreak of coronavirus disease 2019 (COVID-19). Epidemiology,
risk factors, and clinical characteristics of patients with COVID-19 have been reported but the factors affecting
the immune system against COVID-19 have not been well described. In this article, we provide a novel hy-
pothesis to describe how an increase in cellular adenosine triphosphate (c-ATP) can potentially improve the
efficiency of innate and adaptive immune systems to either prevent or fight off COVID-19.

Background

Today, the rapid outbreak of Corona Virus Disease 2019 (COVID-19
or SARS-CoV-2) is the leading health issue. There is a paucity of studies
investigating the factors affecting immune response to COVID-19. In
addition, there has been no detailed report for this immune response.
Given the genomic similarity of 79% with Severe Acute Respiratory
Syndrome coronavirus (SARS-CoV), nearly the same reaction to the
immune system is expected for COVID-19 [1]. In response to SARS-CoV,
both innate and adaptive immune systems are involved. SARS-CoV
applies several mechanisms to overcome the immune response. First, it
inhibits the rapid expression of interferon type 1 (IFN-1) [2]. IFN-1 is
known as the “initial alarm” upon encounter with the virus that mod-
ulates the immune cells to the so-called “antiviral state”. Moreover,
SARS-CoV interferes with IFN-1 signaling through inhibition of STAT-1
phosphorylation [3]. The third defensive mechanism of SARS-CoV is
immune exhaustion through exaggerated and prolonged IFN-1 pro-
duction by plasmacytoid dendritic cells (pDCs). This process leads to
the influx of activated neutrophils and inflammatory monocytes/mac-
rophages, that in turn, results in lung immunopathology (e.g. acute
respiratory distress syndrome) [4]. Finally, the resulted so-called “cy-
tokine storm” further weakens the immune system through IFN-1-
mediated T cell apoptosis [5]. In this article, we aim to provide a new
hypothesis to describe how the repletion of cellular adenosine tripho-
sphate (c-ATP) can promote immunity against COVID-19. Thereafter,
we justify the current knowledge regarding the characteristics of
COVID-19 infection by our hypothesis and give several approaches to
improve the c-ATP.

The hypothesis

Considering the pivotal role of ATP in cellular function, c-ATP de-
pletion can lead to cellular dysfunction [6]. Immune cells are not an
exception. In this article, c-ATP is the index of cellular energy.

Evaluation of the hypothesis

Here, we show how c-ATP repletion can counteract with defensive
mechanisms of COVID-19 and promote the immune system to the en-
hancement pathway.

ATP facilitates IFN production

COVID-19 interferes with a rapid rise in IFN-1. Therefore, it deac-
tivates the so-called “initial alarm” of the innate immune system, by
unknown mechanisms. This facilitates its replication. Zhang et al. have
demonstrated that enhancement in the c-ATP can reverse this process.
This occurs by the facilitation of IFN secretion through P38/JNK/ATF-2
signaling pathway [7]. Therefore, ATP-depleted cells are more sus-
ceptible to this effect of COVID-19.

ATP facilitates IFN signaling

Following IFN-1 secretion, fundamental changes occur in the im-
mune cells that transform them into the so-called “antiviral state”. One
of the signaling pathways that take part in this process is the JAK/STAT
pathway. JAKs are ATP-dependent enzymes that are bound to the cy-
toplasmic regions of cytokine receptors. Following attachment of IFN-1
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to the cytokine receptor, JAK activates the STAT through trans-phos-
phorylation [8]. Obviously, c-ATP depletion interferes with this process
and further impairs transformation to “antiviral state”.

ATP prevents the cytokine storm

Following deactivation of “initial alarm”, COVID-19 easily pro-
liferates in-situ. Among the passive host-cells, there are exceptions that
can react to the COVID-19, the pDCs. They detect the virus by toll-like
receptor 7 (TLR-7). Upon attachment to viral nucleic acids, TLR7 in-
duces profound IFN-1 expression. This response recruits other immune
cells and causes massive local inflammation [9]. At first glance, this
robust immune response is beneficial for the elimination of COVID-19.
However, two factors prevent it. First, impairment of IFN-1 signaling
results in impairment of immune cell transformation to the “antiviral
state”. Therefore, they are not so effective in eliminating existing
viruses [8]. Second, persistence profound inflammatory responses may
lead to immune exhaustion [4]. The depletion of c-ATP can potentially
enhance these detrimental processes in the following ways. In 2016,
Rebbapragada et al. demonstrated the effect of ATP in the function of
TLR7 by controlling the endo-lysosomal PH. They showed that ATP-
depletion can increase the endo-lysosomal PH and improve the efficacy
of TLR7. Therefore, ATP-depletion can potentially enhance profound
IFN-1 secretion in this phase. Secondly, ATP-depletion can potentially
prone the recruited immune cells to earlier exhaustion against COVID-
19. Therefore, one may conclude that ATP-repletion can prevent the so-
called “cytokine storm” and improve the cellular energy to better
counteract with COVID-19.

