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Abstract: The stalk domain of the hemagglutinin has been identified as a target for induction of
protective antibody responses due to its high degree of conservation among numerous influenza
subtypes and strains. However, current assays to measure stalk-based immunity are not standardized.
Hence, harmonization of assay readouts would help to compare experiments conducted in different
laboratories and increase confidence in results. Here, serum samples from healthy individuals
(n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay
(ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high
IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin
(HA) headless construct #4900 and analysis of the correlation between the two assays confirmed
the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized
by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity
(ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse)
and CR9114 (human). A “pooled serum” (PS) consisting of a mixture of selected serum samples
was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based
neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity.
The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple
collaborators worldwide in a pilot collaborative study. The samples were subjected to different
assays available in the different laboratories, to measure either binding or functional properties of the
stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were
analyzed to determine whether use of the PS as a standard could lead to better agreement between
laboratories. The work presented here points the way towards the development of a serum standard
for antibodies to the HA stalk domain of phylogenetic group 1.

Keywords: influenza vaccine; serology; hemagglutinin; stalk; standardization

1. Introduction

As defined in the strategic plan from the National Institute of Allergy and Infectious Diseases [1],
some of the key points to achieve the development of effective Universal Influenza Vaccines (UIV)
include: the characterization of the immune responses elicited during influenza virus infection and
vaccination; establishment of novel non-hemagglutination inhibition (HAI) correlates of protection;
rational design of antigens with a wider breadth of protection; and implementation of these candidates
in phase I-II clinical studies. Many current efforts towards the development of these novel types of
vaccines rely on the induction of effective long-term antibody responses against conserved regions of
the influenza virus glycoproteins [2].

The stalk domain of the hemagglutinin (HA) has been identified as a suitable target for universal
influenza virus vaccines due to its unique properties. Contrary to the head domain, which is highly
plastic [3], the stalk domain exhibits a high degree of conservation among numerous influenza virus
subtypes and strains [4–7] but is immuno-subdominant [8,9]. As reviewed [10], anti-stalk antibodies
act through diverse mechanisms including blocking the fusion of viral and cellular membranes [11–13],
impeding the release of viral particles from infected cells [7,14], blocking the cleavage of the
hemagglutinin [5], inducing complement activation [15] and triggering FcR-mediated effector functions,
namely antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis
(ADCP) [16,17]. Importantly, there is extensive evidence of the protective potential of anti-stalk antibodies
in diverse animal models [6,7,14,16,18–21] and in humans [22–25]. Moreover, several vaccine candidates
targeting this domain are in late pre-clinical, or early clinical stages of development [2,18,19,26,27].

Given the importance of qualitatively and quantitatively detecting antibody responses against the
stalk in current research settings, and likely in future prophylactic scenarios for universal influenza virus
vaccines, we initiated a collaborative project to investigate the possibility of developing an international
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standard serum to measure group 1 HA stalk-reactive antibodies (group 1: H1, H2, H5, H6, H8, H9, H11,
H12, H13, H16, H17 and H18). As stated by the World Health Organization (WHO), ‘reference standards
are used as calibrators in assays’ and define an internationally agreed, arbitrary unit that allows
comparison of biological measurements worldwide [28]. There is a wide repertoire of WHO standards
available, including 22 biological reference preparations in the “immunoglobulins and human sera”
category and 83 biological reference preparations in the “vaccines/toxoids/toxins” category, with only
two international standards available for influenza virus research [29]: (1) a standard, established in
2008, consisting of a pooled polyclonal serum obtained from individuals vaccinated with a clade
1 H5N1 virus (A/Vietnam/1194/2004) derived vaccine [30], and (2) the second International Standard
for antibodies to pandemic H1N1 virus, consisting of pooled plasma from individuals who received
a pandemic H1N1 split vaccine produced from the reassortant virus NYMC X-179A, derived from
A/California/07/2009 [31]. Both standards were characterized by hemagglutination inhibition (HI) and
virus neutralization (MN) assays. However, none of the available influenza antibody-standards are
specific against the stalk of the HA. Therefore, the development of an international serum standard to
measure stalk-reactive antibodies would have important implications worldwide, because it would
contribute to the harmonization of assay read-outs, hence facilitating the comparison of experiments
conducted in different laboratories and increasing confidence in results.

