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Abstract
Conformational diversity of the native state plays a central role in modulating protein func-

tion. The selection paradigm sustains that different ligands shift the conformational equilib-

rium through their binding to highest-affinity conformers. Intramolecular vibrational

dynamics associated to each conformation should guarantee conformational transitions,

which due to its importance, could possibly be associated with evolutionary conserved

traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide

the required information to explore these features. Herein, we present a novel procedure to

identify key positions sustaining the conformational diversity associated to ligand binding.

The method is applied to an adequate refined dataset of 188 paired protein structures in

their bound and unbound forms. Firstly, normal modes most involved in the conformational

change are selected according to their corresponding overlap with structural distortions

introduced by ligand binding. The subspace defined by these modes is used to analyze the

effect of simulated point mutations on preserving the conformational diversity of the protein.

We find a negative correlation between the effects of mutations on these normal mode sub-

spaces associated to ligand-binding and position-specific evolutionary conservations

obtained from multiple sequence-structure alignments. Positions whose mutations are

found to alter the most these subspaces are defined as key positions, that is, dynamically

important residues that mediate the ligand-binding conformational change. These positions

are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regu-

lar structural regions of the protein like β-sheets and α-helix.

Author Summary

Conformational diversity of proteins can be associated to different aspects related to bio-
logical function. In particular, ligand binding can be analyzed in terms of the so-called
ligand-free and ligand-bound conformations of a protein. These conformations co-exist as
local minima within the energy landscape of proteins. The conformational change between
them is achieved by their intramolecular vibrational dynamics. Therefore, it is expected
that vibrational motions involved in the unbound-to-bound conformational change are
evolutionary preserved. Herein, we present a novel procedure to identify key positions
whose mutations have a significant effect on these particular vibrational motions. These
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key positions represent dynamically important sites that mediate the ligand-binding con-
formational change. They are shown to be evolutionary conserved, mostly buried aliphatic
residues localized in regular structural regions of the protein like β-sheets and α-helix.
These results contribute to improve our understanding on structure-function relationship
as well as functional diversification during evolution.

Introduction
Critical sites for protein function can be identified by sequence and structural alignment meth-
ods[1–2]. According to the neutral theory of molecular evolution[3], residues more relevant
for function vary more slowly than less important ones. Nevertheless, these methods do not
provide a complete information concerning the nature of the sequence-structure-function rela-
tionship and additional information related to proteins dynamics is required[4–12].

According to the generalized conformational selection model, the native state of proteins is
represented by an ensemble of conformers in dynamics equilibrium[13–14]. In this model,
ligands interacting with the proteins select the best conformer in terms of affinity, shifting the
conformational equilibrium. Proteins are inherently dynamic entities and exist not as single
structures, but as non-uniform distributions of multiple conformer populations. The protein
dynamism plays an intricate role in defining the structure, function and evolution of individual
proteins[15]. Therefore, the identification of special protein regions governing conformational
changes results a major challenge.

Conformational diversity of proteins has been associated to different aspects related to bio-
logical function. Enzyme catalysis[16], signal transduction[17], protein recognition specificity
[18], promiscuity[19], allosterism[20,21], origin of new protein functional adaptation and evo-
lution[15,22,23] can be counted among others. In particular, ligand binding can be analyzed in
terms of structural changes between the so-called ligand-free and ligand-bound conformations
of a protein[24,25]. These conformers are characterized by their relative ligand affinities and
their existences are extensively supported by a large variety of experimental evidence obtained
from X-ray and cryo-electron microscope images, kinetic studies, single molecule fluorescence
and NMR[26–29].

The need for considering different conformations in order to explain biological function
could be generalized to most proteins. Computational tools for molecular docking[30], pro-
tein-protein interaction prediction[31], evaluation of protein structural models[32], prediction
of observed substitution patterns of sequence divergence during evolution[33], and coevolu-
tionary measurements between residues[22] are among the bioinformatic applications that
address conformational diversity in order to improve their performance. More recently, a data-
base of conformational diversity in the native state of proteins (CoDNaS)[34] with redundant
collections of three-dimensional structures for the same proteins has been developed.

Ligand-free and ligand-bound conformations co-exist as local minima within the energy
landscape of proteins[14]. The conformational change between them should be achieved by
their intramolecular vibrational dynamics. The energy barriers that separate these conformers
are commonly overcome by thermal fluctuations. The flexibility of the protein modulates the
height of these barriers and the extent of the ensemble of conformations. Therefore, at least at
the very beginning of the unbound-to-bound conformational change, the directions of their
relative structural distortions should be dictated by dynamic fluctuations around the ligand-
free conformation[35].
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Normal mode analysis (NMA), based on a coarse-grained model of the protein, can provide
the required information to explore the intrinsic dynamics within a folded protein[36–40]. The
complex motions and fluctuations of proteins are decoupled into a linear combination of inde-
pendent harmonic oscillators, i.e., the normal modes, each of them involving the concerted
motions of many atoms. In that way, large-scale domain movements, involved in connecting
the different conformational states related to function, can be identified[41–45]. A number of
studies applied on vastly different enzymes show that conformational transitions are domi-
nated by only a few low-frequency normal modes[35,46,47]. The effect of mutations on these
collective and functionally relevant modes has been previously studied from different points of
view. On one hand, the robustness of these modes to sequence variations has been reported
[48–52]. Furthermore, normal mode conservation has been shown to increase linearly with col-
lectivity, so that the slowest most collective modes are the most conserved ones[52]. Since these
modes contribute the most in determining the overall flexibility B-factor profiles, the observed
conservation of backbone flexibility can be explained [53,54]. On the other hand, the molecular
understanding of the biological function requires identification of the network of residues that
take part in function-related dynamics like substrate binding and product release, allosteric
regulations, and folding. For example, residues that are dynamically important to ligand-bind-
ing have shown to be evolutionarily conserved[55]. By using the Structural Perturbation
Method (SPM)[50,55,56], which proves the residue-specific response to perturbations, Zheng
et al. were able to associate ligand-binding conformational changes to networks of functionally
important residues[57].

