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A huge diversification of phospholipids, forming the aqueous interfaces of all
biomembranes, cannot be accommodated within a simple concept of their role as
membrane building blocks. Indeed, a number of signaling functions of (phospho)lipid
molecules has been discovered. Among these signaling lipids, a particular group of
oxygenated polyunsaturated fatty acids (PUFA), so called lipid mediators, has been
thoroughly investigated over several decades. This group includes oxygenated
octadecanoids, eicosanoids, and docosanoids and includes several hundreds of
individual species. Oxygenation of PUFA can occur when they are esterified into major
classes of phospholipids. Initially, these events have been associated with non-specific
oxidative injury of biomembranes. An alternative concept is that these post-synthetically
oxidatively modified phospholipids and their adducts with proteins are a part of a redox
epiphospholipidome that represents a rich and versatile language for intra- and inter-cellular
communications. The redox epiphospholipidome may include hundreds of thousands of
individual molecular species acting as meaningful biological signals. This review describes
the signaling role of oxygenated phospholipids in programs of regulated cell death. Although
phospholipid peroxidation has been associated with almost all known cell death programs,
we chose to discuss enzymatic pathways activated during apoptosis and ferroptosis and
leading to peroxidation of two phospholipid classes, cardiolipins (CLs) and
phosphatidylethanolamines (PEs). This is based on the available LC-MS identification and
quantitative information on the respective peroxidation products of CLs and PEs. We
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focused on molecular mechanisms through which two proteins, a mitochondrial
hemoprotein cytochrome c (cyt c), and non-heme Fe lipoxygenase (LOX), change their
catalytic properties to fulfill new functions of generating oxygenated CL and PE species.
Given the high selectivity and specificity of CL and PE peroxidation we argue that enzymatic
r eac t i ons ca ta l y zed by cy t c /CL comp lexes and 15- l i poxygenase /
phosphatidylethanolamine binding protein 1 (15LOX/PEBP1) complexes dominate, at
least during the initiation stage of peroxidation, in apoptosis and ferroptosis. We contrast
cell-autonomous nature of CLox signaling in apoptosis correlating with its anti-inflammatory
functions vs. non-cell-autonomous ferroptotic signaling facilitating pro-inflammatory (necro-
inflammatory) responses. Finally, we propose that small molecule mechanism-based
regulators of enzymatic phospholipid peroxidation may lead to highly specific anti-
apoptotic and anti-ferroptotic therapeutic modalities.
Keywords: regulated cell death, apoptosis, ferroptosis, phospholipid peroxidation, redox lipidomics, cytochrome c,
cardiolipin, lipoxygenase
The real reason for not committing suicide is because you always
know how swell life gets again after the hell is over.

Ernest Hemingway
If you’re going through hell, keep going. Winston Churchill
SIGNALING BY POLYUNSATURATED
LIPIDS: AUTOCRINE, PARACRINE, AND
ENDOCRINE TYPES

Billions of years of evolution created and optimized
mechanisms for efficient translation of genomic information
into thousands of finely tuned protein machines (1) and
perfected functional interactions between the proteins
through sophisticated multi-leveled signaling systems (2).
Lipids of biological membranes constitute a critical part of
this complicated signaling network (3). The metabolic
coordination requires that the flow of signaling information
proceeds with optimized levels of fidelity and speed.
Conservative estimates indicate that the number of proteins
in the human proteome is on the order of 105-106 (4, 5). Thus it
is not surprising that the diversity of signaling lipids
coordinating multiple protein-protein and lipid-protein
interactions within and between subcellular organelles, cells,
and tissues may be even greater resulting in the possible >106 of
individual molecular species in the lipidome. Engagement of
membrane phospholipids (PLs) in the signaling process occurs
via their biochemical modifications leading to the appearance
of small amounts of “unusual” PL molecules such as their
hydrolysis or peroxidation products (6). This review is focused
on oxidatively modified (phospho)lipids as the signaling
entities. Among them are well known lipid mediators
represented by oxygenated free polyunsaturated fatty acids
(PUFA) as well as oxygenated PUFA esterified into different
classes of membrane phospholipids (PLs). The latter group will
be the subject of the current review.
n.org 2
Cultural beliefs of successful societies have led to the common
opinion that suicidal elimination is not the necessary way to
resolve life conflicts that may encompass transient dark episodes
within an otherwise bright present and even more wonderful
future. This optimistic view has been expressed in many
statements by politicians, writers and other artistic celebrities
(including those by W. Churchill and E. Hemingway quoted
above). On the molecular level, however, the ruthlessness of life/
death elimination decisions is frequently a necessary attribute of
the high fidelity of cell populations and their adaptive
adjustments. The suicidal programs of cell death are genetically
pre-determined and deciphering their specific mechanisms
represents one of the emerging fields of cell biology. The lipid-
derived signals may act within a given cell (autocrine signaling),
affect cells within the surrounding neighborhood (paracrine
signaling) or act on remote targets using the circulatory system
for the transportation of death signals (endocrine signaling).
Currently, more than a dozen regulated death programs have been
identified in cells that accumulate excessive amounts of the (geno)
toxic materials and hence are recognized by the surveillance
machinery as irreparably damaged. It is believed, but not
proven, that peroxidation of polyunsaturated lipids (PUFA-
lipids) has been associated with the initiation and execution of
many, if not all, of these programs (7). In spite of these general
associations, neither the specific roles of peroxidized PLs in the
fulfillment of the programs nor their chemical identity have been
identified. Notable exceptions are apoptosis and ferroptosis, two
programs for which the progress in redox lipidomics has resulted
in the deciphering of death signals.
REDOX DEATH SIGNALS IN APOPTOSIS
AND FERROPTOSIS

The structural core of biological membranes is formed by the
bilayer of PLs—amphipathic molecules with long lipophilic
February 2021 | Volume 11 | Article 628079
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hydrocarbon chains and water-soluble polar heads. The
hydrophobic/hydrophilic balance of phospholipids dictates the
organization of the bilayer in which lipophilic chains interact
with each other while the polar head-groups are localized at
interface with the aqueous phase. In PLs, the chains represent
fatty acids covalently attached to two sites of the glycerol
backbone whereas the third position is occupied by phospho-
base that may be a non-charged zwitter-ion (when the negative
charge of the phosphate is compensated by a positive charge) or
carry a negative charge (when an extra negatively charged group
is present). Fatty acyls of PLs may have no double bonds
(saturated) or contain one (mono-unsaturated) or several
methylene-interrupted double bonds [polyunsaturated PLs
(PUFA-PL)]. While unsaturated PLs may be biosynthesized
both in anaerobic and aerobic conditions, the huge diversity of
PUFA-PLs is characteristic for different domains of aerobic
life (8).

One of the most popular concepts explaining the presence of
diversified PUFA-PLs in the lipid bilayer relates to their function
as a regulator of membrane fluidity necessary for the rapid
diffusion and conformational flexibility of membrane proteins
(9). In spite of its attractive simplicity, this concept does not
explain the huge molecular variety of PUFA-PLs. Indeed,
contemporary lipidomics detects 103–104 individual molecular
species of major classes of phospholipids in cells and tissues. This
is a conservative estimate of the species with differing masses.
Indeed, with the two acyls/PL molecule and a menu of >30
commonly found fatty acids the number of possible isomeric
species of “two-legged” PLs should be close to 103. However, for
“three-legged” tri-glycerides this estimate would yield 104 species
and for “four-legged” mitochondrial cardiolipins (CL) – >105