2. Materials and Methods

Cells, viruses, proteins and sera. Cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, NY, USA), supplemented with 10% fetal bovine serum (FBS; HyClone, MA, USA)
and penicillin (100 U/mL)-streptomycin (100 µg/mL) solution (Gibco, NY, USA). Madin–Darby canine
kidney cells (MDCK) were used for neutralization assays; MDCK cells expressing the protein cH6/1
(cH6/1-MDCK) (Chromikova et al., 2020), which contains the exotic avian HA head domain (H6) from an
H6N1 virus (A/Mallard/Sweden/81/2002) and the stalk (H1) from an H1N1 virus (A/California/04/2009)
were used for ADCC reporter assays; the sequence of the chimeric cH6/1 protein can be found in
Supplementary Figure S1. ADCC Jurkat effector cells 187 FcÈRIIIa V158 were cultured in Roswell Park
Memorial Institute (RPMI) 1640 media (Gibco, Paisley, UK) containing L-glutamine (Gibco, NY, USA),
supplemented with 10% fetal bovine serum (FBS; HyClone, MA, USA), 100 µg/mL hygromycin
(Invitrogen, CA, USA), 250 µg/mL antibiotic G-418 sulfate solution (Gibco, NY, USA), 1 mM sodium
pyruvate (Gibco, NY, USA) and 0.1 mM minimal essential medium (MEM) of non-essential amino acids
(Gibco, NY, USA). For enzyme-linked immunosorbent assays (ELISAs), the recombinant proteins cH6/1
(described above) and the mini-HA #4900 [18], which consists of a stabilized trimer of the stalk-domain
from an H1N1 virus (A/Brisbane/59/2007), were used. To assess the neutralization capacity of the
stalk-specific antibodies, a reassortant virus derived from an H1N1 virus (A/Puerto Rico/8/34) carrying
the chimeric HA cH6/1 and the neuraminidase (NA) from an H12N5 virus (A/mallard/Sweden/86/2003)
was used. The virus was grown in 8-day-old embryonated eggs (Charles River Laboratories, CT, USA)
at 37 ◦C for 48 h. Human serum samples were obtained from a commercial vendor (110 samples).
After testing, full units (volume~400 mL per donor) were purchased for the ten samples with highest
reactivity to the HA stalk.

Direct ELISA. Antibodies in human serum were measured as described before [32]. In brief,
ultra-high binding polystyrene 96-well plates (Immulon 4HBX; Thermo Scientific, PA, USA) were
coated with 100 µL/well of recombinant protein in phosphate-buffered saline solution (PBS; pH 7.4;
Gibco, NY, USA) at a concentration of 6 µg/mL for cH6/1 and 2 ug/mL for mini-HA #4900. Plates were
incubated at 4 ◦C overnight, then washed 3 times with PBS containing 0.1% Tween 20 (PBS-T;
Fisher Bioreagents, NJ, USA) using the plate washer system AquaMax 2000 (Molecular Devices,
CA, USA). Blocking solution (220 µL/well) consisting of PBS-T, 3% goat serum (Gibco, OH, USA) and
0.5% non-fat dry milk (AmericanBio, MA, USA) was added to the plates, followed by incubation
for 1–2 h. The serum was serially diluted (2-fold) from a 1:800 initial dilution for IgG and 1:100 for
IgA. Samples were added to the plates (100 µL/well) and incubated at room temperature (RT) for
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2 h. Plates were washed 3 times, and the specific secondary antibody (50 µL/well) was added at a
1:24,000 dilution. Goat Anti-Human IgG Fc specific horseradish peroxidase (HRP; Sigma, MO, USA) or
Goat Anti-Human IgA α-chain specific HRP (Sigma, MO, USA) was used. After a 1 h incubation at RT,
plates were washed 4 times and the substrate 3,3′,5,5′ tetramethylbenzidine (TMB, Bio-Rad, CA, USA)
was added (100 µL/well). After a 30-min incubation, 50 µL/well of 4N H2SO4 solution (Thermo Fisher
Scientific, MA, USA) was added. The optical density (OD) was measured at 450 nm using a Microplate
Reader (Synergy H1, Biotek, VT, USA). Analysis was performed using Prism 7 software (GraphPad,
San Diego, CA, USA), and values were reported as the area under the curve (AUC).