The fact that normal modes provide a decoupled harmonic description of protein vibrations
is fundamental to identify the individual equilibrium vibrational motions that participate of
ligand-binding. Nevertheless, the identity of normal modes should be tracked after small pertur-
bations and this is not a simple task since they can introduce rearrangements in their frequency
ordering[51,58]. Besides, the complexity of the potential energy function of a protein may cause
them to vary substantially and, eventually, to mix them strongly. In order to minimize these
effects, in the present work we deal not with individual normal modes but with normal mode
subspaces associated to ligand-binding. We present a procedure to define and compare normal
mode subspaces associated to ligand-binding. Our definition of key positions, i.e. those that are
dynamically important to ligand-binding, is based on the effect of mutations on these subspaces.

Results and Discussion

A. Identification of key positions in conformational transitions
A number of previous studies have shown that ligand-associated conformational changes are
dominated by only a few low-frequency normal modes[35,50,59,60,61]. Herein, the number of
normal modes that span the subspace S associated to the conformational change is given by the
value of the participation number Pq (see Methods). Fig 1(a) displays the distribution of the
fraction of normal modes involved in the conformational change calculated as values Pq/3N
obtained over all pairs of structures in our dataset. Its average value is 0.15 ± 0.09, confirming
the significant reduction of the corresponding original vibrational spaces. However, this is not
always the case[46] as it is indicated by the tail at large values in our distribution, reaching the
largest value of 0.59.

The composition of subspaces S is displayed in Fig 1(b) as the distribution of degree of col-
lectivity, κk, defined as[35]

kk ¼
1

N
expð�SN

i¼1ðqri;kÞ2lnðqri;kÞ2Þ ð1Þ
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being ðqri;kÞ2 ¼ ðqxi;kÞ2 þ ðqyi;kÞ2 þ ðqzi;kÞ2, and ðqji;kÞ2 (j = x, y, z) are the components of the ith Cα

residue in the k normal mode. Values of κk = N−1 corresponds to normal modes equally distrib-
uted throughout all the residues of the protein, and κk = 1 corresponds to normal modes
involving the displacement of a single residue. In general, normal modes involved in the con-
formational change represent more collective vibrational motions than the rest of modes. The
maximum of the distribution at 0.5 indicates that, on average, half of the residues participate in
the concerted displacements described by each of these modes.

We have also explored the dependence of subspace S associated to ligand-binding with the
global RMSD between conformers and protein size. In order to do that, we have considered
both number and average degree of collectivity of modes that belong to subspace S. We have

Fig 1. (a) Distribution of the fraction of normal modes involved in the conformational change calculated as
values Pq/3N (red), and the fraction of normal modes that participate significantly in the flexibility pattern
calculated as PB/3N (green) obtained over all pairs of structures in our dataset. (b) Distribution of degree of
collectivity, κk, for each normal mode that participates in the conformational change (red), and each normal
mode that significantly participates in the flexibility (B-factor) profile(green), and for all other modes (blue).

doi:10.1371/journal.pcbi.1004775.g001
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obtained negligible Spearman correlation coefficients of 0.03(p-value = 0.007) and -0.14 (p-
value<2.2x10-18) for correlations of the collectivity of modes with global RMSD and protein
size respectively. Furthermore, also a negligible correlation of 0.09(p-value = 0.23) has been
obtained between participation number Pq and RMSD. Only a significant correlation of 0.49
(p-value = 7.3x10-13) is obtained between Pq and protein size.

In order to differentiate normal modes involved in the conformational change from those
that participate significantly in the flexibility pattern of each protein, vectors Blf with elements

Blf
i corresponding to the B-factors associated to each ith residue have been expanded on the

basis of ligand-free normal modes

Blf ¼ S3N�6
k¼1 ðBlf � qkÞqk ¼ S3N�6

k¼1 ðS3N
j¼1ðBlf

j qjkÞÞqk ¼ S3N�6
k¼1 bkqk ð2Þ

with

bk ¼ S3N
j¼1ðBlf

j qjkÞ ð3Þ

In that way, the mode participation number PB is defined as

PB ¼ ðS3N�6
k¼1 ðbkÞ4Þ�1 ð4Þ

with an equivalent interpretation as Pq described in Methods Section C. The first PB modes
ordered by index fk in decreasing values of (bk)

2 define the minimum subspace SB of modes
fqfi

g
i¼1;PB

required to achieve a good description of the flexibility pattern. That is, SB retains

normal modes most involved in the B-factors of the ligand-free conformation.
Fig 1(a) shows the comparison between distributions of Pq/3N and PB/3N values obtained

over all pairs of structures in our dataset. As it is shown, larger subspaces of normal modes are
required to achieve a good description of flexibility patterns than the ones associated to ligand-
binding. Besides, Fig 1(b) shows the distribution of degree of collectivity for modes that belong
to the subspace SB. The comparison with normal modes that participate in the conformational
change indicates that modes involved in the flexibility pattern are only slightly less collective
than those that participate in the flexibility patterns. This result is in good agreement with pre-
vious studies that shown that conformational changes are commonly associated to low-fre-
quency normal modes[35,46]. Despite that, the participation of more localized normal modes
during the conformational change is far from been negligible [46].

