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ABSTRACT

Increasing awareness of the importance of protein–
RNA interactions has motivated many approaches to
predict residue-level RNA binding sites in proteins
based on sequence or structural characteristics.
Sequence-based predictors are usually high in sen-
sitivity but low in specificity; conversely structure-
based predictors tend to have high specificity, but
lower sensitivity. Here we quantified the contribu-
tion of both sequence- and structure-based fea-
tures as indicators of RNA-binding propensity us-
ing a machine-learning approach. In order to cap-
ture structural information for proteins without a
known structure, we used homology modeling to ex-
tract the relevant structural features. Several novel
and modified features enhanced the accuracy of
residue-level RNA-binding propensity beyond what
has been reported previously, including by meta-
prediction servers. These features include: hidden
Markov model-based evolutionary conservation, sur-
face deformations based on the Laplacian norm for-
malism, and relative solvent accessibility partitioned
into backbone and side chain contributions. We con-
structed a web server called aaRNA that implements
the proposed method and demonstrate its use in
identifying putative RNA binding sites.

INTRODUCTION

Many biological processes require specific interactions be-
tween protein and RNA molecules. Protein–RNA inter-
actions coordinate the flow of genetic information from
transcription to translation at various levels (1–3). Protein
and RNA molecules can fold together to form stable sub-
units of molecular machines such as the ribosome (4) or
spliceosome (5) and also form transient complexes, such
as target-specific ribonucleases (6) and helicases (7). Like
proteins, RNA molecules can adopt myriad structural con-
formations, a consequence of which is a great variety of

protein–RNA interaction motifs. Understanding the under-
lying principles of these interactions is a non-trivial task
since there are far fewer solved structures of protein–RNA
complexes than there are known interactions and RNA
structure determination poses a unique set of challenges
(8). Nevertheless, the growth rate of structurally determined
protein–nucleotide complexes has continued to rise over the
last decade. Therefore, there is a need to establish methods
that can reliably translate such structural data into predic-
tive models.

Computational methods for the prediction of RNA bind-
ing sites on proteins make use of various features. A num-
ber of methods are based on sequence information, includ-
ing: PiRaNhA (9), which uses position-specific scoring ma-
trices (PSSMs), inherent binding propensities of interface
residues, solvent accessibility and hydrophobicity; BindN+
(10), which uses side chain pKa, hydrophobicity, the molec-
ular masses of residues and evolutionary information cap-
tured by PSSMs; PRBR (11), which uses predicted sec-
ondary structure, conservation of residue physicochemical
properties and residue-dependent charge-polarity and hy-
drophobicity; SRCPred (12), which uses PSSMs and global
amino acid composition (GAC) to predict di-nucleotide
binding propensities. Methods that make use of structural
information include: KYG (13), which combines residue-
based binding propensities, spatially close residue doublets,
and sequence profiles; DRNA (14), which performs align-
ment with known complex structures and scores targets
with a statistical energy function and OPRA (15), which
uses accessible-surface-weighed residue binding propensi-
ties calculated from known binding interfaces.

Sequence-based predictors are usually shortsighted, due
to their fragmented view of a binding site; a sliding win-
dow can only capture a continuous segment of sequen-
tial residues, thereafter neglecting correlation between se-
quentially distant but spatially close residues. In contrast,
structure-based predictors can reach higher specificity but
usually at a cost of sensitivity (16). Structure-based methods
generally attempt to recall geometric features from known
protein–RNA complexes and fit these to geometric features
of query proteins. Due to the large degree of freedom in-
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troduced by protein folding from 1D sequence to 3D struc-
ture and the limited number of training structures, geomet-
ric features of RNA-binding proteins have not been exhaus-
tively explored, resulting in lower sensitivity as compared
with sequence-based methods. As a consequence of these
tradeoffs, we aimed to develop a method that could opti-
mally utilize both sequence and structural features of RNA-
binding proteins in order to accurately quantify their con-
tributions to protein–RNA molecular recognition.