Competition ELISA. Coating using cH6/1 recombinant protein at 6 µg/mL and blocking were
performed as for direct ELISAs. Plates were washed with PBS-T using the plate washer system
AquaMax 2000 (Molecular Devices, CA, USA) as described above. Each lane on every 96-well plate
was incubated for 2 h at RT with a specific serum sample to be tested at a 1:50 dilution in blocking
solution (described above). Additionally, a non-competitor control plate was included, containing only
blocking solution (described above). Two different setups for the competition ELISA assays were
used according to the nature of the monoclonal antibody (mAb). For KB2 (mouse), 2-fold dilutions
of the mAb (starting concentration of 0.08 µg/mL) were added (100 µL/well). Plates were incubated
at RT for 2 h, washed 3 times, and incubated for 1 h with the secondary antibody Goat Anti-Mouse
IgG (H&L) Antibody HRP (Rockland, PA, USA) at a 1:24,000 dilution (50 µL/well). MAb CR9114
(human) [7,33], was biotinylated using EZ-Link NHS-PEG4-Biotin (Thermo Scientific, IL, USA) and
2-fold dilutions of the mAb (starting concentration of 1 µg/mL) were added (100 µL/well) to every lane.
Plates were incubated at RT for 2 h, washed 3 times, and incubated for 1 h with Pierce™High Sensitivity
Streptavidin-HRP (Thermo Scientific, IL, USA) at a 1:24,000 dilution (50 µL/well). Plates were washed
4 times, and substrate was added as described for direct ELISAs. Analysis was performed using
Prism 7 software (GraphPad, San Diego, CA, USA), and values were reported as the percentage of
competition between the antibodies contained in the serum samples and the mAbs.

Microneutralization assay (MN). Virus neutralization was assessed as previously described [34].
Briefly, MDCK cells maintained in DMEM (Gibco, NY, USA), supplemented with 10% FBS (HyClone,
MA, USA) and Pen Strep (Gibco, NY, USA), were seeded in 96-well cell culture plates (Costar, DC,
USA) and grown overnight at 37 ◦C with 5% CO2 to reach an approximate confluence of 80–90%.
Serum samples were treated with a receptor-destroying enzyme (RDE, Denka Seiken, Japan) according
to the manufacturer’s instructions and heat inactivated for 30 min at 56 ◦C. Serum samples were serially
diluted (2-fold) from a 1:10 starting dilution in N-tosyl-L-phenylalanine chloromethyl ketone-treated
trypsin-containing Ultra-MDCK medium (Lonza Bioscience, Belgium) and incubated for 1 h at
room temperature with 100 times the 50% tissue culture infective dose (TCID50) of cH6/1N5 virus,
to allow binding of the antibodies to the virus. MDCK cell-medium was removed, cells were washed
with PBS, 100 µL/well of the serum-virus mixture was added and plates were incubated at 37 ◦C.
After an incubation period of 1 h, the serum-virus mixture was removed, cells were washed with PBS,
and replaced with 100 µL/well of diluted serum at the previous concentration. Infection was let to
proceed for 48 h. Supernatants were collected and used to perform hemagglutination assay using
chicken red blood cells (concentration: 0.5%) as described before [35]. Data were analyzed using Prism
7 software (GraphPad, San Diego, CA, USA), and values were reported as microneutralization titers.

Antibody-Dependent Cellular Cytotoxicity assay (ADCC). Evaluation of effector functions of
antibodies was performed using a commercial ADCC reporter kit according to the manufacturer’s
instructions (Promega, WI, USA). Briefly, cH6/1-MDCK cells were seeded in 96-well white flat bottom
plates (Costar, ME, USA) at 3 × 104 cells/well and plates were incubated overnight at 37 ◦C with 5% CO2.
Serum samples were serially diluted (3-fold) starting from a 1:50 dilution in assay buffer consisting of
RPMI 1640 medium supplemented with 0.5% low IgG FBS (Promega, WI, USA). Cell-growth medium
was removed from cH6/1-MDCK cells and monolayers were washed with PBS (Gibco, NY, USA),
followed by the addition of 25 µL/well of assay buffer and 25 µL/well of serum dilutions. Effector cells
were thawed, washed and resuspended in assay buffer, and 7.5 × 104 cells/well were added to each
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well in a volume of 25 µL. Plates were incubated at 37 ◦C with 5% CO2 for 6 h. Bio-Glo Luciferase
Assay Reagent (Promega, WI, USA) was added (75 µL/well) and luminescence was measured using
a Microplate Reader (Synergy H1, Biotek, VT, USA). Data were analyzed using Prism 7 software
(GraphPad, San Diego, CA, USA), and values were reported as AUC.