As we mentioned before, conformational diversity of the native state plays a central role in
modulating protein function. The co-existence of conformers with different ligand-affinities in
a dynamical equilibrium is the basis for the conformational selection model for ligand binding.
Internal protein motions associated to ligand-free conformation should guarantee unbound-
to-bound conformational changes. Therefore, the effect of mutations on the subspace of nor-
mal modes S associated to ligand-binding should correlates with the evolutionary conservation
of the corresponding sites. To investigate this, Fig 2 displays the relationship between effect of

mutations on vibrations involved in ligand-binding (ZSi

score), and evolutionary conservation
(Zevol;i

score ). According to the larger collectivity reported for the normal modes that belong to the S

subspace (see Fig 1(b)), and following previous studies of Zheng et al.[55], we average ZSi

score and
Zevol;i
score over the neighbors of the ith residue within a radius of 7 Å. That is, we analyze spatial

regions rather than individual residues. Furthermore, considering that mutations can lead to
either stronger or weaker interactions between the ith residue and its spatial neighbors, our
results correspond to the average obtained using a perturbation δγ±0.05. Our results do not sig-
nificant change while using δγ within the range [±0.01: ±0.1]. In that way, we obtain a Spear-
man correlation coefficient ρ of -0.36 with a p-value 2.2x10-16. That is the stronger the impact
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that site-specific mutations have on the subspace of vibrations connected to ligand-binding,
the more site-specific evolutionary conservation.

In order to analyze effects of protein size and global RMSD between conformers, we have

analyzed the correlation between ZSi

score and Z
evol;i
score for subsets of our protein dataset decomposed

by pairs with (a) RMSD< RMSDmax; (b) RMSD> RMSDmax; (c) size< sizemax; (d)
size> sizemax, being RMSDmax = 2.0Å and sizemax = 80 the maximum of the distribution of the
RMSD and size values obtained over all pairs of the final selected dataset. We obtained Spear-
man correlation coefficients of -0.32, -0.35, -0.30 and -0.34 for (a)-(d) subsets respectively. In
all cases, a p-value<2.2x10-16 was obtained. Despite that our findings do not are not strongly
influenced by neither the protein size nor the global RMSD between conformers, a slightly
dependence is observed. That is, better correlations are observed for bigger proteins presenting
larger structural distortions(RMSD) introduced by ligand binding.

Our findings allow us to identify key positions for the evolutionary conservation of the pro-
tein conformational diversity required for ligand binding. That is, positions whose mutations
are found to alter the most the subspaces S containing the ligand-free normal modes involved
in the unbound-to-bound conformational transition. For each pair of ligand-free and ligand-
bound structures in our data set, we select the key positions as those ranked with the lowest 5%

values of ZSi

score. Other choices for this cut off value between 1% and 10% do not qualitatively
modify our results.

In Fig 3, we analyze the evolutionary conservation of these key residues relative to the rest of
residues. The distribution of the values of Zevol;i

score is significantly displaced toward larger values,
indicating that key residues are evolutionary conserved. The difference between both distribu-
tions is statistically validated by the Kolmogorov-Smirnov statistic value of 0.31 with a p-
value = 2.2x10-16.

At this point it is important to stress that the aim of the present work is not to fully explain
the evolutionary conservation of position residues through their relevance on the protein con-
formational diversity. Previous works found that sequence evolutionary conservation results
from multiple factors such as structural, dynamics, and/or functional features [62,63,64,65].
Our results displayed in Figs 2 and 3 emphasize that conformational diversity of the native
state is just one of the many aspects that modulate protein function and, therefore, dynamically
important residues or spatial regions associated to conformational diversity are more evolu-
tionary constrained than other residues. Despite the existence of multiple sources of

Fig 2. Effect of mutations on vibrations involved in ligand-binding (ZSi

score) vs. evolutionary
conservation (Zevol;i

score). Linear regression line is included and linear correlation coefficient is shown in the top
right corner.

doi:10.1371/journal.pcbi.1004775.g002
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evolutionary conservation, it is noteworthy how the role on the conformational diversity of
each residue position correlates with their evolutionary divergence. The p-values obtained in
the analysis of Figs 2 and 3 quantify the statistical significance of our results, indicating that the
observed data are inconsistent with the assumption that the null hypothesis is true.

B. Characterization of detected key positions
In what follows, we conduct different surveys to characterize the residues associated with key
positions. Firstly, we analyze the incidence of the different amino acid types, defined as

I/ ¼ nkeya

na
ð5Þ

where nkeya is the frequency of the amino acid type α as a key position residue, and vα the corre-
sponding frequency in the rest of the residues. A value of I/> 1 indicates a higher frequency
for the amino acid type α as a key position residue relative to its observed frequency in the pro-
tein dataset. Table 1 displays these values. Nonpolar amino acids Val, Ile, Leu, Met, Trp, and
Phe are among the most frequently observed residues in the key positions detected, except Cys

Fig 3. Distributions of the conservation measure Zevol;i
score obtained for the selected key position residues (red), and all other residues (blue). The lower

and upper "hinges" of the box correspond to the first and third quartile, and the black band inside the box is the median (Second quartile). The violin plot
under the box plot shows the distribution of a given variable.

doi:10.1371/journal.pcbi.1004775.g003
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that presents the largest value of I/mainly due to its capacity for disulfide bond formation.
This is in agreement with the comparison of the distribution of the Relative accessible Surface
Area (RSA), calculated using the NACCESS program[66], for key position residues respect to
the rest of residues in the protein (see Fig 4). Key positions are, in general, buried in the interior
of the protein structure.

At this point it is interesting to analyze the correlation among ZSi

score, Z
evol;i
score , RSA and the

number of inter-residue contacts for each residue of the dataset calculated using RING[67]. On

one hand, the Pearson correlation coefficient between ZSi

score and RSA results in a value of 0.48,

while the corresponding value between ZSi

score and the number of contacts per residue is -0.46.
On the other hand, we obtain correlations of -0.27 between Zevol;i

score and RSA, and 0.23 between
Zevol;i
score and the number of contacts per residue. That is, while either RSA and the number of con-

tacts per residue strongly correlate with ZSi

score, both weakly correlate with Zevol;i
score . Considering

our previous reported correlation of -0.36 between ZSi

score and Z
evol;i
score , we conclude that this value

cannot be accounted by a simply evaluation of the RSA and number of contacts per residue.