ATP prevents T-cell apoptosis

Channappanavar et al. demonstrated that COVID-19 can promote T-
cells to IFN-induced apoptosis, resulting in reduced numbers of virus-
specific CD8 and CD4 T-cells [5]. From the perspective of cellular en-
ergy, this process potentially occurs through IFN-mediated T-cell acti-
vation that results in c-ATP depletion. In line with this hypothesis, Perl
et al. have shown that following IFN-γ stimulation, mitochondrial hy-
perpolarization and ATP depletion occurs in T-cells that results in
apoptosis [10]. Therefore, ATP-repletion can potentially prevent T-cell
apoptosis following “cytokine storm”.

Empirical data

In the following section, we use our hypothesis to demonstrate why
specific groups of people are more susceptible to be infected with
COVID-19 and why they have a worse prognosis.

Elderly population
The case-fatality rate of COVID-19 is the highest (14.8%) in elderly-

population. In contrast, children have the lowest risk for both infection
and mortality rates [11]. This difference can be demonstrated from the
cellular energy aspect. Aging may potentially attenuate the respiratory
capacity of mitochondria. This condition may be either due to impair-
ment of peroxisome proliferator-activated receptor-gamma coactivator-
1α (PGC-1α) or age-related accumulation of mitochondrial DNA mu-
tations [12]. Moreover, aging can wane the ability of immune cells to
secrete IFN following viral infection [13]. As noted earlier, this may be
due to ATP-depletion. Therefore, one can conclude that a gradual de-
cline in prognosis with age may rely on a gradual decrease in c-ATP.

Tobacco smokers
The risk of long-lasting and serious COVID-19 infection is more

among tobacco smokers. Apart from a direct effect on lung parenchyma
and a decrease in pulmonary capacity, tobacco smoke can potentially
induce immune dysfunction through a decrease in the ATP content of
immune cells. This can be due to nicotine-induced mitochondrial

dysfunction [14]. The resultant ATP-depletion increases the risk of
immune dysregulation by COVID-19 (refer to the aforementioned de-
fensive mechanisms of COVID-19).

Male gender
While men and women have the same susceptibility to COVID-19,

men are more prone to higher morbidity and mortality independent of
age [15]. This difference can be justified by the cell energy hypothesis.
Estrogens (as the main sex steroid of females) are potent stabilizers of
ATP production during oxidative stress (e.g. during COVID-19-induced
inflammation) [16]. Therefore, it seems that women are more capable
to maintain the c-ATP of their immune cells during the immune re-
sponse to COVID-19. With this notion in mind, men are more suscep-
tible to immune dysregulation following COVID-19 infection.

Serious chronic medical conditions
Recent reports have highlighted some chronic illnesses that increase

the mortality of COVID-19. They include underlying conditions such as
hypertension, diabetes, coronary heart disease, chronic obstructive lung
disease, cancer, and chronic kidney disease [17]. Apart from a decline in
cardiovascular reserve, the effect of these chronic conditions on the
prognosis of COVID-19 can be justified by our hypothesis. Human cells
need nutrients (including glucose, free fatty acids, essential amino acids,
and O2) to maintain their c-ATP level. The aforementioned illnesses im-
pede the regular distribution of the nutrients secondary to compromising
the function and structure of small and large vessels. Therefore, the human
cells (including in-situ immune cells) confront ATP-depletion and results in
further immune dysregulation (as mentioned above).

Approaches to improvement in c-ATP

In light of these considerations, the c-ATP level can potentially be
considered as a crucial component in the infectivity and prognosis of
COVID-19. With enhancing the c-ATP, improvement in both innate and
adaptive immune systems is expected. Moreover, an increase in c-ATP
can potentially have either preventive or therapeutic effects. The pre-
ventive effect through activation of initial IFN-1 secretion and sig-
naling, as “initial alarm” of the innate immune system. The therapeutic
effect through the prevention of “cytokine storm” and T-cell apoptosis.
There are several approaches to improve c-ATP. Most of them are easily
available through a change in lifestyle. First, regular exercise improves
mitochondrial respiratory capacity through an increase in PGC-1α [18].
Smoking cessation is the second approach to improve mitochondrial
capacity and improvement in c-ATP (as mentioned above). Consuming
foods with low specific dynamic action (SDA), as the energetic budget
for consuming food, can potentially boost the immune system through
improving the c-ATP. In 2016, Luoma et al. demonstrated the effect of
low-SDA meals in the up-regulation of the innate immune system in
corn snakes [19]. On the other hand, several studies have reported the
positive effect of xanthine oxidoreductase inhibitors on c-ATP [6].

Consequences of the hypothesis

This hypothesis provides a new concept to improve the immune
system against COVID-19. It demonstrates how an increase in c-ATP can
decrease the effect of COVID-19 on immune dysregulation. Considering
the strategies to enhance cellular ATP, improvement of the immune
system against COVID-19 is possible. It is hoped that this hypothesis
will serve as a stimulus for further investigation into this issue.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.mehy.2020.109762https://doi.org/10.1016/j.
mehy.2020.109762.
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