Pilot collaborative study and statistical analysis. Eight laboratories from six countries participated
in the study (Table 1). A sample panel (Supplementary Table S1) consisting of a total of twelve
blinded samples was shipped to participating laboratories; the panel consisted of a pooled serum
(candidate standard) in duplicate (samples 6 and 10) and ten individual samples with varying levels
of anti-stalk reactivity (high, intermediate and low), selected from the 110 tested serum samples;
all samples were blinded to participating laboratories. Participants were requested to test all samples for
anti-stalk antibodies using any assay(s) of their choosing, with a minimum of three independent tests
per sample and laboratory, and to record their results on a results template, supplied by the National
Institute for Biological Standards and Control (NIBSC). Results were submitted to NIBSC, where ED50s
(the 50% effective dilution corresponding to a half-maximal assay response) were calculated for all binding
assays (including those where only AUC was reported by the participant) by NIBSC’s biostatisticians
based on the submitted raw data where possible (one lab, for which independent calculation of ED50s
was not possible, is indicated by an asterisk (*) in Supplementary Tables S4 and S5). Analysis was
performed with a four-parameter logistic (sigmoid curve) model using the R package ‘drc’ [36] and
a log10 transformation of the assay readout in all laboratories. In 1 case (laboratory 12), 1 × 106 was
added to the assay readout value prior to log transformation and this was used as the assay response to
calculate the sample ED50. Relative potencies were calculated by dividing the sample ED50 estimate by
the corresponding assay ED50 estimate for the candidate standard sample 6. ED50 and potency estimates
were combined as geometric means (GM) for each laboratory, and these laboratory means were used to
calculate overall geometric means and overall median estimates for each sample. Variability between
laboratories was expressed using geometric coefficients of variation (GCV = [10s

− 1] × 100% where
s is the standard deviation of the log10 transformed estimates). The extent of deviation of individual
laboratory estimates from study consensus values was expressed as the fold-change in the laboratory
GM from the overall study median estimate for that sample.

Table 1. Laboratories participating in pilot collaborative study.

Institution Name Country

Janssen Vaccines & Prevention Boerries Brandenburg The Netherlands

Centers for Disease Control and Prevention Min Levine United States

University of Bergen Fan Zhou Norway

Icahn School of Medicine at Mount Sinai Adolfo García-Sastre & Teresa
Aydillo-Gomez United States

Vismederi Research Srl. Alessandro Manenti Italy

National Institutes of Health Barney Graham United States

University of Hong Kong Sophie Valkenburg China SAR

National Institute of Biological Standards & Control Lethia Charles & Othmar
Engelhardt United Kingdom



