
F1000Research

Open Peer Review

, University of Nottingham UKMatt Loose

, Imperial College LondonTanja Muetze

UK

, University of CaliforniaMorris Maduro

Riverside USA

Discuss this article

 (0)Comments

3

2

1

SOFTWARE TOOL ARTICLE

BioTapestry now provides a web application and improved
 drawing and layout tools [version 1; referees: 3 approved]

Suzanne M. Paquette, Kalle Leinonen, William J.R. Longabaugh
Institute for Systems Biology, Seattle, WA, 98109, USA

Abstract
Gene regulatory networks (GRNs) control embryonic development, and to
understand this process in depth, researchers need to have a detailed
understanding of both the network architecture and its dynamic evolution over
time and space. Interactive visualization tools better enable researchers to
conceptualize, understand, and share GRN models. BioTapestry is an
established application designed to fill this role, and recent enhancements
released in Versions 6 and 7 have targeted two major facets of the program.
First, we introduced significant improvements for network drawing and
automatic layout that have now made it much easier for the user to create
larger, more organized network drawings. Second, we revised the program
architecture so it could continue to support the current Java desktop Editor
program, while introducing a new BioTapestry GRN Viewer that runs as a
JavaScript web application in a browser. We have deployed a number of GRN
models using this new web application. These improvements will ensure that
BioTapestry remains viable as a research tool in the face of the continuing
evolution of web technologies, and as our understanding of GRN models
grows.

 William J.R. Longabaugh ()Corresponding author: William.Longabaugh@systemsbiology.org
 Paquette SM, Leinonen K and Longabaugh WJR. How to cite this article: BioTapestry now provides a web application and improved

 2016, :39 (doi:)drawing and layout tools [version 1; referees: 3 approved] F1000Research 5 10.12688/f1000research.7620.1
 © 2016 Paquette SM . This is an open access article distributed under the terms of the ,Copyright: et al Creative Commons Attribution Licence

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author(s) is/are
employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The work may be protected
under the copyright laws of other jurisdictions when used in those jurisdictions.

 The work described here was supported by the National Institute of General Medical Sciences under Award NumberGrant information:
R01GM061005, (Eric Davidson, PI) and by the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National
Institutes of Health under Award Number R01HD073113, (W.J.R. Longabaugh, PI). This content is solely the responsibility of the authors and does
not necessarily represent the official views of the National Institutes of Health.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: The authors declare that they have no competing interests.

 08 Jan 2016, :39 (doi:) First published: 5 10.12688/f1000research.7620.1

 Referee Status:

 Invited Referees

 version 1
published
08 Jan 2016

 1 2 3

report report report

 08 Jan 2016, :39 (doi:)First published: 5 10.12688/f1000research.7620.1
 08 Jan 2016, :39 (doi:)Latest published: 5 10.12688/f1000research.7620.1

v1

Page 1 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://f1000research.com/articles/5-39/v1
http://f1000research.com/articles/5-39/v1
http://dx.doi.org/10.12688/f1000research.7620.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.7620.1
http://f1000research.com/articles/5-39/v1
http://dx.doi.org/10.12688/f1000research.7620.1
http://dx.doi.org/10.12688/f1000research.7620.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.7620.1&domain=pdf&date_stamp=2016-01-08

Introduction
Visualizing developmental GRNs
Gene regulatory networks (GRNs) are responsible for driving the
process of embryonic development1. This is an extremely complex
process, and dedicated software tools are necessary to document
both the network architecture and its dynamic evolution over time
and space. Since a single static network figure does not adequately
convey these complex behaviors, these tools also need to be highly
interactive. The user should be able to explore the behavior of net-
work subcircuits at particular points in time and space, and have
access to relevant documentation of the underlying experimental
evidence for each feature of the network. To be an effective and
widely used tool, it must also be easy to share these interactive net-
works models over the web, rather than requiring users to download
and install specialized software.

Existing BioTapestry implementation
BioTapestry2,3 is an open-source software application that was
developed to fill the need for a GRN modeling tool that can share
interactive models over the web. Figure 1 shows the desktop

BioTapestry Editor displaying a Zebrafish developmental GRN4.
BioTapestry has many notable features:

• It represents a complex network using a model hierarchy in
which each child model is constrained to contain a subset of
the network elements present in its parent model. This central
feature allows researchers to organize and maintain models
that track development of complex embryos over time and
space, and is also useful for organizing any large network
model.

• It represents the network with a level of abstraction that is
appropriate for GRN models. General-purpose network
visualization tools are not domain-specific enough to repre-
sent GRN clearly and effectively.

• It uses colored, orthogonal directed hyperedges, i.e. “circuit
traces” or “link trees”; see Figure 2. These link trees provide a
compact and unambiguous representation of the GRN edges.

• It allows users to associate experimental data or URLs with
each network node or link.

Figure 1. Screenshot of the BioTapestry Java desktop Editor. The early endoderm specification GRN for Zebrafish4 as it appears in the
BioTapestry Java desktop Editor.

Page 2 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://grns.biotapestry.org/Zf/

Recent improvements target two distinct areas
Recent BioTapestry development work, which has been released
as Versions 6 and 7, focused on two distinct areas: new features to
assist users to draw and layout networks, and a BioTapestry Viewer
web application which runs entirely in a web browser.

Bigger networks need better drawing support. As noted above,
BioTapestry represents the edges of the GRN using “link trees”.
Experience working with users has demonstrated that it is help-
ful to provide tools that aid them in creating clean, well formed,
unambiguous, and orthogonal link trees. It is also beneficial to pro-
vide automatic network layout tools, since BioTapestry has grown
beyond its roots as a tool to draw small-to-medium sized networks,
and can be used to visualize large networks as well.

A new platform is needed. BioTapestry has always been a web-
centric application. Both the BioTapestry Editor (which is used
to build the GRN model) and original Viewer (a read-only client
for sharing the model on the web) were written in Java using the
Java2D graphics library and deployed using Java Web Start (JWS).
These two separate packages are the same program behind the scenes,
with the Viewer exposing a limited subset of the functionality in the
Editor. However, in recent years developers have been moving away
from JWS as a platform for web-enabled applications. Increased
emphasis on Java security has made it more difficult for users to
quickly and easily launch a JWS application. In response, since Sep-
tember 2012 we have distributed the BioTapestry Editor as a down-
loadable executable that does not require JWS to run. This continues
to support the BioTapestry Editor’s primary use as a GRN model-
building tool, yet for simple and easy sharing of interactive GRN
models on the web, we needed to consider an entirely new approach.

The first wave of migration away from Java-based browser tools
for network visualization applications relied heavily on Adobe
Flash. The Flash-based Cytoscape Web platform5, STRING6, and
the myGRV component of myGRN7 were examples of this trend.
More recently, it has become possible to create rich 2D visualiza-
tion web applications (software programs which run entirely within
a web browser) using Scalable Vector Graphics (SVG) or HTML5
Canvas in combination with JavaScript, Hypertext Markup Lan-
guage (HTML), and Cascading Style Sheets (CSS).

Existing JavaScript/HTML5/SVG visualization efforts include
Google Charts, Protovis8, and D3.js9. The BioJS repository10 is
an example of a new resource that has been created to provide a

framework for open-source browser components for biological data
visualization. Two notable JavaScript libraries specifically targeted
at network visualization are Cytoscape.js and Sigma.js. (Although
D3.js can be used to visualize networks, it is not focused on that
domain.) In particular, the current Version 3 of the Cytoscape Java
desktop application11 can export a set of files that can be hosted on a
web server to present a network in the web browser using
Cytoscape.js.