molecular species.
One of the prominent features of PUFA-PLs is their

susceptibility to peroxidation via free radical mechanisms
(10). These mechanisms may be comprised of enzymatic
systems for the activation of oxygen and/or lipid substrates or
occur non-enzymatically (see below). As the general schema of
peroxidation includes abstraction of hydrogen from bis-allylic
positions, PLs with multiple (four-six) double-bonds, are
preferred substrates, particularly for non-enzymatic free
radical reactions (10, 11). The primary product of the
peroxidation process generates hydroperoxy-PLs (HOO-PLs).
These products are not stable and readily undergo secondary
decay reactions leading to a variety of electrophilic aldehydic-,
keto-, hydroxy-derivatives as well as cyclic compounds (10). In
terms of lipid diversification, this adds another order of
magn i tude to the poss ib l e number o f ind iv idua l
phospholipids, thus bringing it to 105 species. It should be
noted, however, that the measurable amounts of peroxidized
PLs in healthy cells and tissues is markedly lower than their
non-oxidized parent PLs (12). This is partly due to the fact that
only a fraction of PUFA-PLs are involved in peroxidation and also
to the high reactivity of the secondary electrophilic decay products
toward nucleophilic sites in proteins (13). As a result, the life-time
of these products in “free” form may be relatively short as they
form lipid-protein adducts. However, the levels of these products
Frontiers in Endocrinology | www.frontiersin.org 3
may increase many-fold in conditions associated with cell injury
and death. These reactive secondary intermediates of PUFA-PL
peroxidation represent the proximate entities affecting functions of
numerous proteins (14). Given that the formation of these adducts
is, in a way, a reaction of protein “lipidation” that may
dramatically change the distribution and functional
characteristics of the affected proteins, it has been hypothesized,
although not proven, that electrophilic products of PL
peroxidation and their adducts with specific proteins represent
the proximate “gateways” of cell’s demise in regulated cell
death programs.
TYPES OF REGULATED CELL DEATH:
INVOLVEMENT OF LIPID PEROXIDATION
AND POSSIBLE INVOLVEMENT OF
PL-OOH

Since the time of the first detailed description of regulated cell
death almost five decades ago, about a dozen different programs
have been identified (15). The best described programs include
apoptosis, necroptosis, pyroptosis, ferroptosis, entotic cell death,
netotic cell death, parthanatos, lysosome-dependent cell death,
autophagy-dependent cell death, alkaliptosis, and oxeiptosis (15).
The majority of them have been qualified as responses to
different types of stresses causing irreversible changes not only
to one particular cell but also representing a high-risk threat to
the entire community of surrounding cells. Among the different
causative factors, oxidative stress has been universally identified
as one of the leading mechanisms engaged early at the initiation
or later during the execution stages of the death programs (15)
(Table 1).

Given the vague definition of what exactly “oxidative stress”
means, attempts have been made to connect the death programs
with specific pathways and manifestations of the aberrant redox
metabolism. Due to the high sensitivity of PUFA-PL to oxidative
modifications, lipid peroxidation (LPO) has been considered as
one of the common denominators of programmed cell death (57,
58). However, the specific role and mechanisms of LPO in the
pathways leading to cell demise remain poorly defined. This is
due, to a large extent, to difficulties in the analysis of highly
diversified and very low abundance LPO products (12). These
technological problems were resolved with the advent of high-
resolution liquid-chromatography-mass spectrometry (LC-MS)
based redox lipidomics (6, 12) with its capability to detect,
identify and quantitatively characterize a variety of PL
oxidation products. While the application of this technology
may provide important information in any of the known death
pathways, so far the significant results have been obtained mostly
for two death programs—apoptosis and ferroptosis (16, 21,
34, 36).

Numerous studies of PL peroxidation in model chemical
and biochemical systems using different initiating agents
(e.g., azo-initiators of peroxyl radicals, Fe-ascorbate
dependent generators of HO• radicals) demonstrated that the
February 2021 | Volume 11 | Article 628079
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susceptibility to oxidative modification is largely defined by the
number of double bonds in the fatty acid residues (59). As a
result, PLs with hexa-, penta-, and tetra-enoyl residues are the
predominant peroxidation substrates as compared to doubly or
triply unsaturated PLs. Notably, the nature of the polar part of
the PL molecules was not influential as a factor determining
vulnerability to oxidation. In sharp contrast, redox lipidomics
studies of programmed death associated peroxidation has
determined that there is a high selectivity of the process
toward specific classes of PLs. Execution of the intrinsic
apoptotic program revealed a high selectivity toward
peroxidation of mitochondrial CLs whereby the species with
C18:2 represented the major substrates (16, 21). Notably, CL
molecular species containing more PUFA residues remained
non-oxidized. Moreover, in hetero-acylated CL species,
oxidation of C18:2 residues occurred preferentially even when
C22:5 and C22:6 residues remained non-oxidized within the
same molecule (Figure 1).

Ferroptosis-associated LPO was also highly selective toward a
specific PL class—PUFA-containing phosphatidylethanolamines
(PE) (34). Interestingly, two types of PE-molecular species with
C20:4 and C22:4 displayed the highest sensitivity toward
Frontiers in Endocrinology | www.frontiersin.org 4
oxidative modification. In terms of positional specificity, the
15th position in C20:4 and the 17th position in C22:4 were the
preferred oxidation sites. Importantly, these PE oxidation
products exerted predictive features of ferroptosis biomarkers
and displayed pro-ferroptotic activity upon co-incubations with
target cells (34). A recent study demonstrated that not only di-
acyl-phospholipids but also PUFA-plasmalogens (ether-
phospholipids), synthesized in peroxisomes, underwent
peroxidation in ferroptosis (60). Downregulation of ether
phospholipids was associated with the increased resistance of
cancer (carcinoma) cells to ferroptosis in vivo.

Selectivity and specificity of the PL peroxidation process in
two different cases of apoptotic and ferroptotic (non-apoptotic)
regulated cell death suggest a possible involvement of enzymatic
catalytic mechanisms. Indeed, two different metalloproteins, a
hemoprotein cytochrome c (cyt c) (Figure 2A) and a non-heme
Fe-protein, 15-lipoxygenase (15LOX) (Figure 2B), have been
identified as the highly likely enzymes initiating the peroxidation
process in apoptosis and ferroptosis, respectively (16, 34). In
both cases, the selectivity of the enzymatic peroxidation
mechanisms is achieved due to the formation of lipid-protein
or protein-protein complexes as described below.
TABLE 1 | Involvement of lipid peroxidation in the execution of regulated cell death programs.

Death type Target Stimuli Lipid peroxidation

Implicated but not
evidenced by LC/MS

(References)

Implicated with evidence by LC/MS (References)

Apoptosis Intrinsic
pathway

STS; rotenone; ActD; Hyperoxia;
NAO/light; g-IR; TBI; stretch

Kagan et al. (16); Tyurin et al. (17); Tyurina et al. (18, 19);
Huang et al. (20); Mao et al. (21); Belikova et al. (22); Bayir
et al. (23); Ji et al. (24)

Extrinsic
pathway

Anti-Fas Jiang et al. (25); Serinkan et al.
(26) (evidence by HPLC)

Wiernicki et al. (7)

Ferroptosis System X−
c Erastin; IKE; sorafenib Dixon et al. (27); Yang et al. (28);

Larraufie et al. (29); Louandre
et al. (30)

Gaschler et al. (31)

GPX4 RSL3; with aferin A; FINO2; ML162;
Smoke/COPD; BAY-87-2243

Dixon et al. (27); Yang et al. (32);
Basit et al. (33)

Kagan et al. (34); Doll et al. (35); Wenzel et al. (36); Kapralov
et al. (37); Dar et al. (38); Hassannia et al. (39); Gaschler et al.
(31); Yoshida et al. (40); Wiernicki et al. (7)

Glutamate-
cysteine
ligase

BSO Yang et al. (32)

Glutathione-
S-transferase

Artesunate Eling et al. (41); Lisewski et al. (42)

FSP1 FSP1ko/RSL3 Bersuker et al. (43); Doll et al. (44)
iNOS iNOS kd/RSL3 Kapralov et al. (37)
Iron oxidation FINO2 Gaschler et al. (31)
Other TBI; P. aeruginosa; viral infection;

AKI;
heart transplants

Matsushita et al. (45) Kenny et al. (46); Wenzel et al. (36); Dar et al. (38); Li et al. (47)

Necroptosis GSH
depletion

Hemin; gallic acid Laird et al. (48); Chung et al. (49)
Myocardial infarction (RIP3) Ghardashi Afousi et al. (50)

GPX4 GPX4 ko Canli et al. (51)
TNF-a Wiernicki et al. (7)

Pyroptosis Caspase-11 Gasdermin-D Kang et al. (52); Chen et al. (53)
Other HIRI; CI; LPS/ATP; sevoflurane Zhang et al. (54); Liang et al. (55);