Vaccines 2020, 8, 666 6 of 18

3. Results

3.1. Generation of a Pooled Serum Containing High Levels of Stalk-Specific Antibodies

The production of a standard serum typically involves the collection of samples containing high
levels of antibodies against the pathogen/molecule of interest. Several studies have demonstrated
that some individuals possess higher levels of antibodies directed to the HA stalk of influenza viruses
(likely induced by recent natural infection), and that these antibodies increase over time due to multiple
exposures with influenza virus strains that are antigenically related [37,38]. Therefore, we decided
to generate a standard serum containing high levels of stalk-specific antibodies by screening serum
samples from healthy donors using a cH6/1 ELISA assay, which would allow us to detect antibodies
directed specifically towards the stalk of group 1 HA influenza viruses (see workflow in Figure 1).
Humans are naïve to the exotic avian H6 head domain, hence an undetectable amount of anti-head
antibodies is present in human serum samples [39]. Anti-stalk antibodies measured using this chimeric
protein have been shown to be an independent correlate of protection in humans [25]. Likewise,
the cH6/1 construct, along with other chimeric constructs, has been used to assess stalk-specific
antibodies in clinical trials for novel universal influenza vaccine candidates [27] (Nachbagauer et al.,
Nat Med. in press). Samples from a commercial vendor (n = 110) were screened for stalk-specific
IgG titers (Figure 2A). The 10 samples with the highest reactivity were selected, and the full units
from these donors were obtained (≈400 mL/sample). The full units were re-tested in the cH6/1 ELISA
assay, to corroborate the presence of medium to high antibody titers against the stalk (Figure 2B).
The 10 samples were mixed in equal proportions to generate a “pooled serum” that would comprise the
model standard serum to be evaluated in this study, which exhibited high levels of IgG stalk-specific
antibodies and relatively high levels of IgA stalk-specific antibodies (Figure 2C,D). Moreover, in order
to characterize the properties of the antibodies contained in the serum samples, the samples were
subjected to a panel of different assays that reflect the variety of tools currently available to detect
group 1 stalk-reactive antibodies (Figure 1).
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Figure 2. Testing and selection of human serum samples with high levels of stalk-specific antibodies.
Samples of human sera were obtained from a commercial vendor (n = 110) and screened for stalk-specific
IgG antibodies using a cH6/1-based enzyme-linked immunosorbent assay (ELISA) (A). The 10 samples
with the highest IgG titers were selected, and the full units were obtained. The full units were re-tested
for cH6/1-specific IgG titers (B). A pooled serum (PS) consisting of equal amounts of serum from each
of the 10 full units was generated. The PS exhibited high levels of stalk-specific IgG (C) and IgA (D)
antibodies. Dots in A represent individual values of the Area Under the Curve (AUC) from every serum
sample, the arithmetic mean of all values is represented by a black horizontal line. Specific Optical
Density (OD) for each of the serum dilutions is shown in (A–C).

3.2. Characterization of Stalk-Specific Antibodies Contained in Serum Samples

Different assays are used to measure and characterize stalk-reactive antibodies in basic and clinical
research settings. These include: binding assays such as ELISA [27,32] and bio-layer interferometry
(BLI) [40]; assays to assess the neutralizing capacity of antibodies, such as the MN assay [41,42]
and plaque reduction assay [40]; and tests to characterize the effector functions of antibodies,
including ADCP and ADCC [16,33]. Here, we characterized the properties of stalk-specific antibodies
contained in serum samples from healthy donors, including the samples that comprise the candidate
standard serum, by a panel of different assays. Measurement of stalk-specific IgG by ELISA against the
trimeric headless construct #4900 (mini-HA), which is recognized by a panel of different monoclonal
antibodies directed against the group 1 HA stalk [18], allowed us to detect samples with variable
antibody levels (Figure 3A). Moreover, comparison between IgG antibody levels against the chimeric
protein cH6/1 and those against the mini-HA #4900 showed a strong and significant correlation
(Figure 3B, Pearson r2: 0.7879; p (two-tailed): < 0.0001), which corroborates the presence and specificity
of stalk-specific antibodies contained in the serum samples. To assess the neutralization capacity of
the stalk-specific antibodies contained in the serum samples, we performed MN assays using the
recombinant HA chimeric virus cH6/1N5, which allowed us to measure virus neutralization based
on stalk-reactive antibodies. We found samples with variable levels of neutralization (Figure 3C),
and a negligible correlation between the neutralization titers and the antibody levels measured in the
cH6/1 ELISA was observed (Figure 3D, Pearson r2: 0.05219; p (two-tailed): 0.059); this was as expected
because only subsets of binding antibodies, which vary between individuals, display neutralizing
activity. Moreover, despite binding, differences in the in vitro neutralization activity of stalk and head