To this end, we have made use of several established
and novel features. In addition to the sequence features
used previously in the SRCPred method (12), we included
hidden Markov model (HMM)-based evolutionary con-
servation (EC) scores to better evaluate conservation. We
adopted an algorithm that collects positional amino acid
occurrence from reweighed alignments acquired through
HMM-based comparisons (17). We found that the HMM-
based EC feature provided a more straightforward mea-
sure of EC than the previously described PSSM-based fea-
ture (12). For structural features, we made use of local
relative accessible surface area, which we developed in a
novel way and mapped onto patches of spatially neighbor-
ing residues in order to capture information from spatially
close residues. Finally, we represented molecular structure
by using the Laplacian norm (LN) (18). LN is a struc-
tural descriptor that measures surface convexity/concavity
over different length scales. By tuning the granularity, the
LN could be made tolerant to structural deviations among
RNA binding surfaces, while still being sensitive enough to
distinguish binding surfaces from non-binding ones. Con-
sequently, both sensitivity and specificity of the predictor
could be achieved.

In summary, we present an RNA binding site pre-
dictor using various features that outperforms sequence-
or structure-only predictors. Importantly, the proposed
method makes use of structural features even for sequence-
only input through in-line homology modeling and is ro-
bust with respect to typical input noise levels that occur
in the homology modeling phase. The proposed method
has been implemented as a web service called aaRNA at
http://sysimm.ifrec.osaka-u.ac.jp/aarna/, and is expected to
enhance functional annotation of putative RNA-binding
proteins at the residue level.

MATERIALS AND METHODS

Dataset and contact profile

Protein–RNA complexes with a resolution better than 3.0
Å and solved by X-ray crystallography were downloaded
from the Protein Data Bank (PDB) (19) in May 2013. Only
protein chains with at least 30 resolved residues and no <3
residues in RNA contact were considered. We also required
the RNA partner chain or chains to be at least 3 nucleotides
long. Protein chains that include only carbon alpha (C�)
atoms were discarded. Redundancy among protein chains
was reduced by clustering them using BLASTCLUST at a
25% sequence identity threshold. From each protein chain
cluster, we selected a representative with the largest num-
ber of RNA contacts. A protein–RNA contact was defined
structurally, and only contacts between protein and RNA

chains within the same biological unit (BU) were consid-
ered. For a structure with a single BU, an amino acid and
ribonucleotide residue pair was considered to be in con-
tact when their minimum distance was <3.5 Å. For struc-
tures with multiple BUs, individual units were separated
following ‘REMARK 350’ records in their respective PDB
files. Contacts taking place at the interface of two nearby
BUs were ignored, because these interactions might not be
functionally relevant. A di-nucleotide contact is defined as
a nucleotide in contact together with one of its flanking
nucleotides on either direction. We neglected structurally
unresolved protein residues because neither contact nor
structure could be defined. Protein chains were partitioned
into a ‘non-ribosomal’ and a ‘full’ (ribosome-including)
dataset; the former included no protein chains interacting
with bulky ribosomal RNAs (longer than 200 bps), result-
ing in 141 and 205 protein chains, respectively. Two supple-
mentary files listing all PDB protein and RNA chains for
contact included in the dataset can be found at Supplemen-
tary Materials. In the non-ribosomal dataset, 2899 out of 43
863 residues were RNA binding, while in the full dataset,
5493 out of 51 781 residues were RNA binding. With the
full dataset, we further checked hydrogen bonds in the struc-
tures using HBPLUS (20), and analyzed contact preferences
between protein residues and RNA nucleotides. Note that in
order to identify hydrogen bonds correctly, a profile indicat-
ing atoms of hydrogen donator and acceptor in nucleotides
must be prepared. In particular, the O3’ atom of ribose can
only serve as an acceptor after forming a phosphodiester
bond.