Li et al. (56)
Wiernicki et al. (7)
g-Irradiation, g-IR; staurosporine, STS; actinomycin D, ActD; nonyl-acridine orange, NAO; acute kidney injury, AKI; buthionine sulfoximine, BSO; imidazole ketone erastin, IKE; traumatic
brain injury, TBI; hepatic ischemia-reperfusion injury, HIRI; cerebral ischemia, CI.
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ENZYMATIC AND NON-ENZYMATIC LIPID
PEROXIDATION MECHANISMS;
CATALYTIC ROLE OF IRON

PUFA residues of lipids are believed to be highly susceptible to
oxidative modification by oxygen (10, 64). This process, LPO,
Frontiers in Endocrinology | www.frontiersin.org 5
proceeds via the formation of radical intermediates. The rate
limiting stage is the initial formation of radicals that can further
propagate the overall process. Therefore, the peroxidation rate is
very low in the absence of catalysts. While there are many
different radical initiators—physical factors like irradiation or
chemical agents, like compounds spontaneously decomposing to
A B

DC

FIGURE 2 | Structural models of phospholipid peroxidizing Fe-proteins. (A) Structure of cytochrome c (pdb ID 1hrc) (61) shown in ribbon diagram, with the heme
molecule (in cyan) and the Cyt C residues (H18 and M80) highlighted in space filling representation. The inset shows the coordination of the Heme molecule by the
Cyt C residues, including H18 and M80. (B) Structure of 15LOX Ipdb ID 4nre) (62), also shown in ribbon diagram, with the arachidonic mimic (AA) shown in
magenta, stick representation. The catalytic site region is shown in detain in the inset. The b-barrel, which interfaces with the membrane, is labelled. (C) Structure of
cyt c-cardiolipin complex. The residue M80 which coordinates the heme has moved away from the Heme molecule, leading to an unfolded cyt c conformation. This
unfolded conformation, which was obtained from an earlier study (16) was used to dock a cardiolipin molecule (shown in pink). (D) Structure of 15LOX/PEBP1-
HpETE-PE complex. The model of the complex, proposed by us (36) is shown in ribbon diagram. The PEBP1 (shown in cyan) is docked onto the 15LOX, and this
complex model, was used to dock HpETE-PE molecule (shown in pink). The ligand docking for both cyt c and 15LOX/PEBP1 complex was performed by SMINA
(63). The insets in (C, D) depict the interfacing of peroxidase complex and membrane bilayer. The models for the protein-membrane complexes were built using the
Orientation of Proteins in Membrane webserver (https://opm.phar.umich.edu/ppm_server) which calculates translational and rotational position of membranes and
proteins from their three-dimensional structures.
FIGURE 1 | Preferential peroxidation of C18:2 residue in hetero-acylated cardiolipin (CL) molecule in apoptosis.
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form carbon-centered radicals—the most important biological
peroxidation catalysts are transition metals, particularly iron (Fe)
(65). Therefore, the levels of redox active free Fe-ions or “loosely
bound” Fe in low molecular weight complexes are strictly
controlled in cells and biological fluids (Figure 3A). Catalytic
Fe of active enzymes is regulated by the protein structure. Fe
required for these catalytic functions is delivered to the respective
protein clients—Fe-sulfur proteins, hemoproteins, and non-
heme Fe-proteins—by several specialized protein chaperons
(66). Quantitatively, hemoproteins represent the most abundant
endogenous source of Fe and catabolic degradation of these
proteins accompanied by the release of ferrous ions (Fe2+) is
operated by heme oxygenases (67). Specialized ferroxidases
convert (Fe2+) to (Fe3+)—the form suitable for the intracellular
iron storage by ferritin (Figure 3).

Normally regulated Fe-catalyzed reactions are enzymatic.
However, under special conditions such as Fe-overload,
excessive catabolism of Fe-proteins or diseases, aberrant non-
enzymatic Fe-driven lipid peroxidation by poorly controlled low
molecular Fe-complexes may occur, becoming excessive or even
overwhelming (68). These reactions commonly proceed via the
production of reactive oxygen species (ROS), particularly HO•
radicals, generated in Fenton/Haber-Weiss reactions or via the
formation of lipid radicals generated during decomposition of
organic hydro peroxides, including lipid hydroperoxides (69)
(Figure 3B). As cell death programs are based on regulated
mechanisms, the associated LPO is initiated by a selective and
specific enzymatic process (Figures 3C, D). Interestingly, the
enzymes involved in the production of lipid death signals via
peroxidation mechanisms during apoptosis and ferroptosis—cyt
c and 15LOX—usually are involved in different biological
Frontiers in Endocrinology | www.frontiersin.org 6
functions. For example, cyt c is shuttling electrons between
mitochondrial respiratory complexes III and IV in the
intermembrane space (70). 15LOX is a dioxygenase catalyzing
the formation of oxygenated lipid mediators from free PUFA,
particularly free arachidonic acid [AA or eicosatetraenoic (ETE)
acid 20:4] (71). Upon the initiation of the cell death program,
these enzymes change their properties/functions and switch their
activity to the peroxidation of PLs. The transformation of
enzymatic activity occurs due to protein interaction with other
molecules—a mitochondria-specific PL molecule, CL, in the case
of cyt c (Figure 2C), and the protein PEBP1 in the case of 15LOX
(Figure 2D).

Cyt c-Catalyzed Peroxidation
of Cardiolipins
Cyt c is a small mitochondrial intermembrane space hemoprotein
(MW about 12.5 kD, 104 amino acids) (72). As a transporter of
electrons, cyt c utilizes hexa-coordinated heme whereby the Fe has
four coordination bonds with a protoporphyrin IX and His18 and
Met80 at the proximal and distal sides as the fifth and sixth iron
ligands (73). Participation in the execution of the apoptotic death
program is a recently established important function of cyt c.
There are two pro-apoptotic processes that depend on cyt c: i)
apoptosome formation and ii) CL peroxidation (16, 74, 75). These
two seemingly unrelated roles of cyt c may, in fact, be closely
linked to each other. Cyt c that is released from mitochondria into
the cytosol interacts with the apoptotic protease-activating factor 1
(Apaf-1) to form the apoptosome, thus initiating the activation of
caspase-9 and downstream caspases (75). The outer mitochondrial
membrane (OMM) is permeable to small molecules—co-factors,
small peptides, etc.—that get readily released through the pores
FIGURE 3 | Metabolic redox pathways of iron in cells. (A) Tight control of redox-active iron in cells prevents its participation in peroxidation reactions; (B) redox activity of
low molecular iron complexes (labile iron); (C) oxidation of CL in cyt c/CL complexes; (D) formation of lipid radicals by the catalytic site of 15LOX/PEBP1 complex.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Kagan et al. Enzymatic Lipid Peroxidation in Cell Death
with the size limit of ~2nm in diameter (76). As the average
diameter of the cyt c globule is ~4nm, it is normally retained
within the intermembrane space (77). It has been hypothesized
that products of CL peroxidation may accumulate in the OMM
where they can get oxidized and became involved in the
production of pores with diameters >4nm that will facilitate the
release of cyt c from the intermembrane space into the cytosol.

The accumulation of irreparable defects in mitochondria
triggers their elimination through a special type of autophagy,
mitophagy (78). This is a multistage process in which the
signaling by a mitochondria-specific CL plays a prominent
role. Normally confined almost exclusively to the matrix leaflet
of the inner mitochondria membrane (IMM), CL undergoes
several trans-membrane migrations to the mitochondrial surface
(the outer leaflet of the OMM) (79, 80). Externalized CL binds
microtubule-associated proteins 1A/1B light chain 3B (LC3)
(79), one of the central executioners of autophagy. Timely and
successful elimination of damaged organelles via activation of
mitophagy is a pro-survival mechanism (81). However,
incomplete autophageal digestion of injured mitochondria with
dysregulated electron transport represents a peril to the entire
community of surrounding cells. As a result, the entire cell
undergoes apoptotic elimination.