Given the growth of the JavaScript/HTML5/SVG visualization
platform, graphics-rich biomedical web applications using these
technologies have been appearing, such as Regulome Explorer and
the Personal Genome Browser12. These same technologies have also
made it possible for us to now replace the JWS-based BioTapestry
Viewer with a new web application.

Methods
Implementation
Enhanced drawing support. Our experience has shown that
creating small tools to help users draw link trees can make network
creation more efficient. Two recently introduced drawing tools are
illustrated in Figure 3: one tool takes a tree that was drawn with
diagonal links and tweaks it to make the segments orthogonal, and
the second tool reorganizes the tree to eliminate ambiguous overlap-
ping segments. The orthogonality tool allows the network creator to
quickly “rough-in” the path geometry to approximate the desired
final overall organization and let the system clean it up. Note that
this tool does not do de novo layout of the links, but shifts and
splits the existing link segments as needed to make links orthogo-
nal. Since the tool rejects paths that overlap other links and nodes,
and does not consider 180 degree turns in the possible solutions,
the user may need to add additional link corners for guidance. The
overlap elimination tool is designed to clean up incorrectly formed
link trees, e.g. trees that have self-crossing or overlapping segments.
The latter situation is particularly problematic, since the link tree
may visually appear correct, but users clicking on the overlapping
segments can get ambiguous results. One advantage of this tool is
that users can create well-formed link trees by quickly dragging tree
elements around to new, albeit incorrect, configurations and then
have the tool clean up the mess, as shown in Figure 3.

Version 6 also introduced a new automatic layout technique, the
overlay-driven layout. This technique leverages BioTapestry’s
Network Overlays, which allow the user to create layers that annotate
a GRN with Network Modules. Network Modules are collections

Figure 2. Edges and hyperedges. By sharing link segments, hyperedges (right) create a more parsimonious representation of a set of
directed links than standard edges (left).

Page 3 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

https://jcp.org/en/jsr/detail?id=56
https://developers.google.com/chart/
http://js.cytoscape.org/
http://sigmajs.org/
http://explorer.cancerregulome.org/

of boxes that contain sets of related nodes. Users can also draw links
between Network Modules to represent how the modules inter-
act. In this fashion, the network creator can illustrate the abstract
organization of the network at a high level.

Merging the network overlay feature with BioTapestry’s exist-
ing automatic layout feature is a powerful combination, since
the user can provide an overall automatic layout organization
which is informed by their biological domain knowledge. GRNs
can be broken down into biologically relevant sets of nodes, and
the network layout will use these groupings to create a mean-
ingful visualization. The layout also uses the module links from
the overlay to route the edges between the nodes. An example is
shown in Figure 4.

In order to create this feature, we added a new stacked layout strategy
to the existing set of strategies that BioTapestry uses for automatic
layout. Each BioTapestry layout strategy is designed to locate nodes
and route the link trees in a fashion that avoids ambiguity and sepa-
rates nodes and links in a rational fashion. For the stacked strategy,
the goal was to create a simple rectangular organization contain-
ing rows of nodes. The difference between the stacked strategy
and other traditional hierarchical layouts (e.g. the Sugiyama-styled
layout13) is that links are routed horizontally in reserved tracks
above each node row, and traverse vertically between the rows in a
shared, dedicated track down the left side of the block. While this
canonical approach to link routing is far from the most parsimoni-
ous use of “link ink”, it is highly organized and utterly predictable.
The stacked strategy also conforms to BioTapestry’s approach of
treating genes as first-class citizens, with non-gene nodes pref-
erentially grouped near the genes they are associated with. The
network module groups in Figure 4 are all laid out using the stacked
strategy.

In addition to its use as a building block in the overlay-driven
layout, the stacked strategy works well for automatic layout of
both selected subsets of nodes and single BioTapestry regions, so
both of those new features were introduced in Version 6 as well.
Regions are used in BioTapestry to represent different developmen-
tal domains, or more fundamentally, different regulatory states, in
submodels of the model hierarchy. More details are available in 2,3
and the BioTapestry Quickstart Tutorial.

New architecture: A hybrid desktop/web design. GRN models
are most often publicly shared as a set of static images in a jour-
nal article, but the BioTapestry Viewer is intended to provide a
richer and more interactive way of disseminating the GRN model
if the creator chooses to do so. With an online model, users can
explore the full model hierarchy, search for the sources and targets
of genes, examine alternative paths between genes, and zoom in
and out to more closely examine various aspects of the model’s
architecture. An online model can also interactively provide

Figure 3. New drawing tools. The new orthogonalization tool (here
we use Layout->Fix All Non-Orthogonal Segments->Minimize
Shifts) takes existing “roughed-in” hyperedge geometry (A) and
tweaks it so it is orthogonal (B). The resulting geometry is not
generally optimal, since corner points (e.g. those labeled red 1 and 2
in (A) are often retained. Gross features such as the 180-degree turn
at red 3 must be provided to guide placement. In (C), the user can
quickly drag segments (red arrow 4) and corner points (red arrows
5 and 6). Although these changes create a severely malformed link
tree, the overlap tool can repair it, making this approach a quick and
easy shortcut for editing tree geometry. Selecting Layout->Clean
Up All Overlapping Link Tree Geometry produces the clean result
in (D).

Page 4 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://www.biotapestry.org/quickStart/QuickStart.html

F
ig

u
re

 4
.

E
xa

m
p

le
 o

f
ov

er
la

y-
d

ri
ve

n
 s

tr
at

eg
y.

 T
hi

s
ex

am
pl

e
is

 t
he

 e
nd

 r
es

ul
t

of
 t

he
 o

ve
rla

y-
dr

iv
en

 l
ay

ou
t

us
e

ca
se

 d
es

cr
ib

ed
 b

el
ow

.
U

si
ng

 a
 s

im
ul

at
ed

 G
R

N
 d

at
a

se
t

(s
ee

Su

pp
le

m
en

ta
l

Fi
le

 1
 -

 h
ttp

s:
//f

10
00

re
se

ar
ch

da
ta

.s
3.

am
az

on
aw

s.
co

m
/s

up
pl

em
en

ta
ry

/7
62

0/
67

1e
d8

32
-fd

5f
-4

13
0-

a2
1e

-c
94

b6
45

b6
72

0.
si

f),
 i

t
gr

ou
ps

 g
en

es
 i

nt
o

se
pa

ra
te

 n
et

w
or

k
m

od
ul

es
. T

w
o

m
od

ul
es

 (u
pp

er
 a

nd
 c

en
te

r l
ef

t)
co

nt
ai

n
“c

on
tro

l g
en

es
”,

 w
hi

le
 a

ll
ot

he
r t

ar
ge

t g
en

es
 a

re
 s

ep
ar

at
ed

 in
to

 m
od

ul
es

 b
as

ed
 o

n
th

ei
r c

om
bi

na
tio

n
of

 in
pu

ts
. H

er
e

th
e

ov
er

la
y

in
te

ns
ity

 le
ve

l i
s

se
t n

ea
r t

he
 m

in
im

um
 to

 d
e-

em
ph

as
iz

e
th

e
ov

er
la

y
fe

at
ur

es
.