Artificial neural network training and testing

Binary and di-nucleotide classifiers were built by using
an artificial neural network algorithm implemented in the
Stuttgart Neural Network Simulator suite (http://wolf.bms.
umist.ac.uk/naccess). A three-layered fully connected net-
work was constructed and trained via a standard back prop-
agation protocol. The number of nodes in the first network
layer equaled the number of training features (to be de-
scribed below), and the last output layer contained either
1 or 16 output nodes (ranging from 0 to 1 in value) for bi-
nary and di-nucleotide classifiers, respectively. In the later
case, the 16 output nodes are due to the 16 possible di-
nucleotide combinations: [A|C|G|U] x [A|C|G|U]. The num-
ber of nodes in the middle hidden layer was tuned to op-
timize the performance, resulting in a five-node layer. The
performance of the model was assessed by a five-fold cross-
validation scheme. Instead of randomly sampling an equal
number of ‘positive’ (i.e. RNA binding) and negative (i.e.
non-binding) inputs, a more stringent method was used. A
nearly equal number of protein chains (28 or 29 for the
RB141 dataset and 41 for the RB205 dataset) were ran-
domly allocated into five subsets, with each subset con-
taining only residues from the assigned chains. Then, three
out of five subsets were iteratively selected to train the net-
work. To avoid over-fitting, training was halted when an
early stopping criterion was satisfied based on evaluation
by one of the subsets left out. Finally, the last remaining
subset was tested by the network to estimate the perfor-
mance. All protein chains were tested after shuffling train-
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ing and testing datasets in this way. This approach to train-
ing and testing resulted in a far larger proportion of nega-
tive residues than if the datasets were artificially partitioned
into an equal number of positive and negative sites. Tests re-
turned numerical values of binding propensities from 0 to 1.
Receiver operating characteristic (ROC) analysis was then
carried out on these propensities by varying cutoff values,
above which a prediction was considered as binding. For the
di-nucleotide classifier, because the best performance was
achieved under different cutoffs for different di-nucleotide
types, output binding propensities were not directly com-
parable among different classes. Therefore binding propen-
sity raw scores (prediction scores returned by the neural
network) for different di-nucleotide types were transformed
into precision values calculated by using corresponding pre-
diction scores as the cutoff during ROC analysis. In order to
test the stability of model, we repeated each training cycle
five times by reinitializing the network with different ran-
dom number seeds before training.

Training features based on protein sequence

Three sequence features (21-bit coding, GAC and PSSM)
were taken from our previous work (12) as a starting point.
A sliding window of size 2N+1, which corresponded to a
center residue and its N nearest sequence neighbors on ei-
ther side, was used to scan protein sequences. Since the win-
dow was moved by 1 in each step, neighboring windows
shared 2N residues. A 21-bit sparse coding method was used
to encode window fragments into their amino acid compo-
sition in sequence order. Each residue was represented by a
21-bit long string. The first 20 bits were used to label specific
amino acids types. For each of the 20 common amino acid
types, only one bit position was set to 1, and the rest were
set to 0. The last bit was set to 1 for vacant sequence posi-
tions or non-standard amino acids. Next, a 20-column GAC
vector was used, which represented the abundance of each
amino acid type in a protein sequence. Last, evolutionary
profiles based on PSSMs were computed by the PSI-BLAST
program with an E-value threshold of 1E-3 and three iter-
ations against NCBI’s NR database. Raw PSSM values V
were normalized by a logistic operator:

1
1 + e−1∗V

.

In addition, we evaluated protein EC with a method
combining HMM–HMM comparison and position-specific
amino acid frequency calculated with weights from multi-
ple sequence alignments, as described in (17). Homologs
were identified by searching a pre-clustered HMM database
of UniProt protein sequences at a 20% similarity level
(HHsuite Uniprot20 Database) by using the HHblits pro-
gram (21) with two iterations, an E-value cutoff of 1E-3
and the -realign option turned on. The filtering options
in HHblits pairwise sequence identities were turned off
in order to include all possible homologous sequences in
the database. After database searching, multiple-sequence-
alignment (MSA) files in a3m format were transformed into
a2m format using the HHblits reformat.pl utility with the
‘-M first’ option, which turned all residues in the first se-
quence (the query sequence) into a match status. For a mul-