The transition from the pro-survival mitophagic to the
apoptotic death program relies on a new interaction of cyt c
with CL (which becomes possible during CL migration from
IMM to OMM). Noteworthy, formation of the cyt c/CL complex
causes a strong negative shift of its redox potential (by ~400 mV)
such that cyt c can no longer act as an electron acceptor from
complex III, and function as an electron carrier in the respiratory
chain (82). This results in the elevated production of superoxide
anion-radicals and their dismutation to H2O2. The latter can be
used as a source of oxidizing equivalents for a peroxidase
reaction, provided that an inadvertent peroxidase activity is
present in the microenvironment. The formation of cyt c/CL
complexes offers this opportunity.

Evidently both pools of CL facing the intermembrane space—
in the outer leaflet of the IMM and the inner leaflet of the OMM
—bind cyt c to form a peroxidase complex activated by the
available H2O2. Deprotonated CL phosphate groups can
electrostatically interact with eight positively charged lysine
residues of cyt c, particularly Lys72/73 (74). The electrostatic
binding is followed by strong hydrophobic interactions
between PL acyl chains and non-polar regions of the protein
(83). There are different views on the degree of the protein
conformational changes induced by CL. While some of the data
have been interpreted as the evidence for dramatic protein
unfolding and denaturation (“molten globule”), recent
multidimensional solid-state NMR results favors the model in
which only minimal structural rearrangements take place
whereby the hydrophilic milieu at the membrane interface
stabilizes a native-like fold, but also leads to localized flexibility
at the membrane-interacting protein face (84). One way or
another, CL induced changes weaken and/or disrupt the
coordination bond between heme-iron and Met80 (Figure 2C).
Other amino acids can interact with the distal position of heme
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iron but they are not strong ligands and can be replaced by small
molecules, including H2O2 and FA-OOH (73). Overall, the
catalytic site of the cyt c/CL complex adopts peroxidase activity
triggered by the available H2O2 or HOO-PUFA. If the iron in the
cyt c/CL is in ferrous state, H2O2 oxidizes it into ferric form thus
completing the conversion of cyt c/CL into a peroxidase. H2O2

leads to the formation of highly reactive oxoferryl porphyrin-p-
cationic radical (compound I), which can oxidize various
substrates (Figure 3C). In the case of pseudo-peroxidases, like
cyt c/CL, compound I oxidizes protein amino acids to form a
protein-immobilized radical (most likely tyrosyl) thus designating
the emergence of compound II. Tyr67 is located in closest
proximity to the heme group of cyt c and mediates oxidation of
CL (Figure 2C) (85). The lower “pro-oxidant” capacity of
compound II suggests that it is an unlikely candidate to further
oxidize protein amino acids but it can readily abstract bis-allylic
hydrogens from PUFA-CL (86). While other negatively charged
lipids, like PIPs, PG, and PS, can also activate cyt c into a
peroxidase, nevertheless the effectiveness of these alternative
peroxidase complexes of cyt c with PLs is markedly lower than
that of cyt c/CL complexes. Notably, the most abundant non-
charged PLs of mitochondria, PC and PE, neither form peroxidase
complexes with cyt c nor undergo peroxidation during apoptosis
(16). Lipid hydroperoxides are orders of magnitude more effective
in initiating CL peroxidation by cyt c/CL complexes than H2O2

(87). This indicates that accumulation of small amounts of HOO-
CL may strongly stimulate the peroxidation process. Indeed,
progressive acceleration of CL peroxidation in the presence of
CL-OOH has been experimentally confirmed (74). The described
role and specific features of CL peroxidation by cyt c/CL
complexes may inform the mechanism-based design of small
molecule anti-apoptotic regulators with therapeutic potential as
described below (88, 89).

15LOX-Catalyzed Peroxidation of
Phosphatidylethanolamines in Ferroptosis
The execution of ferroptosis includes the Fe-dependent
production and accumulation of ox-PUFA-PL (27, 90).
Theoretically, both an enzymatic mechanism as well as a
random free radical reaction may be engaged in this process. As
sn2-15-HpETE-PE has been identified as a selective and specific
product eliciting pro-ferroptotic activity, it is reasonable to assume
that an enzymatic mechanism should be, at least in part, enacted
in ferroptosis. Among several possible redox-catalyzing Fe-
proteins, 15LOX has been proposed as the likely candidate (34).
Mammalian LOXes are a family of non-heme iron containing
dioxygenases that effectively catalyze oxidation of one or more 1,4-
cis,cis-pentadiene segments of free PUFA. A typical U-shaped
PUFA binding channel is organized such that the oxidizable bis-
allylic carbon is juxtaposed to Fe. The LOX nomenclature—5LOX,
8LOX, 12LOX, 15LOX—is based on the ETE carbon position that
is oxidized by the enzyme’s Fe (91, 92). The highly organized
catalytic site contains Fe3+ with five coordination bonds occupied
by the protein’s amino acids and the sixth position interacting with
the hydroxide (in the native enzyme) or water (in the
intermediate) (Figure 3D). Fe3+-OH abstracts hydrogen from
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PUFA and yields a carbon-centered radical and Fe2+-OH2 (93).
Thus formed lipid radical (L•) interacts with molecular oxygen
(O2) delivered to the catalytic site through a special channel (94)
which controls the production of the peroxyl radical at the
catalytic site. The completion of the catalytic cycle is achieved
via the hydrogen transfer from Fe2+-OH2 to the peroxyl radical
resulting in the formation of the lipid hydroperoxide.

Normally, 15LOX effectively oxidizes free ETE as a preferred
substrate to generate 15-hydroperoxy-eicosatetraenoic acid
(15HpETE) (71). Among the members of the LOX family,
15LOX is uniquely organized to also catalyze peroxidation of
esterified PUFA, particularly membrane PLs (95). ETE-
phosphatidylethanolamines (ETE-PE) represent one of the
preferred substrates for 15LOX leading to the production of
15-HpETE-PE (96). The catalytic efficiency of 15LOX toward
ETE-PE is relatively low. However, its formation has dramatic
consequences as 15-HpETE-PE has been identified as a pro-
ferroptotic signal (34). Paradoxically, a number of phenolic
compounds and aromatic amines effectively prevent ferroptotic
death but are poor 15LOX inhibitors (97). It has been
hypothesized that 15LOX alone is not sufficient for the
production of pro-ferroptotic death signals but there may be
an additional factor modifying the enzymatic properties of
15LOX under ferroptotic conditions. Indeed, this factor has
been identified as a scaffold protein, PE-binding protein-1
(PEBP1) (36). PEBP1 was shown to form a complex with
15LOX in which allosteric changes in 15LOX permit the entry
and positioning of ETE-PE (Figure 4) in a way that the
enzymatic activity toward specific oxidation of the ETE-residue
increases two-fold (99). Participation of 15LOX/PEBP1 in the
generation of pro-ferroptotic PEox death signals was
demonstrated in a number of different types of cultured and
Frontiers in Endocrinology | www.frontiersin.org 8
primary cells as well as in vivo in airway epithelial cells in asthma,
kidney epithelial cells in renal failure, cortical and hippocampal
neurons in brain trauma (100), and in intestinal epithelial cells
after total body irradiation (101). Given the demonstrated necro-
inflammatory consequences of ferroptosis (102), the specific
features of 15LOX/PEBP1 complexes offer an exciting
opportunity for the design of ferroptosis-specific small
molecule regulators with profound implications for human
disease. It should be noted, however, that alternative enzymatic
mechanisms of peroxidation of PUFA-PE may be involved in
triggering ferroptosis. A recent study identified a NADPH-
dependent oxidoreductase (possibly with a partner isoform of
cytochrome P450), as an essential activator of pro-ferroptotic
phospholipid peroxidation in several types of cancer cells with
low levels of 15LOX expression (103). The sensitivity of cells to
pro-ferroptotic stimulation was decreased after downregulation
of the oxidoreductase but not of 15LOX. In contrast, in cells with
high levels of 15LOX expression (e.g., after stimulation of human
airways epithelial cells by inducers of Th2 responses), 15LOX KD
caused a strong suppression of ferroptosis (36).