Besides, we also explore the relationship between either ZSi

score and Z
evol;i
score , and the RMSDi per res-

idue upon ligand binding. A strong correlation of 0.4 between ZSi

score and the RMSDi indicates
that mutations on positions with little movement between the ligand-free and ligand-bound
conformations will probably have a strong impact on vibrations associated to the conforma-
tional change. Nevertheless, a very weak correlation of -0.16 is obtained between Zevol;i

score and
RMSDi. That is, not all residues that barely move during the conformational change will be
evolutionary conserved.

BioLip dababase[68] has been used to obtained information concerning the active site of
each protein in the dataset. Thus, the relative distances of key position to the center of mass of
protein active site have been calculated. Fig 5 shows the distribution of these distances for both
type of residues, that is, key position and the rest of residues in the protein. We observed that,
in general, key position residues are closer to the active site without being part of it. Only
*10% of the key position residues correspond to active site residues. The Pearson correlation

coefficient between values of ZSi

score and the distance to the center of mass of active sites is 0.39
with a p-value of 2.2x10-16. Previous studies have shown that active site residues are frequently
related to residues that trigger conformational changes associated to ligand-binding
[57,69,70,71]. Unbound-to-bound conformational transitions should introduce conforma-
tional changes in the active site leading to significant changes in the affinity for the ligand.
Despite that, active-site residues only comprise a small fraction of the predicted key residues.
This is in good agreement with previous results obtained by Zheng et al. [57]. Therefore, most

Table 1. Incidence of residues on key positions.

CYS 2.412 TYR 0.856

TRP 1.626 GLY 0.837

VAL 1.625 GLN 0.807

ILE 1.577 HIS 0.803

PHE 1.569 SER 0.792

LEU 1.432 ASP 0.706

MET 1.197 GLU 0.685

ASN 0.932 LYS 0.669

ALA 0.889 ARG 0.527

THR 0.883 PRO 0.438

doi:10.1371/journal.pcbi.1004775.t001
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of the evolutionary conserved key position residues are not directly associated to the enzyme
catalysis.

Next, we analyze the association of key positions to the different secondary structure ele-
ments (SSE). For this purpouse, we use DSSP[72] (Dictionary of Protein Secondary Structure)
that recognizes seven types of ordered local structure: H(α-helix), B(residue in isolated β-
bridge), E(extended strand), G(310 helix), I(π-helix), T(hydrogen bonded turn), S(bend), and N
(unclassified). Table 2 shows the values of the incidence of key positions on the different SSEs,
defined as

ISSE� X ¼ nkeySSE�X

nSSE�X

ð6Þ

where nkeySSE�X is the frequency of key positions on the SSE-X, with X = H, B, E, G, I, T, or S, and
vSSE−x the corresponding frequency in the rest of the residues. A Value of ISSE−x> 1 indicates a
higher frequency for key positions to belong to that SSE relative to the observed frequency in
the protein dataset. We observe that key positions are more frequently localized on extended
strands (E), and also α-helices (H).

Our measure of the structural distortions introduced by ligand-binding is given by the vec-
tor difference v whose elements are weighted by the corresponding B-factors as described in

Fig 4. Relative accessible Surface Area (RSA) for key positions residues (red) and the rest of the positions in the protein (blue).

doi:10.1371/journal.pcbi.1004775.g004
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Methods. A scaling factor w = 0.01 is chosen as the value that maximize the correlation coeffi-

cient between ZSi

score and Z
evol;i
score . In this way, we avoid that our results can be skewed by any struc-

tural distortion not directly related to ligand binding. Loops and other flexible regions are
inherently ruled out while domains and hinge regions are highlighted. Therefore, two kind of
residues with low B-factors are particularly highlighted. On one hand, residues presenting large
contributions to the conformational change will be stand out. These residues experience large
structural distortions upon ligand-binding without presenting significant flexibility or

Fig 5. Distribution of the distances of key positions (red) and the rest of residues (blue) to the center of mass of protein active site.

doi:10.1371/journal.pcbi.1004775.g005

Table 2. Incidence of different residues on key positions related with SSEs.

E 2.087

H 1.146

B 1.019

G 0.608

N 0.547

S 0.355

T 0.349

I 0.000

doi:10.1371/journal.pcbi.1004775.t002
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uncertainties in their coordinates in the original conformational ensemble of the ligand-free
native state of the protein. They are dragged by the large-scale domain movements that are
triggered when the equilibrium populations of the conformational ensemble shift towards the
ligand-bound state. On the other hand, residues that barely move between the ligand-free and
ligand-bound conformations will be also stand out. These residues are localized in well-defined
hinge regions without connecting secondary structure elements(SSE) or domains in a sequen-
tial manner, like loops, but rather participating as pivots through inter-SSE or inter-domain
contacts. We expect that mutations introduced in these latter kind of residues should strongly
affect the vibrational motions involved in the unbound-to-bound conformational changes. In
order to confirm that we analyze the incidence of inter-SSE contacts defined as

ISSE� X ¼ nkeyinter�SSE�X�Y

ninter�SSE�X�Y

ð7Þ

where nkeyinter�SSE�X�Y is the frequency of key positions participating in inter-SSE contacts between
X and Y among those localized on X, being X = E, and H, and Y = E,B, H, G, S,T, N, and I, and
vinter−SSE−X−Y the corresponding frequency in the rest of the residues. Table 3 displays these val-
ues. We observe a large incidence of inter-SSE contacts in key positions, confirming our
hypothesis that these residues participate of inter-SSE contacts between well-structured strands
and helices.