tiple sequence alignment matrix {Am=1...M
i=1...L } of size M x L,

where M (rows) is the number of collected protein sequences
and L (columns) is the index of residue positions in the
query sequence, each matrix element could be one of the
20 amino acid types or a gap type, marked as ‘-’. To al-
leviate biased sampling due to different numbers of simi-
lar HMMs deposited in the database, a normalized Ham-
ming distance was used to assess similarities among homol-
ogous sequences. The weight of each collected homologous
sequence in the amino acid frequency calculation was cali-
brated according to its sequence similarity to the rest of the
homologs. Only amino acids in upper case (HMM match
status) at alignment columns were taken into consideration.
For any two aligned protein sequences Sm and Sn (where m
�= n, and 1 < = m, n < = M), the Hamming distance (22)
was defined as the number of positions for which the cor-
responding amino acids were different. The Hamming dis-
tance was normalized by dividing by the alignment length.
If the normalized Hamming distance was smaller than a
pre-defined distance threshold (0.3), which means the simi-
larity was greater than 0.7, then their pairwise weight Wm,n
is set to 1; otherwise it was set to 0. When m and n were
equal, Wm,n was set to 1. For each sequence in the MSA
profile, the corresponding weight Wm was given by the in-
verse of the sum of all pairwise weights (including with self),
as follows:

Wm = 1.0

1.0 +
M∑

n=1,n �=m
Wm,n

, where1 ≤ m ≤ M. (1)

The larger the number of close neighbors (above a sim-
ilarity threshold of 0.7 by default) one could find for a se-
quence, the lower the weight of the amino acid occurrence
in the aligned column. The contribution of an aligned se-
quence to the occurrence of a given type of amino acid in
a given column of the multiple sequence alignment could
then be calibrated by its weight as:

fi (A) = 1
λ + Meff

[
λ

q
+

M∑
m=1

Wm × δ(Am
i , A)

]
, (2)

which represents the frequency of an amino acid type A
in column i of the alignment with reweighed sequences. In
Equation (2), i indicates a sequence position from 1 to L, A

indicates the residue type at position i and Meff =
M∑

m=1
Wm

is the effective number of sequences in the alignment af-
ter reweighting. The term δ(Am

i , A) is the Kronecker delta
function, which equals 1 when Am

i = A; otherwise it re-
turns 0. A pseudo-count term (�) is used to regularize the
data for the finite number of sequences, and was set to 0.5
by default. After reweighing, statistics on the occurrences
of different amino acids at each alignment column of the
query sequence were collected. Residue conservation values
(weighed occurrence frequencies scaled from 0 to 1) in the
query sequence were then normalized by the largest value
of that sequence.
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Training features based on protein structure

Protein residues that form a continuous interface with RNA
are not necessarily close in terms of the primary sequence.
Therefore, we investigated features that encode spatial con-
straints among residues. For simplicity, we used carbon al-
pha (C�) atoms as reference points to calculate Euclidean
distances between residue pairs. Structural neighbors of a
target residue were represented as a list in order of increased
C�/C� atom distance from the target.

To be able to discriminate RNA-binding residues from
non-binding residues, we used the LN on multiple scales to
represent deformation of the protein structure. This method
has previously been used to compare and classify proteins
from different families (18), and we found that it worked
well for characterizing RNA binding sites as well. Simply
speaking, LN measures a weighed distance between the
Cartesian coordinates of each residue and the coordinate
centers of its neighboring residues (except the two to which
the residue is covalently bonded). Importantly, LN coordi-
nates are invariant to translation and rotation.

In order to compute the LN coordinates, we first set up an
nx3 Cartesian coordinate matrix P for a protein of n residues
as:

Pi = [xi , yi , zi ], where i = 1...n.

To compute the LN, a discrete Laplace operator was de-
fined as in (18).

�P
i j (σ ) =

⎧⎨
⎩

−||pi−pj ||2
σ 2

e , if|i − j | > 1,
0 , otherwise

(3)

where pk is the Cartesian coordinate of a residue in pro-
tein P, and the parameter � in the Gaussian kernel con-
trols the scale. Therefore, the weight between a residue pair
is distance and scale dependent. Under a given scale �, the
weights between proximate residue pairs are higher and de-
crease rapidly as the distance increases. The scale factor
� determines the relative importance of near and distant
residue neighbors. Sequential neighbors, which contribute a
large, and roughly constant term, were omitted from Equa-
tion (3) in order to highlight the distribution pattern of se-
quentially distant residues. This equation corresponds to
the weighed adjacency matrix of an undirected graph.