Non-Enzymatic Lipid Peroxidation by
“Loosely Bound” Fe-Complexes
Under extreme circumstances where the strict control of Fe is
lost, Fe can display its redox activity mostly via participation in
Fenton/Haber-Weiss reactions leading to the formation of ROS.
The major biologically impactful event in these reactions is the
reductive splitting of H2O2 by Fe2+ to yield highly reactive
HO• radicals capable of initiating the oxidation process. H2O2

reacts poorly with most biological molecules due the high
activation energy barrier that must be overcome (104). The
rate constant of the reaction of H2O2 with free iron is low
A
B

FIGURE 4 | Allosteric modification of lipid binding in the 15LOX/PEBP1 complex. (A) Surface representation of 15LOX, viewed from top, showing the entrance to
the catalytic site, the residues of which are highlighted in blue (top panel). The opening of the entrance site is reduced in the 15LOX/PEBP1 complex (bottom panel,
right), compared to that in 15LOX alone (bottom panel, left). (B) The binding of sn1-18:0/sn2-20:4-PE onto 15LOX alone (red) and 15LOX/PEBP1 complex (green),
showing the position of the nearest carbon at the catalytic iron. In 15LOX alone, this carbon is C10, leading to peroxidation at C13, where is in the complex it is C13,
which leads to peroxidation at C15. These figures were adapted from (98).
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(< 102 M−1s−1), however, Fe-ligation may accelerate the reaction
by several orders of magnitude (up to 104 M−1s−1). In the context
of lipid peroxidation, HO• radicals avidly attack lipid molecules
to produce carbon-centered lipid radicals (69) which, in the
presence of O2, are converted into peroxyl radicals (LO2•). The
latter are much less reactive toward lipids and the abstraction of a
hydrogen atom from the oxidizable lipid molecules represents
the “most difficult” initiating event. The easiest “victims” of RO2•
are bis-allylic positions in PUFA—hence their number in PUFA
is the major factor defining the oxidizability of lipids.

Random free radical chemical reactions are driven by the
reactivity of the participating reagents—radicals and oxidation
substrates and enzyme-imposed structural factors which do not
limit the peroxidation process. Consequently, detection of
selectivity of the peroxidation that deviates from this principle
of oxidizability governed by the number of bis-allylic sites can be
viewed as a strong argument against the participation of a free
radical chemical reaction in the overall peroxidation process.
Importantly, lipid peroxidation occurring during apoptosis and
ferroptosis is highly specific not only with regards to classes of
PLs—CL and PE. Indeed, linoleoyl (C18:2)-CLs represent the
major substrates of pro-apoptotic peroxidation in mitochondria.
Further, arachidonoyl (C20:4)- and adrenoyl (C22:4)-PE species,
rather than more polyunsaturated docosapentaenoyl- and
docosahexanoyl-PE species, are predominantly peroxidized in
cells undergoing ferroptosis.

Another important difference between enzymatic and non-
enzymatic LPO is that the latter is mostly driven by ferrous iron
—in contrast to cyt c or 15LOX-dependent processes where
ferric iron is the major catalytic species. In contrast, ferrous iron
is markedly more effective in decomposing lipid hydroperoxides,
the reaction leading to the production of secondary oxidatively
truncated electrophilic products of LPO that can modify proteins
and change their structure and functions. This is yet another
controversy in understanding the leading role of Fe-dependent
enzymatic vs. non-enzymatic reactions of LPO.
PRIMARY AND SECONDARY LIPID
PEROXIDATION PRODUCTS

LPO—enzymatic or non-enzymatic—has a radical-mediated
reaction in its nature. Radical intermediates are very short
lived and cannot be directly detected by conventional high
resolution analytical protocols such as LC-MS. The primary
molecular products of LPO are hydroperoxides and they
represent the first opportunity for the LC-MS based
quantitat ive characterization. The analysis of l ipid
hydroperoxides has become a formidable task for several
reasons. First, their chemical and metabolic instability and
thermolabile nature most often results in the formation of
secondary products, some of which are susceptible to
degradation. Second, the sheer number of lipid signaling
molecules is staggering which translates directly into a plethora
of potential LPO products that, in many circumstances, occur at
very low levels. Finally, while lipid hydroperoxides are the initial/
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primary products of lipid oxidation, secondary products such as
aldehyde, ketone, hydroxy, and epoxide products add to the
heterogeneity and complexity of the signaling language. Thus,
this rich signaling language should include not only full-length
peroxidation products, but also truncated PLs, cyclized PLs as
well as fragments of oxidized fatty acyl chains resulting from
secondary reactions of lipid hydroperoxides (34, 105).

Lipid hydroperoxides are present in very low steady-state
concentrations and are unstable due to their cleavage to yield,
dependent on the reducing or oxidizing environment, new
alkoxyl- or peroxyl- radicals, which readily decompose into
secondary products (34). Indeed, many studies have focused
on small reactive lipid fragments, such as malondialdehyde, 4-
hydroxynonenal, etc. that can act as secondary downstream
reactive products in a variety of cell death mechanisms and
can covalently modify proteins [3]. However, this will depend on
whether the reactive group (a reactive aldehyde for example)
resides with the “leaving” short lipid fragment or remains with
the truncated parent PL. Either of these two groups of reactive
products can potentially react with nucleophilic amino acids,
such as histidine, cysteine, and lysine that reside in cellular
proteins. It has been well established that the process of PL
peroxidation generates electrophilic species that are able to
modify proteins and change their structure, activity and
function (106). As PEs are preferentially peroxidized during
ferroptotic death, it is likely that the truncated reactive parent
PL is necessary for driving the downstream effects of ferroptosis
(Figure 5). Indeed, small reactive lipid fragments can be formed
from any polyunsaturated (phospho)lipid class, hence will not be
specific for ferroptosis. By forming conjugates with a protein,
lipidation by truncated reactive parent PLs will undoubtedly
change the hydrophobic-hydrophilic balance, likely changing the
distribution of the proteins into membranes (107–109) where
they can form dreadful oligomeric pores.

Peroxidation reactions catalyzed by cyt c/CL complexes yield
a highly diversified set of oxidized CL species with hydroperoxy-,
hydroxy-, epoxy-, and oxo-functionalities (110). These CL
peroxidation products are similar to the CLox signals detected
in cells during execution of the intrinsic mitochondria-mediated
apoptotic program triggered in cells by actinomycin D (16),
staurosporine (17), and ionizing radiation (22, 111). Given that
oxidizable PUFA-CLs are found exclusively in mitochondria, it is
not surprising that oxidatively modified CL species, particularly
mono-oxygenated C18:2-containing CLs, have been associated
with the execution of the apoptotic death program (21). It should
be noted, however, that a variety of CLox species, including
hydroperoxy-, epoxy-, and oxo-CLs are detectable in cells and
tissues in vitro and in vivo. For instance, CLox containing
hydroxy-, epoxy-, oxo-, and hydroperoxy-functionalities have
been detected in the small intestine of mice exposed to total body
irradiation (110, 112, 113). Similarly, hydroxy- and
hydroperoxy-CL species were detected in the brain of mice
after traumatic injury (114). Notably, prevention of apoptosis
by a mitochondrial electron acceptor, XJB-125, was associated
with decreased levels of CLox in the peri-contusional zone of the
traumatized brain.
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It is possible that oxidatively truncated CLox species with
high electrophilic potential can be formed in mitochondria.
These products can readily attack nucleophilic sites in proteins
and form protein adducts that will affect mitochondrial function
and damage their integrity (115). Oxidatively truncated CL
species can be formed in cyt c/CL catalyzed reactions in vitro
(Figure 6) and were detected in vivo in the ileum of mice exposed
to total body irradiation (Figure 7). While it is possible that
truncated CLox products can modify a number of mitochondrial
proteins, including those involved in the execution of
mitochondria-dependent cell death programs (e.g., apoptosis),
this work has not been accomplished and represents a goal for
future investigations. The isolation and determination of the site of
lipidation on proteins directly participating in the execution of cell
death in apoptosis and ferroptosis is a formidable task. However,
lipidated proteins, and more importantly lipidated peptides
Frontiers in Endocrinology | www.frontiersin.org 10
generated from protein digests, should impart a dominant
hydrophobic characteristic whereby the peptides should be
highly retained on reverse-phase solid supports. Adjusting and
modifying gradients for extremely hydrophobic species and/or
applying different chromatographic solid supports should aid in
the separation and identification of lipidated species.
INTRACELLULAR LOCALIZATION OF
LIPID PEROXIDATION CENTERS