Vaccines 2020, 8, 666 9 of 18

antibodies are observed [43] and neutralization by stalk antibodies substantially depends on their
effector functions such as ADCC activity [16], which play a role in vivo and are not detected in the
in vitro microneutralization assay. Selected samples from low, intermediate and high responders in the
cH6/1 ELISA were tested in an ADCC assay using a cell line stably expressing the chimeric HA cH6/1.
Due to the low number of samples tested, correlation analysis could not be performed, however a
positive association between the cH6/1 antibody titers and the ADCC activity was observed (Figure 3E),
indicating that the stalk-reactive antibodies present in the serum samples possess effector functions,
which may be important for in vivo protection [16]. Finally, in order to assess whether antibodies
contained in the serum samples bind to some of the conserved epitopes in the stalk domain of the HA,
we performed competition ELISAs using the widely characterized stalk-reactive monoclonal antibodies
KB2 (mouse) and CR9114 (human) [7,33,44]. Using samples from high responders in the cH6/1 ELISA,
we were able to detect a high percentage of competition (above 30% in most cases) between the
monoclonal antibodies and the stalk-reactive antibodies contained in the serum samples (Figure 3F).
In summary, these results confirmed the presence and specificity of stalk reactive antibodies in serum
from healthy donors, using an array of different assays available for assessment of stalk-specific
antibody responses.
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shown (D). Samples from low, intermediate and high responders in the cH6/1 ELISA were tested in an
ADCC commercial assay (n = 17). Association of the cH6/1-specific IgG levels with the effector functions
of the antibodies measured in the ADCC assay is shown (E). Competition of the antibodies contained in
the serum samples and the monoclonal antibodies KB2 (mouse) and CR9114 (human) was determined
and presented as percentage of competition (F). Dots in (A,B,D,E), represent individual values of area
under the curve (AUC) from every serum sample. The arithmetic mean of all values is represented by a
black horizontal line. Pearson correlation coefficient (r2) and p-value are shown in (B,D).

3.3. Testing of the Candidate Serum Standard in a Collaborative Study

The establishment of an international standard would require testing in multiple laboratories
worldwide. Here, we conducted a pilot collaborative study to assess the potential of the candidate
standard (pooled serum) to harmonize results from multiple assays from different laboratories.
A sample panel consisting of the pooled serum and samples with varying levels of anti-stalk
reactivity, selected from the 110 tested serum samples, was sent to the participating laboratories
(Supplementary Figure S2, Table 1); all samples were blinded to participating laboratories. Participants
were requested to test all samples for anti-stalk antibodies using any assay(s) of their choice, with a
minimum of three independent tests per sample and laboratory. An array of different assays was used
in the laboratories to assess binding and functional properties of stalk-reactive antibodies. Only binding
assays and neutralization assays, for which results from at least two different laboratories were available,
are reported here (Supplementary Table S2).

Participants were instructed to record their results on a specific template to allow a common
analysis of all data at NIBSC. Not all participating laboratories returned data by the study deadline,
while some laboratories supplied more than one dataset; laboratories were assigned random numbers,
not related to the order of laboratories as shown in Table 1. Where the result from a single assay run
caused the range of ED50 estimates to exceed eight-fold for a sample within a laboratory, the result
was considered to be an outlier and was excluded from further analysis; the small number of cases
where this occurred are indicated in Supplementary Table S3. Geometric mean ED50 estimates and
geometric mean potency estimates relative to candidate standard sample 6 are shown in Figure 4
and Supplementary Tables S4 and S5. Samples 3 and 11 gave low relative potencies with GM < 0.05,
below the limit of detection in some laboratories, and were therefore excluded from subsequent
analysis. A reduction in between-laboratory %GCV when expressing titers as relative potencies was
observed for all the other samples.

The extent of deviation from study consensus values for individual laboratories was assessed by
calculating the fold-change of laboratory GM from the overall median estimate for each sample.
This was calculated for both ED50 and relative potency estimates (Tables 2 and 3, Figure 5).
Values closer to 1.0 indicate better agreement of a laboratory’s result with the overall study median.
Good inter-laboratory agreement (harmonization) when titers were normalized to the pooled serum
(sample 6) was evident for labs 4, 7, 8, 9, 12a and 12b: 89–100% of potencies were within four-fold of the
overall study sample median. In contrast, none of ED50 estimates for labs 9 and 12a were within this
range without normalization (Figure 5A). Poorer agreement following normalization was observed for
lab 11, while no change was evident for lab 10.
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Table 2. Inter-lab variability: Fold-change of laboratory geometric mean ED50 estimates from the
overall study median ED50 estimate for each sample.