The Diagonal matrix DP(σ ) is defined as follows:

DP
ii (σ ) =

∑
j

�P
i j (σ ). (4)

And the discrete Laplace operator LP(σ ) of the protein
P can be expressed as:

LP(σ ) = I − DP(σ )−1�P(σ ). (5)

In the LP(σ ) matrix (5),

diagonal elements LP
i,i (σ ) = 1,

subdiagonal elements LP
i,i+1(σ )or LP

i+1,i (σ ) = 0,

and LP
i, j (σ ) = − �P

i, j (σ )
|i−k|>1∑

k
�P

i,k(σ )
, where|i − j | > 1.

By multiplying the discrete Laplace operator LP(σ ) with
the protein coordinate matrix P, the coordinates of each
target residue were subtracted by the weighed center (to-
tal weights being 1) of the coordinates of all other non-
covalently bonded residues in the structure, which yielded
the Laplacian coordinates LcP(σ ) of each residue as in
Equation (6). This explains the translation invariance of the
Laplacian coordinates.

LcP
i (σ ) = LP

i (σ ) × P = Pi −
|i− j |>1∑

j

[
Pj × �P

i, j (σ )
]

|i− j |>1∑
j

�P
i, j (σ )

, where i = 1...n. (6)

After taking the Euclidean norm of the Laplacian co-
ordinates for each residue, the distance between the target
residue and its weighed center of neighboring residues was
measured. This step makes the LN invariant to rotation.

LN values can reflect geometrical features of a target
residue under different scales. By defining a scale factor
�, a pseudo-sphere centered at the target residue with a
�-related radius can be envisaged. The contribution of
residues outside the sphere will be almost negligible in cal-
culating the coordinate center of neighboring residues. For
a buried residue surrounded by neighboring residues, it will
result in a coordinate center of neighbors close to the target
residue. The more symmetric the neighbors spatial distri-
bution, the lower the LN value. Therefore, such buried and
symmetrically organized residues will have LN values close
to zero. For more exposed residues, especially when local-
ized on the extreme periphery of the structure, the coordi-
nate center of neighbors will deviate from the target residue,
which results in a larger LN value. In contrast, when a tar-
get residue is on a concave surface, it will be partially sur-
rounded by neighbors and consequently have a smaller LN
value. An illustration of LN of residues on concave and con-
vex surfaces at a global scale is shown in Supplementary
Figure S1. Note that LN values of buried residues can fluc-
tuate above zero, and concave residues can have LN values
close to zero, depending on the spatial distribution of their
neighboring residues, which are visible to the target residue
at a given scale.

To compensate for residue position information lost after
taking Euclidean norms of Laplacian coordinates, a range
of � values was used. By varying �, the topology of a residue
could be described on various scales. A small � measures de-
formation of each residue locally, with only spatially close
but not covalently bound neighbors being included; a large
� will describe residue deformations on a more global level.
Finally, each residue was encoded into a multidimensional
vector indexed by the scale. Distance distributions between
all C� atom pairs were determined first. Distances at 0.0,
0.25, 0.5, 0.75 and 1.0 quantile positions of the distribution
were used to compute LN scale indices. For each protein,
LN values were re-normalized by the largest value calcu-
lated under a given scale. A sliding window, incremented by
1, was used and the LN value of a given residue was encoded
in a feature vector of length 11.
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We next devised a novel way to calculate the normalized
accessible surface area (ASA) of residues. Absolute ASA
was computed by the NACCESS program (http://www.ra.
cs.uni-tuebingen.de/SNNS). The ASA calculation was car-
ried out for each protein chain isolated from other chains.
Normalization of each residue was done by dividing the
ASA values of the residue in the protein structure by the
corresponding value of the isolated residue. Coordinates of
each residue were extracted from the protein chain. Their
ASAs were calculated in the absence of all other residues.
After that, total ASA (all atom abs), ASA of the side chain
atoms (total side abs) and ASA of the main chain atoms
(main chain abs) were computed and were normalized by
the all atom abs value of the single residue by itself. In this
way, the ASA feature of each residue was represented by a
row vector of length 3. Each column of an ASA feature vec-
tor (all atom abs, total side abs and main chain abs) was
then re-normalized by the largest value in that column. A
neighbor list of length 11 (including the target residue itself
and its 10 nearest neighbors) was used to encode the ASA
of each residue.