Apoptosis
The execution of the intrinsic apoptotic program is initiated in
mitochondria as it requires the oxidation of CLs (117). Formation of
the peroxidase cyt c/CL complexes (16, 118) along with the H2O2-
producing interruption in electron transport causes accumulation of
FIGURE 5 | Oxidatively truncated electrophilic products formed from phosphatidylethanolamine (PE) and their conjugates with target proteins.
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CLox leading to the release of cyt c into the cytosol and apoptosome
formation (75). In the cytosol, the released cyt c can bind an anionic
phospholipid, phosphatidylserine (PS), located in the inner
(cytosolic) leaflet of the plasma membrane. This complex also
displays peroxidase activity that can trigger PS oxidation and
accumulation of oxidized PS (PSox) (119, 120). As a membrane-
disrupting agent, PSox can act as a “non-enzymatic scramblase”
leading to the appearance of both PS and PSoxmolecules on the cell
surface (120, 121). Both lipids serve as universal “eat-me” signals in
efferocytosis, whereby PSox is more efficiently recognized by
professional phagocytes (122–124). Thus, two separate cyt c-
dependent oxidation mechanisms utilizing CL and PS are
Frontiers in Endocrinology | www.frontiersin.org 11
activated at different stages of apoptosis and generate signals with
two distinctive functions. CLox is involved in the intracellular
signaling at the initiation stage of apoptosis and leading to the
release of cyt c from mitochondria, whereas PSox is an important
part of inter-cellular communications regulating efferocytotic
clearance of apoptotic cells by professional phagocytes (80, 125).

Ferroptosis
Intracellular localization of LPO and participation of different
organelles in the generation of ferroptotic death signal remains
an important but still controversial issue (126, 127).
Fluorescence-based measurements using a reagent selectively
A B

FIGURE 7 | Peroxidized CLs, including oxidatively truncated species, are produced in the small intestine (ileum) of mice in vivo after total body irradiation (9.5 Gy)
(110, 116). Two truncated CL species, ONA/LA3-CL (A) and OA/LA2/ONA-CL (B), have been identified by MS2/MS3 fragmentation analysis (ONA, 9-oxo-nonanoic
acid; LA, linoleic acid; OA, oleic acid). As previously described (110, 112, 113, 116), the levels of peroxidized CL (including oxidatively truncated CL species
containing ONA) are elevated after irradiation. Insets: structural formulas of ONA/LA3-CL (A) and OA/LA/ONA-CL (B).
A B

FIGURE 6 | Enzymatic peroxidation of polyunsaturated CL by cyt c yields a variety of products (12, 110), including oxidatively truncated molecular species. Shown
are LC-MS results identifying the production CL molecular species containing 9-oxo-nanoic acid. (A) Profiles of tetralinoleyl cardiolipin (LA4-CL, upper panel) with m/z
1,447.9656 and 9-oxo-nanoyl (ONA)/LA3-CL with m/z 1,339.8342 (lower panel); (B) MS2 fragmentation pattern and structural formulae (inset) of molecular ion with
m/z 1,339.8342. MS2 analysis reveals the fragments with m/z 1,185.79, m/z 695.47, and 587.33 produced due to the loss of oxidatively truncated residue as well
as to di-linoleoyl-glycerol phosphatidate and diacylglycerol phosphatidate containing linoleic acid (LA) and its oxidatively truncated residue. Further MS2 fragmentation
of ion with m/z 587 yield ions with m/z 307 and m/z 415. The fragments corresponding to ONA (m/z 171) and LA (m/z 279) were detected as well. ONA, 9-oxo-
nonanoic acid; LA, linoleic acid.
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reacting with lipid hydroperoxides, Liperfluo, indicate that the
endoplasmic reticulum (ER) is the major site of ferroptosis
initiation (127). Both 15LOX and low molecular weight Fe-
complexes are found in the ER compartment suggesting that
both enzymatic initiation and non-enzymatic cleavage of HOO-
PLs can take place in the ER (128, 129). The ER can also promote
ferroptotic peroxidation indirectly via induction of autophagy
driving the degradation of several important regulators of lipid
peroxidation such as ferritin, lipid droplets and glutathione
peroxidase 4 (GPX4) (130, 131). Given the likely engagement
of mitochondria in the ferroptotic peroxidation, it is possible that
mitochondria-associated ER membranes (MAMs) are the
immediate locales where the LPO initiating events
predominantly occur (132, 133).

Mitochondria are likely to be directly and/or indirectly
involved in pro-ferroptotic LPO. There are several lines of
evidence favoring the mitochondrial participation: i) GPX4 is
localized in the intermembrane space of mitochondria, whereas
15LOX is associated with the mitochondrial membrane (94, 134–
137), ii) a significant part (~40% of total phospholipids) of the
major LPO substrate, PUFA-PE, is synthesized and present in
this organelle (138), iii) they play a crucial role in cellular iron
homeostasis, iv) they act as the major source of pro-oxidant ROS
as well as a variety of molecular species of phospholipid
hydroperoxides, v) they undergo dramatic morphological
changes during ferroptosis (27). While strongly supportive,
these characteristics make mitochondria a plausible but not
penultimately proven universal participant of ferroptosis (139–
141). It has been shown that cells incapable of generating mito-
ROS due to depletion of mitochondrial DNA or with
dramatically lowered levels of mitochondria (eliminated by
mitophagy) did not demonstrate decreased sensitivity to
ferroptosis (31). A highly effective mitochondria-targeted and
hydrophobic radical scavenger, TPP-tagged MitoQ, was less
effective than its non-targeted derivative (142). However,
another mitochondria-targeted nitroxide, XJB-5-131,
suppressed ferroptosis better than non-targeted nitroxides (143).

As an integral part of cell catabolism, lysosomes can, under
some circumstances, indirectly participate in the ferroptotic
program via autophagy e.g., by digesting Fe-containing
proteins and releasing Fe used in pro-ferroptotic machinery
(144, 145). However, it appears that lysosomal LPO is not
critical for ferroptosis, as prevention of the accumulation of
ferroptosis inhibitor ferrostatin-1 (Fer-1) in lysosomes, caused a
stronger inhibition of ferroptosis (31). Evidently, the plasma
membrane may be a target for the ferroptotic program rather
than a part of its execution machinery and phospholipid
peroxidation products may participate in the late destructive
stages of the cell’s demise. In line with this, only minimal
amounts of Fer-1 were detectable in the plasma membrane
during execution of ferroptosis (146, 147).

Non-Cell Autonomous Features of Lipid
Signaling in Ferroptosis vs. Apoptosis
Preservation of plasma membrane integrity and formation of
apoptotic bodies which are engulfed and removed by phagocytes
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are typical hallmarks of apoptosis. This process prevents spillover
of cellular contents andmakes apoptosis a non-inflammatory, cell-
autonomous phenomenon. Opposite to apoptosis, ferroptotic cell
death is “spread,” in a synchronized way, suggesting a direct cell-
to-cell communication for the delivery of death signals (38, 148–
150). The nature of potential death signals was revealed by LC-MS
based redox lipidomics in a number of experiments, including
those with the induction of ferroptosis by exogenous pLoxA, and
included the oxidation of exogenous ETE-PE yielding 15-HpETE-
PEs. Results of these experiments demonstrated the synchronous
character of the spreading of cell death. The fluorescence of
Liperfluo interacting with 15-HpETE-PEs demonstrated
propagation of these products among the neighboring cells
suggesting that they can serve as a death signal initiating
ferroptosis (38). The non-cell autonomous nature of ferroptosis
may be associated with intercellular communications stimulating
immune and metabolic responses (38).
REGULATION OF LIPID PEROXIDATION
IN APOPTOSIS AND FERROPTOSIS AND
ITS SPECIFICITY

The oxidation of CL during apoptosis occurs very early during
the time when its molecular reactions leading to the initiation of
apoptosis remain located in a restricted space inside of
mitochondria whereby its inhibition provides an effective
target for preventing apoptosis. This suggestion was confirmed
by the experimental results demonstrating, that genetic depletion
of CL-synthase as well as deficiency of cyt c or mutation of its
Tyr67 residue result in an increased resistance of cells to
apoptosis (20, 151–153). Several low molecular weight
compounds preventing CL oxidation by inhibiting of
peroxidase activity of cyt c have been designed and tested,
including mitochondria-targeted electron scavengers and stable
nitroxides radicals (116, 154–156).