Page 5 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

https://f1000researchdata.s3.amazonaws.com/supplementary/7620/671ed832-fd5f-4130-a21e-c94b645b6720.sif

experimental data and relevant citations. However, we still char-
acterize the predominant use case for BioTapestry as a researcher
using the full-featured BioTapestry Editor as a desktop Java appli-
cation to create GRN models that are saved as local files on their
computer. Given this situation, the redesigned BioTapestry needed to
support the new read-only Viewer web application, while also con-
tinuing to support the existing Java desktop Editor. One approach is
to have the Java application export the network as JavaScript Object
Notation (JSON), and then create a standalone browser framework
for rendering it; this is similar to the approach currently used by
Cytoscape 3 and Cytoscape.js.

However, our development roadmap for the browser-based BioTap-
estry goes well beyond just viewing a completed, published net-
work. Our ultimate goal is to support a full-featured browser-based
Editor web application, enabling a distributed research community
to collaborate on a shared GRN model using the browser-based
tool. Thus, although our first step has been to create a browser-based
Viewer, all the architectural decisions made were driven by this
long-term goal of creating a browser-based BioTapestry Editor.

These requirements argued for a heavyweight server-side compo-
nent driving the web application. We redesigned the BioTapestry
architecture so the desktop Editor’s existing Java code base could
also be hosted by a Java Servlet which supports a client interface
running in an HTML5 web browser. This provides us with a migra-
tion pathway that continues to support existing users while allowing
us to transition to a fully web-based user interface, all while main-
taining as much of a common code base as is practical. The archi-
tecture we describe here has been used to produce the new Version 7
BioTapestry Viewer web application, and forms the basis for our
work towards building a future BioTapestry Editor web application.
This architecture can also serve as a roadmap for other development
teams who are contemplating moving from Java Web Start to web
applications.

Issues addressed by the new architecture
Per-user application state: Moving the code base from one that
supported a single user on the desktop to multiple simultaneous
users in a server required us to focus on separating out program
state so that it could be stored in a per-session object. In the origi-
nal single-user code, it was convenient to use Singleton objects14,
implemented as static class members, to provide globally accessible
resources. However, we removed all these static variables, and now
a separate per-session state object is maintained for each user; this
session state argument was then added to many method signatures
in the application. With the desktop Editor, a single instance of this
state object is sufficient, but the web application creates, retrieves,
and maintains a unique instance for each separate user session.

Flow of control: The original code base followed standard prac-
tice for writing an application built using Java Swing, where com-
mands executed by selecting a menu item were written to extend
Swing’s AbstractAction class, with the actionPerformed
(ActionEvent e) method being overridden to implement the
command. Whenever user input was needed to guide subsequent
processing decisions, this method (or a subroutine) would make
a call to display a modal dialog. The user’s inputs would become

available for further processing once that dialog was dismissed. To
move to an architecture where the server does not have to manage a
separate thread on a per-session basis, we split these methods into
a series of separate functions that maintain their state in the per-
session state object. Each function in this series is called to update
the current state based on user inputs, and return a request for any
inputs needed by the next function in the chain. In the desktop case,
these requests are still fulfilled by calling modal dialogs, but in the
server case the thread launched for the request completes by return-
ing the request for user information to the web browser.

As a result of this reorganization, the commands previously
implemented as Swing AbstractActions are now imple-
mented as ControlFlows, and we created two separate
ControlFlowHarness implementations, which are frameworks
to execute these commands from either a Swing desktop or web
server context.

Dual rendering pipeline: The rendering process had to be abstracted
so that the same rendering code could either drive a Java2D render-
ing layer for the desktop application, or send a description over the
wire to a remote client renderer. Originally, the rendering code drew
directly to the screen using Java2D commands. The new Version 7
multi-renderer architecture now uses a layer of indirection, and all
objects are rendered by first generating a stream of low-level geo-
metric primitive shapes. These low-level shape streams can then be
rendered on a variety of different platforms by simply implement-
ing a thin platform-specific rendering layer for each platform. The
architecture of our new split pipeline is shown in Figure 5.

In the new architecture, the primitives generated for a particular
element such as a node are bundled into a CacheGroup object.
For the desktop application, these CacheGroups are then used
directly to drive the execution of Java2D rendering commands.
Alternatively, for the web application, the CacheGroups are used
by the model export logic to serialize the data into JSON, which
is exported to the web browser for rendering. In addition to the
rendering geometry, the exported CacheGroups also contain geo-
metric primitives that, in combination with the network element ID
stored in the CacheGroup, are used by the web client to perform
mouse-click intersection testing that returns the element ID.

To reduce the latency of certain operations on the browser, such as
clicking on a node so that it displays its orange “selected” highlight-
ing, the server pre-generates certain rendering elements, such as all
of these orange selected highlighting shapes, and ships these out
in the CacheGroups along with the basic model geometry. The
network module shapes that can be used in BioTapestry to annotate
the network, which the user can toggle on and off, are also pre-
generated for the web application. Both these pre-generating opera-
tions are only done for the web application; in the desktop, those
shapes are only generated on the fly when they are needed.

For the web client, we needed to decide which technology to use for
our rendering layer. As discussed above, HTML5 Canvas or SVG
are the two main options for creating the rendering layer in the web
browser, and we chose to use HTML5 Canvas. We based our deci-
sion on performance concerns (the Cytoscape.js project reported

Page 6 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://www.json.org/
http://www.json.org/
https://groups.google.com/d/msg/cytoscape-discuss/bEgh67aw1BI/H0MOI7T4wBQJ

Figure 5. Architecture of dual-platform rendering pipeline. This is the architecture of the rendering pipeline. (A): Each drawing class (e.g. a
Gene) knows how to render the final glyph from primitive geometric shapes; additional shapes are also used to render the “selected” version.
The classes also encapsulate information needed to perform intersection testing. (B): In the desktop application, the logic for determining
point intersections is provided by drawing class functions. In the server application, the rendering pipeline gets a list of intersection
boundaries from each drawing class instance, and stores them in the CacheGroup. (C): The concrete CacheGroup implementations
have differing interfaces, depending on what needs to be exported to the web client while running as a server application. Shapes are added
to the CacheGroups, which are then added to the ModelObjectCache; the concrete type of the ModelObjectCache depends on the
target platform, as illustrated. (D): In the server application, the addGroup() method of the VisitableObjectCache stores concrete
CacheGroups to an array matching the appropriate DrawLayer. (DrawLayers are used to organize the overall order of what is drawn first
to last.) The CacheGroups are stored intact for serialization when the web client requests a model rendering update. The accept() method
enables iterating through stored CacheGroups per DrawLayer. Alternately, in the desktop application, the addGroup() method of the
ConcreteGraphicsCache extracts the primitive shapes from the CacheGroup and stores the shapes to an array matching the appropriate
DrawLayer. The render() method then draws the stored shapes to a Graphics2D object given a DrawLayer. (E): CacheGroup instances
are not directly serialized for transmission. Instead, a helper class is used depending on the CacheGroup’s type; that is then serialized to
JSON format.

Page 7 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

they decided to move from using SVG to HTML5 Canvas for
performance reasons), and on the high degree of similarity between
the HTML5 Canvas Application Programming Interface (API) and
the Java2D API we already are using in BioTapestry.