In addition, we checked the residue composition of
RNA-binding surfaces in terms of their physicochemical
properties. Here, again, target residue spatial neighbors
were included. The R package ‘seqinr’ (23) was used to
translate residue neighbor sequences into 10 physicochem-
ical features; namely, ‘tiny’, ‘small’, ‘aliphatic’, ‘aromatic’,
‘polar’, ‘non-polar’, ‘charged’, ‘acidic’, ‘basic’, plus the iso-
electric point of the residue. A 21-residue neighbor list (in-
cluding the target residue itself) was used.

Lastly, DSSP (24) predicted secondary structure was used
as a feature. An eight-bit binary feature vector was used to
encode different types of secondary structures defined by
DSSP, namely -, B, E, G, H, I, S, T. Again, a sliding window
approach, incremented by 1, was used.

Validation by homology models and independent dataset

Performance was measured by means of ROC curves, Area
Under the ROC Curve (AUC), Precision-Recall (PR) curve,
Specificity [+] (also known as Precision), Specificity [−],
Sensitivity, F-measurement and Matthews Correlation Co-
efficient (MCC), based on the number of true positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN). Measures used were defined are as follows:

Sensitivity(Recall) = TP
TP+FN ,

Specificity[−] = TN
TN+FP ,

Specificity[+](Pr ecision) = TP
TP+FP ,

MCC = TP×TN−FP×FN√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

,

F − score = 2×Pr ecision×Sensitivity
Pr ecision+Sensitivity .

To validate the robustness of our method, we tested the
performance of our model using homology models in place
of experimentally determined RNA-bound structures. The
program Spanner (25) was used to render HHpred (26)
alignments into structural models. Homologous templates
with different sequence similarities (the top, <100%, <90%,
<50% and <30% identity) were selected to build structures.

In addition, three sequence-representative standard
benchmarks (RB106 adapted from (27), RB144 adapted

from (28) and RB198 adapted from (29)) constructed by
the authors of predictor RNABindR 2.0 (16) were used
for comparison. We did training and testing on these three
benchmarks by applying our feature-coding scheme and
evaluated the residue-based and protein-based performance
on structure data as described previously (16). Further-
more, the performance of aaRNA and BindN+ was com-
pared by predicting RNA binding sites on pooled and
redundancy-reduced RNABindR 2.0 datasets under a 3.5
Å distance cutoff. Two runs of redundancy removal were
applied by using BLASTCLUST at a 30% sequence iden-
tity. Three benchmark sets (RB106, RB144 and RB198)
were merged and then clustered. After that, representa-
tive sequences (from each cluster, one chain was ran-
domly selected) were clustered again with the sequences for
aaRNA/BindN+ training. The final test dataset was com-
posed of 46 representative chains, which did not cluster with
any of the training sequences.

In addition, we tested our model on an independent
dataset from study (30) by prediction and compared our
performance with methods reviewed in studies (16) and
(30), which included a best-performing meta-predictor
built from other sequence-based predictors (PiRaNhA (9),
PPRInt (31) and BindN+ (10)), and three structure-based
predictors (KYG (13), DRNA (14) and OPRA (15)). More-
over, we constructed an up-to-date test benchmark by col-
lecting protein–RNA complexes that were solved by X-ray
crystallography or nuclear magnetic resonance and released
between June 2013 and June 2014. RNA-contacting protein
sequences were defined as mentioned in Section ”Materi-
als and Methods, Dataset and contact profile”, and clus-
tered using BLASTCLUST at a 30% sequence identity level,
which resulted in 154 clusters. Redundancy between repre-
sentative sequences (with the largest number of RNA con-
tacts in individual clusters) and sequences used for train-
ing was further reduced by retaining only representative
chains sharing a maximum sequence identity below 30%
when compared with training sequences. Finally, 67 protein
sequences (RB67 benchmark) were selected and tested by
different methods in the same way as the RB44 benchmark.
A complete list of RB67 dataset is available at the Supple-
mentary Material.