Our present analysis does not depend on neither protein sequence information nor on the
analysis of evolutionary conservation and structural-mapping of phylogenetic information as
evolutionary trace methods. We do not attempt to compete with previous methods developed
for the prediction of ligand-binding sites[73,74]. The functionality of our key position residues
is not necessarily related to direct protein-ligand interactions or catalytic activity but the con-
formational diversity associated to ligand-binding. Therefore, it is not expected that all muta-
tions presenting effects on either the affinity for substrate and catalytic activity can be
associated to our definition of key position residues that involves residues associated to a very
particular aspect of the protein functionality, that is, vibrations associated to structural distor-
tions introduced by ligand-binding. In order to analyze that, we have compared our results
with experimental data from information provided by UniProt database [75]. UniProt provides
a complete overview of the information available about proteins including information related
to function, catalytic activity, and mutations with reported effects on either the affinity for sub-
strate and catalytic activity. Uniprot contains information about 185 mutations for 43 proteins
of our dataset. Only 13 of these mutations in 11 proteins correspond to key position residues.
This result is something expected since, as we have previously reported, only*10% of the key
position residues correspond to active site residues. That is, our predicted key residues do not
match with catalytic residues. Considering that our procedure allows the identification of key

Table 3. Incidence of different residues in key positions participating in inter-SSE contacts.

E-H 2.83096 H-B 2.70408

E-N 1.92404 H-E 2.19460

E-E 1.89671 H-H 1.62143

E-B 1.88451 H-S 0.86975

E-S 1.71122 H-T 0.83943

E-G 1.56960 H-G 0.81984

E-T 1.03616 H-N 0.76340

E-I 0.00000 H-I 0.00000

doi:10.1371/journal.pcbi.1004775.t003
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spatial regions rather than individual residues, we have extended our analysis in order to
include residues that are in direct contact with key position residues according to RING[67]. In
that way, we found that 98 of the Uniprot reported mutations are in agree with our findings.
That is 53% of mutations with any kind of experimental evidence related to ligand-affinity and
enzyme catalysis match, or are in close contact with, key position residues that sustain the con-
formational diversity associated to ligand binding.

In order to further analyze the role of key positions as pivots between SSEs we used a similar
approach to that previously used to investigate domain movements between ligand-free and
ligand-bound conformers[76]. Considering a key residue belonging to a SSE X and performing
an inter-SSE contact with a SSE Y, we calculate the difference between angles formed by the
corresponding inertial axis of individual X and Y in ligand-free and ligand-bound structures.
We choose the largest difference among them as a quantitative measure of differences of SSE
relative orientation. More details can be found elsewhere[76,77]. Our results, shown in Fig 6,
indicates that SSEs that are connected through a key position present larger angular move-
ments compare to those in which no key position participates in the inter-SSE contact.

It is interesting to note that Fig 6 relates key position residues with observed structural dis-
tortions introduced by ligand binding. Differences in the angular motions are directly obtained
from the PDB coordinates of the ligand-free and ligand-bound structures. Therefore, the use of
a simplified coarse-grained potential, based on a description of the protein as an elastic net-
work of α-carbons, do not bias these relative displacements between SSEs.

In order to clarify the role that inter-SSE contacts mediated by key position residues have on
the conformational transition upon ligand binding, Fig 7 shows the case of the Escherichia coli
acyl carrier protein (ACP) as an example of a key position participating of an H-H inter-SSE con-
tact. This ACP is a 77 amino acid protein involved in fatty acid synthesis (PDB codes 1ACP and
2FAE for ligand-free and ligand bound structures, respectively [78, 79]). Fig 7 shows key position
residue I69 localized in H4 α-helix (Q66-H75). Residue I69 interacts with V7 belonged to H1 α-
helix (E4-Q14). The arrows indicate the directions in which residues move during the conforma-
tional transition upon ligand binding. The angle Δθ indicates the change in the relative orienta-
tion between H1 and H4, with I69 participating as pivot through inter-SSE contact with V7.

C. Examples
To provide a view of our findings, a coupled of selected cases are discussed. The first example is
the human protein histidine phosphatase 1 (human PHPT1) (PDBid: 2AI6 and 2OZWf for
ligand-free and ligand bound structures, respectively [80]. This 125 amino acid enzyme plays
important roles in signal transduction and other cellular functions. Fig 8 displays PHPT1 struc-
ture in its apo form. The active site is located between helix α1 and loop L5.

Seven evolutionary conserved key position residues have been identified as dynamically
important sites that mediate the ligand-binding conformational change: Y22, R45, G77, R78,
I79, S80, V90. According to information provided by UniProt database [75], mutations on
K21, R45, H53, R78, S94, and H102 have effects on either the affinity for substrate and catalytic
activity. In Fig 8 key position residues and residues identified by UniProt are indicated. As can
be seen, most of key position residues correspond to, or are in contact with, residues whose
mutations are experimentally confirmed to alter the affinity for substrate and catalytic activity.

A second example that illustrates our findings corresponds to the calcium- and integrin-
binding protein 1 (CIB1) (PDBid: 1DGU and 1Y1A for ligand-free and ligand bound struc-
tures, respectively [81,82]. This enzyme has 183 residues. CIB1 binds to the 20-residue αIIb
cytoplasmatic domain of platelet αIIbβ3 integrin. It acts as a global signaling regulator on a wide
variety of proteins in cells in addition to platelets. Fig 9 shows CIB1 structure in its apo form.
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Ten evolutionary conserved key position residues have been selected: H101, Y102, A103,
F104, F107, L115, I160, N161, L162, F165. As it has been previously pointed out, our procedure
allows the identification of spatial regions H101-F107 and I160-F165 rather than individual
residues. Positions that present experimental evidence of mutations that impact on ligand-

Fig 6. Distribution of the largest difference among the angles formed by the corresponding inertial
axis of individual SSEs connected through a key position (red), and through other residues (blue).