We did encounter some issues while using Canvas. Perhaps the
most onerous were font size inconsistencies. Certain nodes (e.g.
box nodes) have their size set using the size of the enclosed text,
and this calculation occurs on the server. Yet the same point size and
font family produces a string of different dimensions on the server
and different browser types; even the server operating system was a
factor in this mix. We needed to implement logic in the web client
renderer to use the HTML5 Canvas text metrics facility to calculate
the required affine transform to match the text token dimensions
provided by the server. Other problems we encountered were with
dashed link rendering, since Internet Explorer 9 does not provide
the API for setting dashed line rendering; we needed to implement
a workaround using bitmaps. We also encountered some differences
in compositing operators, since HTML5 Canvas implementations
do not currently support a “clear” rule.

Cross-platform specification classes: The original desktop appli-
cation created user interface (UI) elements, e.g. menus and toolbars,
directly using available Swing components. To support a web appli-
cation deployment, we created abstract, cross-platform descriptors
to specify the contents of UI elements. These descriptors can then
be used to create a Swing component for the desktop, or be serial-
ized to JSON and sent to the browser, where a corresponding set of
JavaScript UI components is created.

Cross-platform dialog factories: In the new architecture, dialogs
implement a common interface that the web and desktop clients
interact with. They are generated by Factory classes which return
instances appropriate for the deployment context. On the desktop,
the Factory returns a Swing dialog, while the web application con-
text provides the information needed by the web client to construct
the dialog, including a description of any information, including
user inputs, the web application needs to collect and return to the
server. This design approach allows future dialog modifications to
take place in a single Java source code file and helps to prevent the
divergence of the web and desktop clients.

Web client implementation
Choosing Dojo: To build the BioTapestry web client, we needed
a JavaScript framework that had API documentation that was
consistently available and kept up to date, an active community
addressing bugs and producing new features, and a quick develop-
ment time. To inform our decision of which framework to use, we
built small BioTapestry prototypes in Ember.js, AngularJS, and the
Dojo Toolkit. Based on our criteria and the experience of building
these prototypes, including time to learn the framework’s API, the
Dojo Toolkit covered all of our needs. It comes with a large library
of user interface widgets that incorporate accessibility standards
and manage browser/OS differences via a single API, all of which
can be extended to perform as required. Dojo modules can also
be loaded asynchronously on an as-needed basis [Asynchronous
Module Definition (AMD)]. This ensures the web application will
only use those network and client resources that are required as

defined by how the user makes use of the application. The result is
shown in Figure 6; compare this representation to the Java desktop
Editor version in Figure 1.

Virtual scrolling system: Users can pan, scroll, and zoom GRN
models in the network view panel. With the Java2D desktop imple-
mentation there is no severe performance penalty for using a JPanel
matching the size of the whole model at the specified zoom level,
which can often be quite large. However, this becomes a problem
in the web client, because Canvas elements in the browser use a
significant amount of memory at larger sizes, enough that a very
large Canvas element can cause the browser to malfunction or
crash. To address this problem, in the web client we implemented
a ‘virtual’ scrolling and zooming system that restricts the Canvas
element’s size to the drawing viewport’s display area. Panning,
zooming, and scrolling events are handled as drawing functions,
rather than using the native browser functions. This keeps the
Canvas using the minimum amount of memory required while
providing the same zooming, scrolling, and panning functionality
users would expect.

Operation
Requirements
The Java Runtime Environment (JRE) Version 1.5 or newer is
required to use the Java desktop Editor. JRE 1.5 and Apache Tomcat
Version 6 or 7 are required to host a model on a web server. Chrome
4.0+, Firefox 3.5+, Safari 4.0+, and IE 9.0+ with JavaScript enabled
are required to use the web application client. Any operating system
that supports these technologies can be used to host a model, view it
in the web client, or run the desktop Editor.

Workflow: Creating a model using the BioTapestry desktop
Editor
Because we redesigned BioTapestry in Version 7 in a manner that
allows the traditional desktop Editor to continue to operate as it
always has, there is no change to the way a user would create a
GRN model using BioTapestry. The online “Quickstart” tutorial is
still the best way to learn how to use the tool, and existing addi-
tional online documentation shows how to use other more advanced
features.

Workflow: Deploying a model using the BioTapestry web
Viewer
Sharing a GRN model over the web using the new Viewer web
application is significantly different than previous methods. The
BioTapestry Viewer web client is distributed as a Java Web Appli-
cation Archive (WAR) file that contains the BioTapestry Version 7
Viewer clients in both Java and JavaScript, and all required librar-
ies (flexjson 2.1, the Dojo Toolkit 1.10, underscore.js, put-selector,
dgrid, and xstyle). The WAR file can be placed in an active Apache
Tomcat Web Application deployment directory (the server default
is $CATALINA_HOME/webapps/), and by default Tomcat will
automatically unpack the WAR file and deploy the application into
a folder that matches the WAR file’s name. This will also dictate
the URL at which the BioTapestry web application is available. For
example, on a locally running instance of Apache Tomcat, which
is accessible on port 8080 by default, BioTapestry.war will
deploy to http://localhost:8080/BioTapestry/.

Page 8 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

https://developer.mozilla.org/en-US/docs/Web/API/TextMetrics
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Compositing
http://emberjs.com/
https://angularjs.org/
http://dojotoolkit.org/
http://www.biotapestry.org/quickStart/QuickStart.html
http://www.biotapestry.org/#documentation
http://www.biotapestry.org/#documentation
http://localhost:8080/BioTapestry/

Figure 6. Screenshot of the BioTapestry Viewer web client. The early endoderm specification GRN for Zebrafish4 as it appears in Google
Chrome v47, Windows 7, served by Apache Tomcat version 7.0.55. Compare to desktop Editor version in Figure 1.

Workflow: Changing GRN model files
The base BioTapestry web application distribution comes with a
plain GRN model for testing the application’s deployment. There
are two methods for loading a new GRN model file into your
deployment: editing the already deployed application directly, or,
editing the contents of the WAR file and (re)deploying it. For an
active BioTapestry web application, place the new GRN model file
into the WEB-INF/data/ folder of the deployed web application
and edit the modelfile entry of the configuration.txt file to reflect
the name of the new file, then reload the web application from the
Apache Tomcat Web Application Manager. To edit the BioTapestry
web application WAR file itself, use Oracle’s jar utility, or a com-
pression utility capable of working with ZIP format archives. Make
the same changes as you would to a live deployed BioTapestry web
application, and then redeploy the WAR file.

Detailed instructions for working with the web application, includ-
ing installing and customizing it, are available from the project web
site.

Use cases
Using the network overlay-driven layout
As an example of how to use the overlay-driven layout, we want to
create a layout where the “control” genes with outputs are broken
out separately, and “target” genes with only inputs are grouped into
blocks based upon common sets of inputs. This allows us to clearly
see the control circuitry, while providing a useful way to break the
large number of targets into similar groups. To do this:

1) Import a tab-delimited Cytoscape .sif file using BioTapes-
try’s File->Import->Import Root Network From SIF...
command; this particular example uses a simulated GRN
data set (see Supplemental File 1 - https://f1000researchdata.
s3.amazonaws.com/supplementary/7620/671ed832-fd5f-
4130-a21e-c94b645b6720.sif). Using a stacked strategy, keep
the defaults except for setting the maximum row size to 20
and the target grouping strategy to Order Targets by Source.
The resulting network is shown in Figure 7, and illustrates
how the new stacked strategy organizes a full network.