Web server

The aaRNA web server can be found at http://sysimm.ifrec.
osaka-u.ac.jp/aarna/.

RESULTS

As described in Materials and Methods, we quantified the
performance of each feature using ROC and PR curves, us-
ing two datasets. In the ‘non-ribosomal’ dataset, ribosomal
proteins were excluded; in the ‘full set’ ribosomal proteins
were included. As a control, we use a network trained us-
ing the sequence features previously used by the SRCPred
method (12). In all cases, the parameter varied in the ROC
and PR curves is the cutoff value in the neural network out-
put above which RNA binding was predicted.

http://www.ra.cs.uni-tuebingen.de/SNNS
http://sysimm.ifrec.osaka-u.ac.jp/aarna/
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Statistics of protein–RNA interactions

The contact preferences between amino acid and ribonu-
cleotide residues were analyzed for the full dataset, and
compared with the results of previous studies (32,33). Fol-
lowing the 2001 work by Jones et al. (32), for a given amino
acid type, interface propensity was measured by compar-
ing the fraction of ASA in contact with RNA with the frac-
tion in contact with protein. The number of non-redundant
complexes has increased dramatically since 2001, which
has resulted in a significant change in the propensities of
protein–RNA interactions (Supplementary Figure S2C). In
particular, residues Arg, His, Lys, Trp and Tyr, when found
on protein surfaces, have a higher probability to mediate
RNA contacts than previously reported (32). A close look
at these contacts in terms of their hydrogen bonds results
in a generally similar pattern to that described in a 2011
study by Gupta et al. (33), which serves as a validation
of our representative dataset. In brief, the largest num-
ber of hydrogen bonds mediating protein–RNA contacts
takes place between protein side chains and RNA back-
bones (NS), as shown in Supplementary Figure S2A and
Table S1. Guanine and uracil are higher than background
levels for RNA side chain contacts (SS+SN), while cyto-
sine is lower. In contrast, cytosine is lower and guanine is
higher than background levels in RNA backbone contacts
with protein (Supplementary Figure S2B). Moreover, inter-
action between protein side chains and RNA side chains
(SS) favors charged (either positive or negative) or polar
amino acids, whereas side chains of positively charged and
aromatic residues interact more frequently with RNA back-
bones. Notably, the backbone of glycine mediates more con-
tacts than that of other amino acids (Supplementary Fig-
ure S2D).

The results in Supplementary Figure S2 are complemen-
tary to earlier studies by Kondo and Westhof, who car-
ried out a classification of base pairs and pseudo pairs ob-
served in RNA-ligand complexes in terms of interaction
edges (Watson–Crick, Hoogsteen or sugar-edge) of RNA
bases and the glycosidic bond orientations relative to hy-
drogen bonds (cis or trans) (34). In their later work (35), the
authors found that five kinds of amino acid residues (Asn,
Gln, Asp, Glu and Arg) were able to form pseudo pairs
with bases in a coplanar manner. When the interaction took
place between a peptide backbone and nucleotide bases, the
base adenine (A) was the most favorable. In addition, they
found that the Watson–Crick side of bases formed the ma-
jority of pseudo pairs. The Hoogsteen edge of purine bases
can bind to amino acid side chains both specifically (prefer-
ring G) or non-specifically (preferring A). The sugar edge of
bases, however, interacts rarely with side-chain or backbone
atoms (34,35).