doi:10.1371/journal.pcbi.1004775.g006

Fig 7. Change in the relative orientation between two α-helices in Escherichia coli acyl carrier protein
(ACP). Ligand free (PDBid: 1ACP, chain A) and ligand-bound (PDBid: 2FAE, chain B) are depicted in green
and gray respectively. The key position residue I69(red) participates of an H-H inter-SSE contact with V7
(blue). The arrows indicate the directions in which residues move during the conformational transition upon
ligand binding. Δθ = θ—θ’, being θ and θ’ the angles between H4 α-helix (Q66-H75) and H1 α-helix (E4-Q14)
in ligand free and ligand-bound structures respectively.

doi:10.1371/journal.pcbi.1004775.g007
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binding and catalytic activity are: S78, I106-F109, D119, L123, L144, I145, T159, E164, and
F165. All these residues are indicated in Fig 9 It is important to stress that effects on the affinity
for substrate and catalytic activity are not necessarily associated to effects on the conforma-
tional diversity of the protein. Our key position residues are associated to a very particular
aspect of the protein functionality, that is, vibrations associated to structural distortions intro-
duced by ligand-binding. Despite that, both key spatial regions H101-F107 and I160-F165 are
validated by experimental evidence.

Finally, the effect of mutations on key position residues has been analyzed using the recently
developed Elastic Network Contact Model (ENCoM) [83] that employs a potential energy
function that includes a pairwise atom-type non-bonded interaction term. In both cases,
human PHPT1 and CIB1, the predicted variations in free energy variations (ΔΔG), evaluated
with ENCoM and FoldX [84] indicate that mutations on key position residues correspond to
destabilizing mutations, that is, mutations that affect stability due to a decrease in the entropy
of the folded state. The average ΔΔG considering all possible mutations on each key position
residues were 2.0 kcal/mol and 1.3 kcal/mol for human PHPT1 and CIB1 respectively. Select-
ing the most destabilizing mutations ΔΔGmax on each key position residues, we obtained an
average of 4.8 kcal/mol and 3.6 kcal/mol for human PHPT1 and CIB1 respectively. That is, in
both cases, key position residues involve residues whose mutations can drastically affect the
protein structure.

Fig 8. Ligand-free structure of PHPT1. Residues are colored as follows: Key position residues (pink),
residues identified by UniProt[75] whose mutations affect the affinity for substrate and catalytic activity (blue),
and key position residues identified also by Uniprot (red).

doi:10.1371/journal.pcbi.1004775.g008
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Methods

A. Protein’s dataset
We obtained pairs of conformers in their bound and unbound form from the database of Con-
formational Diversity in the Native State of proteins (CoDNaS)[34]. This database is a collec-
tion of redundant structures for the same protein, obtained from different experimental
protocols. CoDNas is linked with physicochemical and biological information allowing to
explore how different parameters modulate protein conformational diversity. The maximum
C-alpha root-mean-square-deviation (RMSD) value is considered as a measure of the confor-
mational diversity extension. In the present work, we have retrieved pairs of structures of the
same protein whose unique difference in the structure estimation is the presence or absence of
ligand. Each pair of ligand-free and ligand-bound structures corresponds to the pair with maxi-
mum structural difference among all possible pairs according to their C-alpha RMSD.

We applied several filters in the original dataset in order to obtain a well curated dataset: (i)
crystal structures with resolution< 4 Å, (ii) structures without missing residues in the pdb
files, (iii) crystal structures with optimal Spearman rank correlation coefficient between experi-
mental and theoretical B-factors> 0.4 Å, (iv) proteins whose coverage in the multiple align-
ment obtained using HSSP[85] database of protein structure-sequence alignment is� 80%, (v)
proteins with more than 100 homologous in the HSSP alignment. Therefore, finally we
obtained a total of 188 pairs of ligand-free and ligand bound protein structures. Fig 10 displays
the distribution of the RMSD values obtained over all pairs of the final selected dataset. The list
of the pairs with their corresponding PDB code is provided in S1 Table.

Fig 9. Ligand-free structure of CIB1.Residues are colored as follows: Key position residues (pink), residues identified by UniProt[75] whose mutations
affect the affinity for substrate and catalytic activity (blue), and key position residues identified also by Uniprot (red).

doi:10.1371/journal.pcbi.1004775.g009
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B. Elastic Network Models background
The Elastic Network Models (ENM) describe the protein as an elastic network of α-carbons
linked by springs within a cutoff distance rc. Here in, the value of rc is varied from 7Å to 20Å in
order to optimize the correlation between theoretical and experimental B-factors.

The locations of the α-carbons in the crystallographic structure are considered as the equi-
librium positions, about which the atoms fluctuate. The interaction between residues are
described by the simplified coarse-grained potential[36, 59,86]

Eðri; rjÞ ¼
1

2
kijðjrijj � jr0ijjÞ2 ð8Þ

with rij� ri−rj being the vector connecting atom i and j, and the zero superscript indicates the
equilibrium position. In order to take account of the chemical interactions, the value of the
force constant kij is determined according to the following rules[87]:

if |i−j| = 1) kij = γ
else
if jr0ijj � rc then

if i and j are connected by disulphide bridge) kij = γ
if i and j interact by hydrogen bond or salt bridge) kij = γ x 0.1
otherwise) kij = γ x 0.01

if jr0ijj � rc ) kij = 0

being γ a scaling constant to match the theoretical result to experimental data. We use CSU
program[88] to obtain the connectivity information related to hydrogen bonds, salt bridges,
and disulphide bridges.