Sample Laboratory

4 7 8 9 10 11 12a 12b
1 1.39 1.22 2.22 10.46 2.70 40.18 12.30 1.29
2 2.60 2.02 2.81 9.93 1.47 4.78 9.96 1.88
4 1.41 1.92 1.87 5.65 1.70 1.74 18.06 2.80
5 1.18 1.21 5.55 10.32 10.08 11.73 5.90 1.87
7 1.30 1.71 1.63 9.54 3.75 1.86 5.84 1.42
8 1.02 1.72 2.57 20.47 1.02 4.78 5.76 1.17
9 3.31 5.24 1.69 13.16 1.94 2.49 14.52 3.23

10 1.39 1.02 1.42 9.85 3.21 1.86 9.18 1.02
12 1.43 1.30 7.88 8.11 N/A N/A 24.64 1.77

% < 2 78% 78% 44% 0% 50% 34% 0% 78%
% < 4 100% 89% 78% 0% 88% 50% 0% 100%
% < 8 100% 100% 100% 11% 88% 75% 25% 100%
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Table 3. Fold-change of laboratory geometric mean potency estimates from the overall median potency
estimate for each sample.

Sample Laboratory

4 7 8 9 10 11 12a 12b

1 1.53 1.14 1.32 1.09 1.08 1.21 1.75 1.43
2 1.70 1.28 2.82 1.47 7.23 4.13 1.19 * 1.23
4 2.61 1.01 2.26 1.01 3.50 9.39 1.26 * 1.52
5 1.28 1.09 3.94 1.08 2.03 2.38 1.42 * 1.73
7 1.46 1.48 1.20 1.04 1.04 14.49 1.50 * 1.27
8 1.16 1.98 1.42 1.68 2.67 7.48 1.14 1.39
9 1.39 2.44 2.63 3.02 14.83 5.12 1.27 * 1.36

10 1.31 1.07 1.01 1.01 1.07 15.34 1.12 1.08
12 1.06 1.80 6.96 1.06 N/A N/A 2.36 * 1.32

% < 2 89% 89% 44% 89% 34% 13% 89% 100%
% < 4 100% 100% 89% 100% 75% 25% 100% 100%
% < 8 100% 100% 100% 100% 88% 63% 100% 100%
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(samples 6 and 10), which also allows assessment of intra-laboratory variability; the relative potency 
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Figure 5. Inter-laboratory variability in ED50 and relative potency estimates. Individual points
show the ratio of laboratory geometric mean ED50 estimates (A) and relative potency estimates (B) to
the study median ED50 estimate for that sample; range of 0.25–4 is shown to indicate points that are no
more than 4-fold different from the study median.



Vaccines 2020, 8, 666 13 of 18

Vaccines 2020, 8, x FOR PEER REVIEW 14 of 19 

 

of sample 10 should be close to 1, which was the case for most laboratories, but not for laboratory 11 
(Supplementary Table S5). 

Only two laboratories returned data from virus neutralization assays, limiting the statistical 
analysis that could be performed. The differences in GM endpoint titer estimates and the GM 
relative potency estimates between the two labs for each sample are illustrated by the max:min ratios 
shown in Tables 4 and 5. The use of normalization relative to sample 6 reduced the max:min ratio for 
most samples (10 out of 11), indicating the potential for harmonization of results by the use of a 
standard. 

 
Figure 6. Intra-laboratory variability in ED50 and relative potency estimates. Individual points 
show the max:min ratio of laboratory ED50 estimates (A) and relative potency estimates (B) for each 
sample and laboratory; the red line marks a max:min ratio of 8-fold. 

Table 4. Geometric mean endpoint readout estimates—Virus Neutralization assays. 

Sample 
Laboratory 

GM Ratio Max:Min Ratio 
04 10 

1 84.8 67.3 75.5 1.26 1.26 
2 95.3 40 61.7 2.38 2.38 
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4 80 67.3 73.4 1.19 1.19 
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Figure 6. Intra-laboratory variability in ED50 and relative potency estimates. Individual points
show the max:min ratio of laboratory ED50 estimates (A) and relative potency estimates (B) for each
sample and laboratory; the red line marks a max:min ratio of 8-fold.

Only two laboratories returned data from virus neutralization assays, limiting the statistical
analysis that could be performed. The differences in GM endpoint titer estimates and the GM relative
potency estimates between the two labs for each sample are illustrated by the max:min ratios shown
in Tables 4 and 5. The use of normalization relative to sample 6 reduced the max:min ratio for most
samples (10 out of 11), indicating the potential for harmonization of results by the use of a standard.

Table 4. Geometric mean endpoint readout estimates—Virus Neutralization assays.