Page 9 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://grns.biotapestry.org/Zf/
http://www.biotapestry.org/webclient/index.html
http://www.biotapestry.org/webclient/index.html
https://f1000researchdata.s3.amazonaws.com/supplementary/7620/671ed832-fd5f-4130-a21e-c94b645b6720.sif
https://f1000researchdata.s3.amazonaws.com/supplementary/7620/671ed832-fd5f-4130-a21e-c94b645b6720.sif
https://f1000researchdata.s3.amazonaws.com/supplementary/7620/671ed832-fd5f-4130-a21e-c94b645b6720.sif

F
ig

u
re

 7
. O

ve
rl

ay
-d

ri
ve

n
 la

yo
u

t:
 In

it
ia

l i
n

p
u

t.
Im

po
rt

in
g

a
ne

tw
or

k
fro

m
 a

 ta
b-

de
lim

ite
d

.s
if

fil
e,

 a
nd

 u
si

ng
 th

e
st

ac
ke

d
au

to
m

at
ic

 la
yo

ut
 s

tra
te

gy
, p

ro
du

ce
s

th
e

re
su

lt
sh

ow
n

he
re

. T
hi

s
sh

ow
s

ho
w

 th
is

 n
ew

 la
yo

ut
 s

tra
te

gy
 c

an
 b

e
ap

pl
ie

d
to

 th
e

w
ho

le
 n

et
w

or
k.

Page 10 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

2) Using the command Edit->Manage Network Overlays and
Modules->Add Network Overlay…, create an overlay with
a presentation style of Transparent and named e.g. “Target
Groups”.

3) Drag the genes that will go into different modules around so
each set can easily be contained in a bounding box. Then,
using Edit->Manage Network Overlays and Modules->
Draw a New Network Module…, draw a One Box type mod-
ule around each group of nodes (the other module types do not
support the overlay-driven layout). Modules boxes are drawn
by clicking to start the box, and then clicking to end it.

4) Drag each module to the desired location by right-clicking on
the module name or boundary and selecting Move Module.
With the One Box type module, dragging the module name or
the genes to reposition them will cause the module boundaries
to expand if needed to still enclose all module contents. For
best auto-layout results if the module boundaries have been
automatically expanded in this way, right-click on the module
name or boundary and select Resize Core Module Definition
to Current Visible Bounds if that option is enabled.

5) Using Edit->Manage Network Overlays and Modules->
Draw a New Network Module Link…, draw orthogonal

Promote module links trees between all the modules that have
interactions. See Figure 8. (Note: the link trees here have been
reduced from the original arrangement in Figure 7 for clarity,
but this is not necessary.)

6) Select Layout->Apply Auto Layouts->Per Current Over-
lay. If there are problems with the overlay (e.g. a required
link between interacting modules is missing, or a module
link is crooked), an error dialog will appear; these prob-
lems must be fixed before trying again. When the layout is
complete, the default settings create the final result that was
shown above in Figure 4. Figure 4 has the overlay Intensity
level dialed down to near the minimum to better show the
inter-module links.

 Note that the module boxes are enlarged as needed to con-
tain the stacked layouts, since the system tries to maintain the
relative horizontal and vertical orderings of the module fea-
tures (i.e. edges and link positions). Thus, some module boxes
may become larger than necessary, and manual tweaking may
improve the aesthetics. It also helps to draw the original over-
lay with this ordering in mind. Finally, the modules are not
resized to best position the module label, which often needs to
be relocated for best results.

Figure 8. Overlay-driven layout: Preparing for layout. After the user creates a network overlay, and drags genes into piles, they draw a
network module around each. This action automatically adds the genes to the modules. Then, after moving each module to the desired
location, the user draws directed network module links between interacting modules. The next step will be to apply the overlay-driven layout
algorithm.

Page 11 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

Models deployed using the new BioTapestry Viewer
MTB Network Portal. The first deployment of the BioTapestry
Viewer web application was an interactive network model for the
Mycobacterium tuberculosis (MTB) Network Portal15. This portal
provides resources for computational modeling of host/pathogen
interactions in Mycobacterium tuberculosis, and the BioTapestry
web client handles the Environment-specific Gene Regulatory Net-
work. This deployment of the web client needed to support experi-
mental data hosted on external servers and sourced from web links
embedded in the BioTapestry file. Thanks to BioTapestry’s imple-
mentation of an experimental data display plugin API, we were able
to produce a custom Java plugin to retrieve this data and display it
when users open experimental data pages.

Ectoderm/Endomesoderm Networks. The BioTapestry Java Web
Start Viewer was originally developed to host an interactive model
of the GRN controlling the first 30 hours of development of the
endomesoderm in Strongylocentrotus purpuratus16. This model has
now been completely ported to the new Viewer platform. Addition-
ally, the recently added GRN model for ectoderm development,
based upon 17–19, is hosted using our new BioTapestry Viewer as
well.

New BioTapestry model repository. In order to provide access
to other GRN models produced with BioTapestry using the
new Viewer platform, and to provide a hosting site for models
that were previously available only via Java Web Start, we have
created a model repository. This site hosts some previously pub-
lished models4,19–25, including some models that were “orphaned”
when their original websites were shut down. It is our hope that
this repository will continue to grow and serve as a reliable method
for accessing GRN models via a web browser. The site provides a
“Quickstart” user guide, complete with screenshots, to orient new
users to the BioTapestry web client’s functionality.

Conclusions
As GRN models continue to grow larger and more complex, we
will continue to add features to BioTapestry that will aid research-
ers in building them. The layout tools we have described here are
the most recent examples of such improvements. Our new BioTap-
estry Viewer web application ensures that users will continue to
have access to dynamic, interactive GRN models online. Since this
new architecture provides a richer server/browser interaction that
only downloads data to the client when it is requested, we expect
the new system to be better at handling very large and complex
model hierarchies as GRN models grow in the future.

We are continuing to refactor the Java desktop Editor to use the
new architecture, and plan to implement a web application of the
Editor that can be used by research communities to collaborate on
GRN models online. Given the cross-platform nature of our design,
we will be able to do this while continuing to fully support the

BioTapestry Java desktop Editor. Our GRN website will foster
community involvement with GRN models as we continue to build
it out. The site’s current compliment of models has amply demon-
strated how the new web application Viewer can support interactive
exploration of GRN models.

Software availability
Software available from
https://github.com/BioTapestry

Archived code at the time of publication
http://dx.doi.org/10.5281/zenodo.3544726

http://dx.doi.org/10.5281/zenodo.3566427

Licensing
BioTapestry source code (Java, JavaScript, HTML, CSS): GNU
Lesser General Public License (LGPL) V 2.1. Some of the tool-
bar image files are freely distributed under a separate license from
Sun Microsystems, now Oracle. Other libraries are also used in the
server and client. The Dojo Toolkit, dgrid, xstyle, and put-selector
are distributed under a Modified Berkeley Software Distribution
(BSD) License. Flexjson is distributed under Apache License
Version 2.0, and underscore.js is distributed under an MIT License.

Author contributions
SMP developed the web client, and contributed to the manuscript.
KL developed the Canvas/Java2D rendering implementation, and
contributed to the manuscript. WJRL conceived of and led the
project, developed the server-side architecture, wrote much of the
server/desktop Java code, and contributed to the manuscript.

Competing interests
The authors declare that they have no competing interests.

Grant information
The work described here was supported by the National Institute of
General Medical Sciences under Award Number R01GM061005,
(Eric Davidson, PI) and by the Eunice Kennedy Shriver National
Institute Of Child Health & Human Development of the National
Institutes of Health under Award Number R01HD073113,
(W.J.R. Longabaugh, PI). This content is solely the responsibility of
the authors and does not necessarily represent the official views of
the National Institutes of Health.