The potential energy of a protein with N residues can be expressed as a NxNmatrix E with
elements E(ri,rj). Normal modes are obtained by diagonalizing the second-order partial

Fig 10. Distribution of the RMSD values over all pairs of ligand-free and ligand-bound conformations.

doi:10.1371/journal.pcbi.1004775.g010
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derivatives or Hessian matrixH of E as

L ¼ qTHq ð9Þ
where q is an orthogonal NxNmatrix whose columns qk are the eigenvectors ofH, that is, the
normal modes, and Λ is the diagonal matrix of eigenvalues λk ofH. The temperature factor or

B-factor Bi of atom i is proportional to the mean square displacement hDr2i i ¼ hðri � r0i Þ2i
from its equilibrium position[89]

Bi ¼
8p2

3
hDr2i i ð10Þ

and it can be expressed as the sum of contributions from the 3N-6 internal modes of motion
{qk}k = 1,3N−6 as[90]

hDr2i i ¼ 3kBTS
3N�6
k¼1 ½l�1

k qkq
T
k �ii ð11Þ

where kB is the Boltzmann constant, T is the absolute temperature.

C. Normal mode subspaces associated to ligand-binding
Normal modes most involved in the conformational change are selected according to their cor-
responding overlap with structural distortions introduced by ligand binding. In this section, we
describe the procedure we follow in order to define the subspace composed by these modes.

Firstly, the pair of ligand-free and ligand-bound structures is superimposed minimizing the
RMSD. The normalized difference vector v between these reoriented structures retains the
direction of the observed structural change upon ligand binding. Nevertheless, many proteins
contain unstructured or flexible regions such as loops whose coordinates are not well experi-
mentally resolved. Actually, amino and carboxyl ends of proteins are particularly flexible, but
this flexibility is not associated with biological causes. In order to reduce the possibility that our
results can be skewed by any structural distortion not directly related to ligand binding, we use
a Gaussian-weighing factor[91] in the construction of v whose elements are defined as

vi ¼
ðyi � xiÞe�

ðBlf
i
þBlb

i
Þ

w

X3N

j
ðyi � xiÞe�

ðBlf
i
þBlb

i
Þ

w

� �2 ð12Þ

where the ligand-free and ligand-bound conformations are represented by Cα coordinate sets
{xi} and {yi} respectively, N is the total number of residues of the protein, Blf

i and B
lb
i are theoret-

ical B-factors in the ligand-free and ligand-bound conformations respectively, and w is an arbi-
trary scaling factor.

Next, the normalized difference vector v is expanded on the basis of ligand-free normal
modes

v ¼ S3N�6
k¼1 ðv � qkÞqk ¼ S3N�6

k¼1 ðS3N
j¼1ðvjqjkÞÞqk ¼ S3N�6

k¼1 ckqk ð13Þ

with

ck ¼ S3N
j¼1ðvjqjkÞ ð14Þ

The degree of delocalization of v among the different ligand-free normal modes can be
obtained evaluating the mode participation number[92,93] as

Pq ¼ ðS3N�6
k¼1 ðckÞ4Þ�1 ð15Þ
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The participation number has been originally introduced as a convenient means of describing
a measure of the delocalization for a given normal mode vector. In that case, the participation
number has the value of 3N for a pure translation, and the value of unity for a highly localized
mode. Beyond these two extremes, the participation number can be used to define the delocali-
zation at intermediate situations. That is, the participation number represents a measure of the
delocalization of the normal mode vector on the basis of the atomic Cartesian coordinates. In
the present work, we extend this concept in order to apply it to the delocalization of the differ-
ence vector v, that takes account of structural distortions introduced by ligand binding, on the
basis of ligand-free normal modes. The value of Pq, rounded to the nearest higher integer, con-
tains information about the number of modes needed to describe the direction of the confor-
mational change. Values of Pq � 3N−6 mean that the conformational change is spread among
all vibrations of the ligand-free conformer, that is, the full space of normal modes is required in
order to achieve a good representation of the conformational change. Values of Pq � 1 indicate
that one single normal mode dominates the direction of the conformational change. The first
Pq modes ordered by index fk in decreasing values of (ck)

2 define the minimum subspace S of
modes fqfi

g
i¼1;Pq

required to achieve a good description of the conformational change. In this

way, S retains normal modes most involved in the ligand-binding conformational change. That
is, size and composition of subspaces S associated to the conformational change are defined by
Pq and the set of Pq ligand-free normal modes that contributes the most to the unbound-to-
bound conformational change, respectively.

D. Local perturbations
The effect of point mutations of a residue i on the subspace S of ligand-free normal modes
associated to ligand-binding is simulated by introducing perturbations to the local interactions
involving the ith residue. Following the procedure previously applied in the Structural Pertur-
bation Method (SPM) by W. Zheng et al.[50,55,57, 94], the force constants kij that connect i
with other residues j are changed by a small amount δγ. Then, a new set of normal modes
fqi

kgk¼1;3N�6
is obtained.

In order to define the new subspace Si it is necessary to establish a one-to-one correspon-
dence between both unperturbed and perturbed set of modes. Perturbations to the local elastic
interactions can lead to changes in the energy order of the modes. Because of that, the assign-
ment of the perturbed modes based on the energy-ordering criterion becomes useless. The cor-
respondence between both sets of modes, fqi

kg and {qk}, can be based on the highest values of
their overlaps. The maximum overlaps are obtained through the maximization of the trace of
the square of the overlap matrixO whose elements are defined as the dot product

Okk0 ¼ qT
k � qi

k0 ð16Þ

This can be done by selecting those elements of theOmatrix, one for each row, and each per-
taining to a different column (or vice versa), which maximize the sum of their squared values.
In order to do that, we have used a variant of the Min-Cost algorithm[58,95].