Sample Laboratory
GM Ratio Max:Min Ratio

04 10

1 84.8 67.3 75.5 1.26 1.26
2 95.3 40 61.7 2.38 2.38
3 80 33.6 51.9 2.38 2.38
4 80 67.3 73.4 1.19 1.19
5 40 40 40 1.00 1.00
7 160 80 113.1 2.00 2.00
8 89.9 28.3 50.4 3.18 3.18
9 80 28.3 47.6 2.83 2.83
10 160 47.6 87.2 3.36 3.36
11 20 10 14.1 2.00 2.00
12 80 40 56.6 2.00 2.00

Shading shows ratios ≥ 2.00.
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Table 5. Geometric mean potency estimates relative to Sample 6—Virus Neutralization assays.

Sample Laboratory
GM Ratio Max:Min Ratio

04 10

1 0.53 0.59 0.56 0.89 * 1.11
2 0.60 0.35 0.46 1.68 * 1.71
3 0.50 0.30 0.39 1.68 * 1.67
4 0.50 0.59 0.55 0.84 * 1.18
5 0.25 0.35 0.30 0.71 1.40
7 1.00 0.71 0.84 1.41 * 1.41
8 0.56 0.25 0.37 2.25 * 2.24
9 0.50 0.25 0.35 2.00 * 2.00
10 1.00 0.42 0.65 2.38 * 2.38
11 0.13 0.08 0.10 1.59 * 1.63
12 0.50 0.35 0.42 1.41 * 1.43

Shading shows ratios ≥ 2.00. * max:min ratio reduced when potency expressed relative to sample 6.

4. Discussion

Multiple studies underline the importance of HA stalk-specific antibodies in the prevention and
outcome of influenza virus infections [22–24]. Indeed, stalk-specific antibodies have been pointed out
as independent correlates of protection [25]. Therefore, qualitatively and quantitatively measuring
these particular types of antibodies and comparison of laboratory results among different research
groups are essential. Here, we generated, characterized, and tested a candidate serum standard
for stalk-reactive antibodies in humans in an international pilot collaborative study. The candidate
standard exhibited high levels of stalk-reactive antibodies, a high neutralization titer, and displayed
strong antibody-effector functions such as high levels of ADCC activity.

Results obtained from the international pilot study support the concept that implementation of a
standard would improve the harmonization of results from different laboratories. Normalization of
results to the standard improved inter-laboratory variability of stalk-specific antibody levels.
The generation of a standard based on human sera ensures that the matrix of the reagent is compatible
with analysis of stalk-reactive antibodies in human serum samples, providing commutability with
samples of clinical importance, such as samples from clinical trials of prophylactic approaches and
in diagnostic settings. Moreover, antibodies in human serum samples stored at −20 ◦C are well
preserved for prolonged periods of time [45]; therefore, we anticipate that a future international
standard, generated analogously to the one described here, and stored at low temperature after
lyophilization, will be stable [46]. Even though normalization to the candidate standard did not
improve agreement to the overall median for all laboratories or all samples, this observation is not
unusual [47,48]. Reduced harmonization may have been due to multiple causes, including inexperience
of a laboratory with a particular assay, variability of reagents used, or systematic differences between
tests of the standard and the samples. Moreover, testing results exhibited similar patterns of inter- and
intra- laboratory variability as seen with other standards [46,49].

In summary, these results suggest that the use of a standard has the potential to facilitate the
comparison of experiments to measure stalk-specific antibodies conducted in different laboratories
and to increase confidence in results. We therefore conclude that the generation of an international
standard, based on the results of this Phase 1 project, and using the same pool of high-titer samples
that was tested in this study, is worthwhile, and will be of use in the development and assessment of
vaccine candidates targeting the HA stalk domain.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-393X/8/4/666/s1,
Figure S1: Nucleotide (open reading frame) and amino acid sequences corresponding to the chimeric protein
cH6/1 used in this study. Figure S2: The pooled serum displays high levels of stalk-specific antibodies with
functional properties; Figure S3: Individual laboratory geometric mean potencies relative to candidate standard
sample 6; Table S1: Sample Panel; Table S2: Assays performed in different laboratories; Table S3: Sample ED50s
excluded from analysis; Table S4: Geometric mean ED50 estimates; Table S5: Geometric mean potency estimates
relative to sample 6; Table S6: Intra-lab variability: Ratios of the maximum and minimum ED50s for each sample
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in each laboratory; Table S7: Intra-lab variability: Ratios of the maximum and minimum potencies for each sample
in each laboratory.
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