I confirm that the funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
The authors are grateful to Dr. Hamid Bolouri and the late
Prof. Eric H. Davidson for their vision in initiating the BioTapestry
project.

Page 12 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://networks.systemsbiology.net/mtb/content/Environment-Specific-Gene-Regulatory-Networks-MTB
http://sugp.caltech.edu/endomes/index.html
http://sugp.caltech.edu/endomes/index.html#EctodermNetwork
http://grns.biotapestry.org/
http://grns.biotapestry.org/howto.html
http://grns.biotapestry.org/
https://github.com/BioTapestry
http://dx.doi.org/10.5281/zenodo.35447
http://dx.doi.org/10.5281/zenodo.35664

Supplementary materials

Supplemental File 1.

This is the mockup GRN definition file referenced in the overlay-driven use case. The file is in tab-delimited Cytoscape Simple
Interaction Format (SIF), i.e. of the form source node<tab>interaction label<tab>target node. Networks in this format
can be imported into a number of network visualization programs, such as Cytoscape, BioTapestry, and BioFabric.

Click here to access the data.

References

1. Peter IS, Davidson EH: Genomic Control Process: Development and Evolution.
Amsterdam: Academic Press; 2015.
Publisher Full Text

2. Longabaugh WJ, Davidson EH, Bolouri H: Computational representation of
developmental genetic regulatory networks. Dev Biol. 2005; 283(1): 1–16.
PubMed Abstract | Publisher Full Text

3. Longabaugh WJ, Davidson EH, Bolouri H: Visualization, documentation, analysis,
and communication of large-scale gene regulatory networks. Biochim Biophys
Acta. 2009; 1789(4): 363–374.
PubMed Abstract | Publisher Full Text | Free Full Text

4. Chan TM, Longabaugh W, Bolouri H, et al.: Developmental gene regulatory networks
in the zebrafish embryo. Biochim Biophys Acta. 2009; 1789(4): 279–298.
PubMed Abstract | Publisher Full Text

5. Lopes CT, Franz M, Kazi F, et al.: Cytoscape Web: an interactive web-based
network browser. Bioinformatics. 2010; 26(18): 2347–2348.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Franceschini A, Szklarczyk D, Frankild S, et al.: STRING v9.1: protein-protein
interaction networks, with increased coverage and integration. Nucleic Acids
Res. 2013; 41(Database issue): D808–D815.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Bacha J, Brodie JS, Loose MW: myGRN: a database and visualisation system
for the storage and analysis of developmental genetic regulatory networks.
BMC Dev Biol. 2009; 9: 33.
PubMed Abstract | Publisher Full Text | Free Full Text

8. Bostock M, Heer J: Protovis: a graphical toolkit for visualization. IEEE Trans Vis
Comput Graph. 2009; 15(6): 1121–1128.
PubMed Abstract | Publisher Full Text

9. Bostock M, Ogievetsky V, Heer J: D3: Data-Driven Documents. IEEE Trans Vis
Comput Graph. 2011; 17(12): 2301–2309.
PubMed Abstract | Publisher Full Text

10. Gómez J, García LJ, Salazar GA, et al.: BioJS: an open source JavaScript
framework for biological data visualization. Bioinformatics. 2013; 29(8): 1103–1104.
PubMed Abstract | Publisher Full Text | Free Full Text

11. Shannon P, Markiel A, Ozier O, et al.: Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res. 2003;
13(11): 2498–2504.
PubMed Abstract | Publisher Full Text | Free Full Text

12. Juan L, Teng M, Zang T, et al.: The personal genome browser: visualizing
functions of genetic variants. Nucleic Acids Res. 2014; 42(Web Server issue):
W192–197.
PubMed Abstract | Publisher Full Text | Free Full Text

13. Sugiyama K, Tagawa S, Toda M: Methods for visual understanding of hierarchical
system structures. IEEE T Syst Man Cyb. 1981; SMC-11(2): 109–125.
Publisher Full Text

14. Gamma E, Helm R, Johnson R, et al.: Design Patterns: Elements of Reusable
Object Oriented Software. Reading MA: Addison-Wesley; 1995.
Reference Source

15. Peterson EJ, Reiss DJ, Turkarslan S, et al.: A high-resolution network model for
global gene regulation in Mycobacterium tuberculosis. Nucleic Acids Res. 2014;
42(18): 11291–11303.
PubMed Abstract | Publisher Full Text | Free Full Text

16. Davidson EH, Rast JP, Oliveri P, et al.: A genomic regulatory network for
development. Science. 2002; 295(5560): 1669–1678.
PubMed Abstract | Publisher Full Text

17. Li E, Cui M, Peter IS, et al.: Encoding regulatory state boundaries in the
pregastrular oral ectoderm of the sea urchin embryo. Proc Natl Acad Sci U S A.
2014; 111(10): E906–E913.
PubMed Abstract | Publisher Full Text | Free Full Text

18. Ben-Tabou de-Leon S, Su YH, Lin KT, et al.: Gene regulatory control in the
sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate
lockdown. Dev Biol. 2013; 374(1): 245–254.
PubMed Abstract | Publisher Full Text | Free Full Text

19. Cui M, Siriwon N, Li E, et al.: Specific functions of the Wnt signaling system in
gene regulatory networks throughout the early sea urchin embryo. Proc Natl
Acad Sci U S A. 2014; 111(47): E5029–E5038.
PubMed Abstract | Publisher Full Text | Free Full Text

20. Rabinowitz AH, Vokes SA: Integration of the transcriptional networks regulating
limb morphogenesis. Dev Biol. 2012; 368(2): 165–180.
PubMed Abstract | Publisher Full Text

21. Vokes SA, Ji H, McCuine S, et al.: Genomic characterization of Gli-activator
targets in sonic hedgehog-mediated neural patterning. Development. 2007;
134(10): 1977–1989.
PubMed Abstract | Publisher Full Text

22. Paul L, Wang SH, Manivannan SN, et al.: Dpp-induced Egfr signaling triggers
postembryonic wing development in Drosophila. Proc Natl Acad Sci U S A.
2013; 110(13): 5058–5063.
PubMed Abstract | Publisher Full Text | Free Full Text

23. Bonneau R, Facciotti MT, Reiss DJ, et al.: A predictive model for transcriptional
control of physiology in a free living cell. Cell. 2007; 131(7): 1354–1365.
PubMed Abstract | Publisher Full Text

24. Georgescu C, Longabaugh WJ, Scripture-Adams DD, et al.: A gene regulatory
network armature for T lymphocyte specification. Proc Natl Acad Sci U S A.
2008; 105(51): 20100–20105.
PubMed Abstract | Publisher Full Text | Free Full Text

25. Kueh HY, Rothenberg EV: Regulatory gene network circuits underlying T cell
development from multipotent progenitors. Wiley Interdiscip Rev Syst Biol Med.
2012; 4(1): 79–102.
PubMed Abstract | Publisher Full Text | Free Full Text

26. Longabaugh WJ, Paquette SM: WebApplication: BioTapestry now provides a
web application and improved drawing and layout tools. Zenodo. 2015.
Data Source