Regulation of LPO which play crucial roles in the development
of ferroptosis is a key approach in preventing ferroptotic cell death.
One of the most important defenders is glutathione peroxidase 4
(Gpx4), converting toxic PL hydroperoxides to non-toxic alcohols
by using GSH as the reducing substrate (142). Direct inactivation of
GPX4 by small molecular weight compounds interacting with
selenocysteine such as RSL3, ML162, ML210, FINO2 as well as
indirect inhibition by deprivation of GSH were effective in inducing
ferroptosis (28, 126, 157) (Table 1). One of the prerequisites for
ferroptosis is the presence of ETE-PE, the substrate for the
production of the death signal, HpETE-PE. Enzymes participating
in the synthesis of ETE-PE such as ACSL4 responsible for the
formation of CoA-derivatives of ETE and LPCAT3 catalyzing the
esterification of CoA-ETE into lyso-PE, act upstream of GPX4 and
are important ferroptosis regulators. Experimental data
demonstrated a direct correlation between their expression and
sensitivity to ferroptosis (34–36). GPX4 andACSL4 double-KO cells
have the ability to overcome the deadly effect of GPX4 deficiency
and do not undergo ferroptosis (35).
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Some cells contain additional enzymatic mechanisms such
as inducible nitric oxide synthase (iNOS)/NO• which can
interact with 15LOX and/or lipid radicals and neutralize
them (37). The anti-ferroptotic effect of NO• involves the
inhibition of 15-LOX-dependent oxidation of ETE-PE and
neutralization of HpETE-PE as well as secondary lipid
radicals formed during cleavage and oxidative truncation of
this molecule, thus preventing their toxic effects. Increased
expression of iNOS/NO• in M1 macrophages/microglia or
addition of NO• donors to the M2 macrophages not
expressing iNOS lead to their high resistance to ferroptosis.
Due to its ability to neutralize the formation of HpETE-PE,
iNOS can inhibit ferroptotic cell death acting upstream
of GPX4.

Nrf2/NFE2L2 transcription factor is activated as a feedback
loop to protect cells from LPO generated during ferroptosis and
it is one of the key players in the protection of cells from
ferroptosis. After dissociation from its complex with its
negative regulator Keap1, Nrf2 translocates to the nucleus
where it activates the transcription of target genes (158, 159).
NRF2 inhibits ferroptosis through the regulation of hundreds of
genes, including genes participating in the regulation of
glutathione, GPX4 expression, iron, mitochondrial function
and lipid metabolism (159, 160).

Unique Role of Thiols
Reduced glutathione (GSH), the most prevalent non-protein
thiol and the major intracellular antioxidant, plays an
important role in maintaining a tight control over the redox
status and cellular defense against LPO. However, the specific
mechanisms of action of GSH in apoptosis and ferroptosis are
different in spite of the fact that GSH depletion is a common
feature of both extrinsic and intrinsic apoptosis (161). GSH
depletion creates redox instability promoting the activation of
signaling pathways leading to the initiation of apoptosis. One of
the possible mechanisms activated by GSH depletion involves
the deterioration of mitochondrial function. It appears that
GSH deficiency promotes pro-apoptotic effects of other
inducers; by itself GSH depletion is not sufficient to initiate
apoptosis (162).

In ferroptosis, GSH is required as a substrate for proper
functioning of GPX4. A decline in the GSH contents leads to the
accumulation of pro-ferroptotic PUFA-PLox. The cystine/
glutamate antiporter (system xc−) represents the main route
for extracellular transport of cystine serving as an essential
precursor for the synthesis of GSH. The xc−/GSH/GPX4 axis is
the crucial controlling mechanism of ferroptosis and its
inhibitors (e.g., erastin, imidazole ketone erastin, sulfasalazine,
etc.) are classified as “class 1” ferroptosis-inducing compounds to
distinguish them from RSL3 and other direct inhibitors of GPX4
classified as “class 2” (163).

Thiol-Independent Regulation of
Lipid Signaling
A recently discovered protein FSP-1—formerly known as
mitochondrial flavoprotein AIFM2—was found to inhibit
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ferroptosis in a GPX4/GSH-independent way. Accordingly,
FSP1 knockout cells display a higher sensitivity to ferroptosis
inducers whereas overexpression of FSP1 correlates with a higher
resistance to ferroptosis in multiple tumor cell lines. The
mechanisms of FSP-1 anti-ferroptotic effects involve its ability
to serve as an oxidoreductase catalyzing the NAD(P)H-
dependent reduction of CoQ to ubiquinol (43, 44).

Similar to vitamin E, a lipophilic radical-trapping
antioxidant CoQ10 is a very effective inhibitor of ferroptosis
both in vitro and in vivo (164, 165). The redox biochemistry of
CoQ and vitamin E are intertwined: the more powerful
antioxidant, vitamin E (tocopherol), neutralizes lipid radicals
by donating an electron and can be regenerated back to its
reduced form by CoQ-OH (166–169). This recycling of vitamin
E is maintained by FSP1 that maintains control of the reduced
CoQ-OH. In addition to FSP-1, cells contain several
oxidoreductases capable of reducing CoQ and vitamin E,
hence be involved in the GSH/GPX4 independent inhibition
of ferroptosis. Additional work in this area will elucidate the
role of several oxidoreductases such as NAD(P)H: (quinone
acceptor) oxidoreductase 1 (NQO1) (170), cytochrome b5
reductase (CyB5R), in CoQ/vitamin E anti-ferroptotic
regulations (171).
MECHANISM-BASED REGULATORS OF
ENZYMATIC PHOSPHOLIPID
PEROXIDATION AS SPECIFIC ANTI-
APOPTOTIC AND ANTI-FERROPTOTIC
AGENTS

Contemporary understanding of the role, contribution and
mechanisms of PL peroxidation as drivers of apoptotic and
ferroptotic death programs, leads to the design of new classes
of specific small molecule inhibitors with a potential for their
application as therapeutic agents. To emphasize the importance
of the structural and functional organization of the enzymatic
complexes directly involved in the production of PL death
signals, we will re-iterate their relevant and most important
features in this section.

Anti-Apoptotic Regulators
Oxidation of mitochondrial CL by the cyt c/CL peroxidase
complex is an early and critical step in apoptosis signaling. CL
oxidation facilitates the release of cyt c from mitochondria to
the cytosol and participates in apoptosome formation. CL
depletion disrupts the function of various IMM enzymatic
complexes (80, 172). Regulating enzymatic CL oxidation is a
promising LPO-focused anti-apoptotic therapeutic strategy. CL
is mitochondria-specific and asymmetrically localized, being
overwhelmingly localized and enriched (≤25% of total PL) at
the IMM inner leaflet. To interact with intermembrane cyt c,
CL is first flipped to the IMM outer leaflet. The mechanisms of
the overall process leading to CL externalization remain
enigmatic. Several candidate proteins contribute to loss of CL
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asymmetry following injury—such as PL scramblase-3 (PLS3)
that facilitates transposition of CL from the inner-to-outer IMM
leaflets and other transporters implicated in IMM-to-OMM CL
transport [e.g., mitochondrial nucleoside diphosphate kinase
(NDPKD), adenine nucleotide translocator (ANT), uncoupling
proteins (uCP), creatine phosphokinase (CPK), and truncated-
BH3 interacting domain death agonist (t-Bid)] (173, 174).