E. Comparison of normal mode subspaces
The comparison of unperturbed and perturbed subspaces of modes, S and Si (see Section C
and D), associated to the conformational change upon ligand-binding can be performed
through the calculation of the corresponding Gramian matrix[96,97, 98,99] as follows. We
define the matrices S(3N x M) and Si (3N x M) associated to the unperturbed and perturbed
subspaces with vector columns ofMmodes {qk}k = 1,M and fqi

kgk¼1;M containing the set ofM
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modes selected according to the procedures described previously in Section C and D. These
matrices can be compared by defining the vector projection of each qi

j onto the set of modes

{qk}k = 1,M as

pSiS
j ¼ SM

k¼1ðqi
j � qkÞqk ð17Þ

The Gramian matrix G (M xM) of the set of vectors fpSiS
j g

j¼1;M
is calculated as the matrix of

inner products with elements

Gkl ¼ ðpSiS
k � pSiS

l Þ ð18Þ

The diagonalization of G

LT
GGLG ¼ LG ð19Þ

allows us to use the eigenvalues of G, {λk}k = 1,M, as a measure of the similarity between the two
subspaces. Since all the eigenvalues of G varies between 0 and 1[96], we can define a measure
of the similarity of the two subspaces as

zS
iS ¼

XM

k
lk

M
ð20Þ

The smaller the value of zS
iS, the stronger the effect that mutations in the ith residue will have

on the subspace of modes associated to the conformational change upon ligand-binding, that

is, the required conformational diversity of the protein will be less guaranteed. The value of zS
iS

increases with the dimensionality of the subspace S. To solve this problem, for each protein in

the dataset we normalize the values of zS
iS as:

ZSi

score ¼
zS

iS � zS
iS

sS
ð21Þ

where zS
iS and σs are the average and standard deviation of the distribution of zS

iS over all
residues.

F. Key position residues

Key positions are selected as those ranked with the lowest 5% values of ZSi

score for each protein in
the dataset. Other choices for this cut off value between 1% and 10% have also been tested with-
out obtaining qualitatively differences in our results. In this way, the set of key positions per
pair of ligand-free and ligand-bound conformers is associated to directions of conformational
changes rather than absolute values of observed structural distortions. The number of key posi-
tion residues per pair of conformers in our dataset is given in S1 Table.

G. Protein sequence-structure alignments
Multiple structure-sequence alignments were obtained from the HSSP (homology-derived
structures of proteins) database[85] that merge structural and sequence information of pro-
teins. We have only selected sequences with a coverage greater than 80%. The analysis of con-
servation of each aligned position has been performed using Henikoff entropy measure
[100,101] to estimate position-specific amino acid frequencies. The resulted conservation
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index for each position are normalized obtaining the corresponding z-score value, Zevol;i
score , as the

final parameter related to the evolutionary conservation of the ith residue of the protein.

H. Characterization of residues
Relative solvent accessibility (RSA) values are calculated using the NACCESS program[66]. A
residue is considered exposed if its relative accessibility is�10%. The relative accessibility is
computed as the percent of the computed accessibility of a residue out of the accessibility of
that amino acid in an extended ALA-X-ALA tripeptide (where X is the type of amino acid)
[102,103].

The number of inter-residue contacts for each residue of the dataset are calculated using
RING[67]. This is a web tool for analysis of protein structures in terms of physico-chemical
interactions. For each protein we generate an all interaction networks, with a cutoff distance of
5 Å.

Finally, BioLip database[68] has been used to obtain information concerning ligand binding
site of each protein in the dataset. For the calculation of distance to ligand binding site, we first
identify the presence of more than one binding site and we generate a center of mass from the
coordinates of all the amino acids that make up the binding site. Second, we determine the dis-
tance of each residue (α-carbon) to the centre of mass for each binding site and the minimum
distance is selected.

Conclusions
Conformational diversity of the native state of a protein involves a dynamical equilibrium
between conformers with lower (ligand-free) and higher (ligand-bound) affinities for the
ligand. Internal protein motions guarantee the interconversion between them. Due to its rele-
vance to protein function, conformational diversity associated to ligand binding should be evo-
lutionary conserved. Here, we have presented a novel procedure to identify key positions
whose mutations have a significant effect on vibrational normal modes involved in the ligand-
free to ligand-bound conformational changes. We have applied our method to a refined dataset
of paired protein structures in the ligand-free and ligand-bound form.

In order to avoid normal mode mixtures and/or rearrangements in their frequency ordering
introduced during ligand-binding, we deal not with individual normal modes but with normal
mode subspaces associated to ligand-binding. We have described a procedure to define and
compare these subspaces. Furthermore, our definition of key positions, i.e. positions that are
dynamically important to ligand-binding, is based on the effect of mutations on these
subspaces.

We find a negative correlation between the effects of site-specific mutations on the sub-
spaces of normal modes associated to ligand-binding and the evolutionary conservation of
these sites. Residues whose mutations are found to alter the most these subspaces are defined
as key positions, that is, dynamically important positions that mediate the ligand-binding con-
formational change. We also found that they correspond to buried aliphatic residues mostly
localized in regular structured regions of the protein like β-sheets and α-helix. Furthermore,
they seem to participate as pivots through inter-SSE contacts.

Key position residues are identified using subspaces of collective vibrations that participate
in a specific conformational change. These collective vibrations are commonly low-frequency
normal modes involving the concerted motion of residues that can be localized in well sepa-
rated spatial regions of the protein structure. Therefore, the method is not affected by any bias
that can overestimate the effect of residues localized close to the binding-site. Because of that,
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we have shown that only*10% of the key position residues correspond to active site residues.
That is, active-site residues only comprise a small fraction of the predicted key residues.

Our key position residues are associated to a very particular aspect of the protein functional-
ity, that is, vibrations associated to structural distortions introduced by ligand-binding. In that
sense, the analysis provides distinct and complementary information respect to studies based
on the identification of sequential and structural active site similarities among homologous
proteins.

Furthermore, the method is not restricted to identify key position residues whose mutations
directly affect the affinity for substrate. It can be straightforward applied to identify key posi-
tion residues whose mutations affect oligomerization binding constants and stability, inter-
protein interactions, and allosteric responses among others. Further applications of the method
to these other aspects of protein function are in progress.

As protein function resides in conformational transitions, we think that our method to esti-
mate key positions related with protein dynamics, could help us to improve our understanding
on structure-function relationship as well as functional diversification during evolution.
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