27. Paquette SM, Leinonen K, Longabaugh WJ: BioTapestry/Production. Zenodo.
2015.
Data Source

Page 13 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

https://f1000researchdata.s3.amazonaws.com/supplementary/7620/671ed832-fd5f-4130-a21e-c94b645b6720.sif
http://dx.doi.org/10.1016/B978-0-12-404729-7.01001-7
http://www.ncbi.nlm.nih.gov/pubmed/15907831
http://dx.doi.org/10.1016/j.ydbio.2005.04.023
http://www.ncbi.nlm.nih.gov/pubmed/18757046
http://dx.doi.org/10.1016/j.bbagrm.2008.07.014
http://www.ncbi.nlm.nih.gov/pmc/articles/2762351
http://www.ncbi.nlm.nih.gov/pubmed/18992377
http://dx.doi.org/10.1016/j.bbagrm.2008.09.005
http://www.ncbi.nlm.nih.gov/pubmed/20656902
http://dx.doi.org/10.1093/bioinformatics/btq430
http://www.ncbi.nlm.nih.gov/pmc/articles/2935447
http://www.ncbi.nlm.nih.gov/pubmed/23203871
http://dx.doi.org/10.1093/nar/gks1094
http://www.ncbi.nlm.nih.gov/pmc/articles/3531103
http://www.ncbi.nlm.nih.gov/pubmed/19500400
http://dx.doi.org/10.1186/1471-213X-9-33
http://www.ncbi.nlm.nih.gov/pmc/articles/2702357
http://www.ncbi.nlm.nih.gov/pubmed/19834180
http://dx.doi.org/10.1109/TVCG.2009.174
http://www.ncbi.nlm.nih.gov/pubmed/22034350
http://dx.doi.org/10.1109/TVCG.2011.185
http://www.ncbi.nlm.nih.gov/pubmed/23435069
http://dx.doi.org/10.1093/bioinformatics/btt100
http://www.ncbi.nlm.nih.gov/pmc/articles/3624812
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pmc/articles/403769
http://www.ncbi.nlm.nih.gov/pubmed/24799434
http://dx.doi.org/10.1093/nar/gku361
http://www.ncbi.nlm.nih.gov/pmc/articles/4086072
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dl.acm.org/citation.cfm?id=186897
http://www.ncbi.nlm.nih.gov/pubmed/25232098
http://dx.doi.org/10.1093/nar/gku777
http://www.ncbi.nlm.nih.gov/pmc/articles/4191388
http://www.ncbi.nlm.nih.gov/pubmed/11872831
http://dx.doi.org/10.1126/science.1069883
http://www.ncbi.nlm.nih.gov/pubmed/24556994
http://dx.doi.org/10.1073/pnas.1323105111
http://www.ncbi.nlm.nih.gov/pmc/articles/3956148
http://www.ncbi.nlm.nih.gov/pubmed/23211652
http://dx.doi.org/10.1016/j.ydbio.2012.11.013
http://www.ncbi.nlm.nih.gov/pmc/articles/3548969
http://www.ncbi.nlm.nih.gov/pubmed/25385617
http://dx.doi.org/10.1073/pnas.1419141111
http://www.ncbi.nlm.nih.gov/pmc/articles/4250154
http://www.ncbi.nlm.nih.gov/pubmed/22683377
http://dx.doi.org/10.1016/j.ydbio.2012.05.035
http://www.ncbi.nlm.nih.gov/pubmed/17442700
http://dx.doi.org/10.1242/dev.001966
http://www.ncbi.nlm.nih.gov/pubmed/23479629
http://dx.doi.org/10.1073/pnas.1217538110
http://www.ncbi.nlm.nih.gov/pmc/articles/3612653
http://www.ncbi.nlm.nih.gov/pubmed/18160043
http://dx.doi.org/10.1016/j.cell.2007.10.053
http://www.ncbi.nlm.nih.gov/pubmed/19104054
http://dx.doi.org/10.1073/pnas.0806501105
http://www.ncbi.nlm.nih.gov/pmc/articles/2629331
http://www.ncbi.nlm.nih.gov/pubmed/21976153
http://dx.doi.org/10.1002/wsbm.162
http://www.ncbi.nlm.nih.gov/pmc/articles/3242926
http://dx.doi.org/10.5281/zenodo.35447
http://dx.doi.org/10.5281/zenodo.35664

F1000Research

1.

2.

3.

4.

Open Peer Review

 Current Referee Status:

Version 1

 01 April 2016Referee Report

doi:10.5256/f1000research.8206.r12952

 Morris Maduro
Department of Biology, College of Natural and Agricultural Sciences, University of California Riverside,
Riverside, CA, USA

Gene Regulatory Networks describe the causal relationships, in space and time, among transcription
factors and signaling events that drive processes under genetic control. The most frequent application of
GRNs is to describe developmental processes, such as the specification of germ layer fates in the sea
urchin embryo.
This article describes the general functionality of BioTapestry, in use since 2005, and its usefulness in
describing the dynamic architecture of gene regulatory networks. In particular, improvements the tools
used for drawing the connectivity in a network are described. The drawing tools are useful and intuitive
and the authors justify the use of a "stacked layout strategy" to break down a large network into sets of
functionally important nodes. Changes to the software are detailed as they apply to versions 6 and 7 of
BioTapestry. Improvements include updating the software to run in a browser. For specific details about
usage and installation, users are referred to online tutorials. By way of example, instructions are included
for using the 'network overlay-driven' layout.

Migrating to a newer, interactive web-based platform presents itself with a number of logistical issues
which are described in the article in detail, with a view toward eventually migrating BioTapestry to a
web-based, collaborative platform. Logistical issues include the separation of functions to the server or
the user's desktop, and cross-platform consistency in font and line rendering.

The text itself is well-written, and contains active links to many applications in context.
Comments:

The simulated GRN set is useful for demonstrating the modeling diagrams, but it could be made
much simpler if it had fewer downstream targets, i.e. to simplify Figs. 4, 7, 8.

Some parts have a bit too much detail regarding how the authors dealt with specific problems, but
these are not too distracting.

The Microsoft browser is now Edge. Edge seems to support the web-based viewer for the
networks available via . This could be indicated in the first paragraph ofhttp://grns.biotapestry.org
the 'Operation' section.

As a final comment, while the authors consider evolving web technologies, they may also consider
creating an "App" that can be installed on tablets and portable devices. This might be easiest to
develop for the Android platform as this uses Java.

The authors have presented a very nice article that informs readers of updates to BioTapestry, which

Page 14 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://dx.doi.org/10.5256/f1000research.8206.r12952
http://grns.biotapestry.org

F1000Research

4.

1.

2.

3.

4.

develop for the Android platform as this uses Java.
The authors have presented a very nice article that informs readers of updates to BioTapestry, which
continues to be a terrific tool for visualization of gene network interactions.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 29 March 2016Referee Report

doi:10.5256/f1000research.8206.r12950

 Tanja Muetze
Imperial College London, London, UK

The authors present version 6 and 7 of BioTapestry in which they introduced improved network layout and
drawing capabilities and added an in-browser JavaScript web editor functionality to BioTapestry as a
hybrid between desktop and web app. BioTapestry aims to visualize and analyze gene regulatory
networks and make it easy for users to share them.

The article is clearly written and has a good flow, despite being occasionally a bit informal. The article
follows a clear structure with a descriptive title as well as a well-described abstract and conclusion that
summarize the work. It links to documentation/tutorials as well as the code.

As another referee noted, the authors followed a recent trend for more web security by using a HTML
Canvas, CSS and JavaScript approach instead of deploying the app via Java Web Start which runs Java
code as previously done, a design decision that I support.

The following suggestions could further improve the article.

The proposed software was created about two years ago. I would encourage a timelier publication
of this article to promote awareness of the software as well as to be a resource and reference
guide for users.