Interaction between CL and cyt c is mediated by electrostatic
forces between positively charged lysines in cyt c and CL’s two
negative phosphate groups (74, 175). Binding of CL induces: 1)
distortion of cyt c’s heme-associated Trp59 and reduction in cyt
c’s hydrophobic core volume; 2) disruption of cyt c’s Met80-Fe
bond, lead to a mixture of penta-coordinated and His33/His26
hexa-coordinated heme (176); 3) a decreased Fe(II)/Fe(III)
couple redox potential (~400 mV more negative than native
cyt c) abolishing its electron shuttling activity while gaining
peroxidase activity (177, 178); and 4) opening of cyt c’s heme
crevice enabling substrate access to the newly formed
peroxidase active site (153, 179). The newly formed cyt c/CL
peroxidase substrate specificity leans toward organic peroxides,
like CLox. However, given the complex’s proximity to
mitochondrial H2O2 sources (ETC complexes and TCA
dehydrogenase) and electrostatic affinity for unoxidized CL,
the primary substrate of the cyt c/CL complex is CLox
(180, 181). Liberation of CL’s oxidized acyl chains through
the action of phospholipases (e.g., iPLA2g) yields a suite of
immune activating signaling molecules—such as hydroxy-
octadecadienoic acids (HODEs), hydroperoxyoctadecadienoic
acids (HpODEs), and hydroxy-eicosatetraenoic acids (HETEs)
(182, 183).
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Small molecule therapies targeting CL peroxidation hold
promise as a specific anti-apoptotic interventions. However, the
administration of non-targeted global antioxidants (e.g., vitamin
E, CoQ10, or nitroxyl radicals) proved ineffective at improving
survival and CLox-associated apoptosis in acute injury models.
Poor localization of the therapeutic compounds to the pathogenic
target sites, low activity with the target substrate, and/or
deleterious off-target effects on ROS signaling may have led to
this failure (184). These limitations may all be overcome, to
varying degrees, by specifically targeting and enriching
antioxidant and electron scavengers, like nitroxide, to the IMM.
XJB-5-131 and JP4-039 are comprised of a hemigramicidin (HS)
peptide conjugated to TEMPO (114). These compounds attenuate
lesion volume and improve behavioral deficits following
experimental brain injury. Mechanistically, XJB-5-131 serves as
an electron scavengers, preventing O·−

2 and H2O2 formation and
limiting fuel for the cyt c/CL peroxidase. Alternatively,
mitochondrial-targeted imidazole-conjugated fatty acids (TPP-
ISA, TPP-IOA) coordinate the hepta-coordinated form of the
cyt c/CL complex, impeding CL access and oxidation (Figure 8)
(80). Therapies may also promote CL lipidome remodeling into a
less oxidizable, mono-unsaturated form using mitochondria
targeted oleic or stearic acid derivatives (185). While perhaps
less viable for application in acute injury, this remodeling
approach has shown potential in chronic neurodegenerative
disease models (114). Development of new mitochondria-
targeted molecules that suppress CL peroxidation, as well as the
optimization of the pharmacodynamic/pharmacokinetic
properties of existing ones may lead to promising ant-apoptotic
therapeutic modalities.
FIGURE 8 | Radiation protection and mitigation by TPP-IOA and TPP-ISA. C57BL/6NTac female mice were exposed to total body irradiation to a dose of 9.25 Gy
using a cesium source (n = 31–35 mice per group). The mice were irradiated and injected i.p. with TPP-IOA or TPP-ISA (5 mg per kg body weight in 100 ml of water
containing 25% ethanol) 10 min after irradiation. P < 0.0001 (a two-sided log-rank test)—TPP-IOA or TPP-ISA injected and exposed to total body irradiation mice vs.
mice exposed to total body irradiation only. These figure was adapted from (116).
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Anti-Ferroptotic Regulators
Most anti-ferroptosis strategies target LPO in one way or another
—whether they promote cellular lipidome remodeling into a less
oxidizable form, inhibit LOXs, or serve as lipophilic radical
trapping agents. As indicated above, many of the ferroptotic
inhibitors exhibit both LOX inhibition and radical trapping
capacity, although to varying degrees (186, 187). The lack of
appropriate analytical tools hindered the understanding of the
precise mechanism of these molecules. With regards to the LOX
inhibitors, their anti-ferroptotic effectiveness is often higher than
the LOX inhibitory activity (97). Notably, the EC50 values for LOX
inhibition have been calculated exclusively based on the
suppression of free HpETE production by LOX alone. The rate
of the HpETE production by 15LOX is many-fold higher than that
of HpETE-PE. Because the latter, but not free HpETE, act as pro-
ferroptotic signals, the meaning of these estimates in the context of
ferroptosis is dubious (34). Assuming that the 15LOX/PEBP1
complex is the generator of pro-ferroptotic HpETE-PE signals (36,
188), assessments of small molecule radical scavengers have to be
performed in this system. A recent study conducted with Fer-1,
known to act as good radical scavenger, demonstrated that the
EC50 value for Fer-1 in inhibiting the HpETE-PE production by
the 15LOX/PEBP1 complex is considerably lower than its effective
cytoprotective concentration in cells triggered to undergo
ferroptosis (98). Moreover, the Fer-1-driven ferroptosis
suppression was mainly realized through its enzymatic
inhibitory capacity (98). It should be noted that the radical
trapping reagents could have off-target effects that may decrease
the (phospho)lipid peroxide load of the cellular system. These
effects may be helpful to mitigate diseases involving multimodal
mechanisms of cell death as exemplified by traumatic brain injury
and inflammatory disease triggered by total body gamma-
irradiation (36, 46, 189). At the same time, highly specific
inhibitors could be beneficial for diseases in which ferroptosis is
the predominant pathogenic mechanism.
CONCLUDING REMARKS

PLs are the major building blocks of the membrane bilayer and
their structural role is indispensable and fundamental to
compartmentalization and interfacing of thousands of processes
in cells and their organelles. In this capacity, macroscopic
characteristics of the PL assembles such as fluidity, flexibility,
lateral and trans-membrane diffusion are essential for the function
of membranes as interactive barriers. Interconnected with this is
the signaling by membrane phospholipids that is associated with
their post-synthetic modifications. Most commonly this occurs via
oxidative transformations of polyunsaturated PL resulting in the
production of a huge variety of new molecular species of lipids,
integrated into a new concept of the epilipidome. The epilipidome
includes not only oxidatively modified lipids but also a huge
variety of their adducts with proteins thus merging with the epi-
proteome, post-translationally modified proteins. Signaling by
individual lipids and lipoprotein adducts comprising the
epilipidome/epiproteome is broadly employed in almost each of
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the myriads of life-defining activities of cells and cell communities.
This type of signaling is also essential for coordination of regulated
cell death programs. Although these programs may be viewed as
suicidal, their strict control and harmonized execution defines the
borderline between health and disease. Therefore, deciphering the
signaling phospholipid language of these programs is one of
the central areas of research not only in cell biology but also in
many fields of biomedicine.

While lipid peroxidation has been attributed to essentially all
known death programs, its specific mechanisms and role have
been clearly defined for only two of them—apoptosis and
ferroptosis. Formation of free radical intermediates in the
course of LPO occurs both during regulated enzymatic and
random non-enzymatic processes. As a result of this, a broad
spectrum of agents of different classes with high hydrogen/
electron-donating capacities, particularly phenolic compounds
and aromatic amines, may be effective in blocking the LPO
component of death programs. This has created an optimistic
view that many of these compounds may lead to “anti-suicidal”
cell-based therapies. The indiscriminative nature of this strategy
—likely affecting multiple vital biochemical reactions proceeding
via free radical intermediates—may be associated with low
effectiveness and serious side effects. Free radical scavengers/
sacrificial antioxidants/chain-breaking antioxidants—have been
designed and developed and ultimately tested in numerous
clinical trials in more than three dozens of diseases.
Disappointingly, the results of these were uniformly negative.
This strategic mistake in searches for a “magic antioxidant
bullet” should be avoided in the design of new anti-apoptotic
and anti-ferroptotic therapeutic agents—the lesson has to be
learnt. Future generations of small molecule regulators of
regulated cell death program therapies must consider their
selective and specific mechanisms, hence, to be precise and
highly discriminative. In line with this, distinctive inhibitors/
regulators have to be developed for controlling individual cell
death programs—as has been discussed above.
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