On similar terms, the Github code repository seems to be a bit outdated. The last commit was 2
years ago. Consider how version updates of dependent software might impact BioTapestry despite
version backward compatibility. Currently, Java 8 is distributed while this update to BioTapestry
was initially written for Java 5.

Integration with other (network) tools, such as Gephi, would be desirable. The website mentions
that export to SBML and SIF (for Cytoscape) are currently supported. It might be of interest to open
a voting on the website (e.g. based on IP address and/or browser session to discourage multiple
votes) to find out which import/export capabilities are most desired by most users. This would
provide a fluent integration of BioTapestry with other bioinformatics, network or general software
and would be an incentive for users of other programs to start using BioTapestry.

More on a side note, while being very descriptive and conversational, the article could have been
more concise and separated future development from current design choices.

Page 15 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://dx.doi.org/10.5256/f1000research.8206.r12950

F1000Research

Overall, the authors did a very good job at developing and clearly presenting an update to BioTapestry, an
important tool for gene regulatory network analysis and distribution.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 18 January 2016Referee Report

doi:10.5256/f1000research.8206.r11875

 Matt Loose
School of Life Sciences, University of Nottingham, Nottingham, UK

BioTapestry is the pre-eminent viewer for building and analysing developmental gene regulatory
networks. Although many other GRN viewers are available, very few provide the ability to link
developmental processes and the concepts of tissues and cell types emerging over time with the
underlying GRN. BioTapestry was the first to really formalise this process (I believe building on the work
of Schilstra and colleagues with NetBuilder) and provide a method of displaying GRNs incorporating the
logic first proposed by Eric Davidson. The ongoing development and maintenance of tools like
BioTapestry is very important to the understanding of GRNs in development.

This manuscript is clearly written, accurately described and focuses on key improvements made in
BioTapestry versions 6 and 7. I approve of the migration to a more web centric view for BioTapestry future
development and look forward to the ability to edit GRNs in a web based environment. The focus on
layout tools (the 'hyper edges' are an example) is extremely useful for cleaning up a visualisation. The
network overlay-driven layout features seem to work well for clustering groups of genes in perhaps
biologically meaningful ways.

The option to right click on a network link to visualise all the data behind that particular interaction is very
helpful indeed.

The source code for BioTapestry is appropriately available from github and the documentation
accompanying its release is clear and easy to follow.

One possible problem with BioTapestry is with respect to its deployment. The BioTapestry target
audience is "...a researcher using the full-featured BioTapestry Editor as a desktop Java application to
create GRN models that are saved as local files on their computer." (Page 6, Paragraph 1). This user will
also tend to be a wet lab experimentalist collating data from direct observation as well as pooling other
sources of knowledge, be that from the literature or - perhaps - other bioinformatics pipelines. The
process by which such an individual shares their network becomes complex. The user is expected to set
up an Apache Tomcat installation and configure the package. At the same time, the authors present a
model repository (Page 12, Para 3). These concepts should perhaps be linked. It would be great if users
could submit models quickly and easily to the model repository which - itself - could be searched by
others or a direct link to it could be shared with others. Of course, it may not be a single experimentalist
working on the model either - perhaps there is a larger team at work who all wish to work on the model at
once.

Page 16 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://dx.doi.org/10.5256/f1000research.8206.r11875

F1000Research

Perhaps a hinderance to this process at the moment is that it appears each model visualised via the web
viewer requires its own full install of the BioTapestry WAR file. A possible future improvement to the
deployment method might be to pass the appropriate configuration files to the BioTapestry package at
launch. This could then simplify the process of hosting a GRN model server visualised in BioTapestry.

A minor comment that might improve usability is with respect to the search features for nodes(genes) of
interest. The default behaviour currently is "Match Full Name". This usually failed for me when browsing
the endomesoderm network (as an example) whereas switching to "Match part of name" found the
required gene or pathway (nice that it highlights pathway members in the case of signalling molecules!)
straight away. An auto suggest function or simply switching the viewer to defaulting to "Match part of
name" would increase usability.

A final broader comment with respect to the viewer. As far as I can see there is no way to export a model
file (either .sif or any other format) from a network model. Whilst BioTapestry is the clearest and easiest
way to draw developmental GRNs, many other tools exist for the analysis of networks. To have an easy
way to export a collection of interactions from a BioTapestry web view would be helpful. This would
enable users to analyse a network they were viewing in other tools if they so wished without having to
redraw or otherwise reconstruct the network.

Overall I thank the authors for their continued work on BioTapestry - a tool which is incredibly useful for all
those interested in the study of developmental GRNs.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 21 Jan 2016
, Institute for Systems Biology, Seattle, USAWilliam Longabaugh

Dear Prof. Loose:

Thank you very much for taking the time to review our paper. I believe that your review contains
four excellent points about current BioTapestry shortcomings, to wit:

1) Current model deployment is too complex:

We agree completely that the requirements for publishing an online model need to be greatly
simplified. Our new model repository is a small, first step in this direction. Our current BioTapestry
development proposal (for post Version 8, which is scheduled for 2016 release) is to significantly
enhance grns.BioTapestry.org to allow models to be easily uploaded, searched, and shared.
Combined with the online editor we are currently developing, it will make collaboration by
distributed groups of researchers possible.

2) Current requirement for full WAR install:

The current requirement of running a separate servlet for each model is indeed far too restrictive.
Your suggestion to make multiple models available from a single WAR deployment is spot on. This
is also on our development roadmap, and is dependent on us completing a detailed thread-safety

Page 17 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

F1000Research

is also on our development roadmap, and is dependent on us completing a detailed thread-safety
analysis followed by refactoring of the main control flow to improve parallelism of the servlet.
Running multiple servlets is currently our workaround to improve overall concurrency.

3) "Match full name" as current search default:

Absolutely true; thanks for pointing this out. We plan to include this suggestion in our upcoming
7.0.1 bug-fix release.

4) No way to export network as, e.g., a SIF file:

The lack of a download/export option in Version 7 can trace its roots back to the original
no-permissions, security-sandboxed Java WebStart implementation. You are absolutely correct
that since we are now operating in a browser, those restrictions are removed, and we need to open
up our thinking! It should be possible to provide this feature in the upcoming Version 8. But this
feature is likely to be specified on a per-model basis, since we have found some labs have
preferred to provide the underlying model files through more traditional one-on-one email
correspondence.

Finally, though this paper did not dwell on the origins of BioTapestry [Longabaugh, Davidson &
Bolouri, Dev Biol. 283(1), 2005], you are absolutely correct that it was a follow-on to the original
NetBuilder project [Schilstra, M.J., Bolouri, H.: Logical Modeling of Developmental Genetic
Regulatory Networks with NetBuilder [abstract]. In: Proceedings of the Second International
Conference on Systems Biology (ICSB2001); 2001 Nov 4-7, Pasadena CA, abstract 112. Available
at ; current project home page is http://icsb2001.net/Posters/112_schilstra.pdf

]. Thanks forhttp://homepages.stca.herts.ac.uk/~erdqmjs/NetBuilder%20home/NetBuilder/
pointing that out.

Bill Longabaugh

 NoneCompeting Interests:

Page 18 of 18

F1000Research 2016, 5:39 Last updated: 19 APR 2016

http://icsb2001.net/Posters/112_schilstra.pdf
http://homepages.stca.herts.ac.uk/~erdqmjs/NetBuilder%20home/NetBuilder/