Contributions from EC

The EC feature is illustrated in Figure 1A, using the class-
I Archaeoglobus fulgidus CCA-adding enzyme bound to a
tRNA fragment as an example. We found that for non-
ribosomal and full datasets, the EC feature could improve
the AUC by ∼1.3% and 0.8%, respectively, and also re-
sulted in a better PR curve (Supplementary Figure S3) than
the control method (sequence features used in the SRCPred

Figure 1. Novel features used in this work. (A) EC. A surface representa-
tion of the class-I A. fulgidus CCA-adding enzyme bound to a tRNA frag-
ment (PDB ID: 3OVB). A distance map between protein and bound RNA
with near (far) residues colored red (blue) is shown on the left. The EC
value with high (low) colored red (blue) is shown on the right. (B) LN under
a series of scales. LN values increase from blue to red. At each granularity
level, warmer colors indicate convex residues, while cooler color represents
concave residues. (C) Solvent ASA. A surface representation of RNase
Cas6 (PDB ID: 4ILL) is shown. The protein makes both side-chain and
backbone contacts with substrate RNA. Target residues (meshed) and nu-
cleotides are represented by opaque sticks, connected by hydrogen bonds
(dashed lines). The side chain of R268 protrudes and binds G15 (top). The
backbone of Y168, which is mostly buried and forms part of a cleft, inter-
acts with A5 (bottom). All figures of 3D structure representation in this
work were generated by PyMOL Molecular Graphics System, Version 1.5,
Schrödinger, LLC.

method (12)). In order to quantify the information con-
tained in each feature, we used EC and PSSM separately.
We took the substitution frequency of each residue to itself
in the PSSM profile, and normalized the frequencies via a
logistic operator. We also included the 21-bit sparse cod-
ing feature and the GAC feature. The resulting AUCs were
0.7277 and 0.7075, respectively, for the EC- and PSSM-
based model on the non-ribosomal dataset, and 0.8046
and 0.7942 on the complete dataset. These values verify
that the EC feature contains additional information not
found in the conservation values of the PSSM. We tested
different E-value thresholds (1E-3, 1E-5 and 1E-10) for
building MSA profiles, from which EC values were calcu-
lated. Using different E-values, a combination of E-values,
or building a PSSM-like substitution matrix with occur-
rence frequencies for each of the 20 amino acid types did
not result in an increase in performance. Therefore, the
default E-value threshold was set to 1E-3. It should be
noted that, depending on the number of homologous se-
quences in the database, the weight calculation step could
be time-consuming. We were able to greatly speed this pro-
cess up, however, by parallelization. After manually in-
specting many known protein–RNA complexes, we could
discern a rough correlation between residue conservation
and distance to the bound RNA. As shown in Supplemen-
tary Figure S4A, the mean distance between protein sur-
face residues and their bound RNAs was inversely related
to the EC values. Moreover, RNA-binding residues were
more enriched in large EC values than non-binding or back-
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ground residues (Supplementary Figure S4B). However, as
expected, conserved residues were not always near RNA
binding sites.

Describing structural features with normalized Laplacian co-
ordinates

We next investigated the effect of adding structural infor-
mation via LN coordinates, which are a description of the
protein based on graph theory with a single parameter (�)
that controls the resolution or granularity of the model (see
Materials and Methods). When taking norms of the Lapla-
cian coordinates, information regarding the absolute target
residue spatial position is lost. For this reason, a combina-
tion of the sequence-based control features and LN values
calculated under any given � value (global or local) failed
to augment the AUC of the ROC curve significantly. In-
terestingly, however, when we built up a multidimensional
LN vector at multiple � levels, the discrimination power
of the neural network was significantly enhanced. The rea-
son for this is that missing positional information due to
norm calculation was compensated for by the set of LN val-
ues, which contain geometric information. Simply speaking,
buried residues have a smaller average LN value than ex-
posed ones. For exposed residues under a given � value, a
large LN corresponds to a convex surface, while a small one
reflects a concave surface.

We next investigated the relationship between protein–
RNA distances and LN values, as well as the distribution
of LN values on global and local scales (Supplementary
Figure S5). On a global scale, as shown in Supplementary
Figure S5A, the median value and the deviation of dis-
tances between surface residues and RNA increased with
the normalized LN value (indicating a transition from con-
cave to convex from left to right, respectively). However,
as the LN value approached 1, the median distance de-
creased slightly. From the distribution patterns of LN val-
ues taken from RNA binding and non-binding residues, as
well as all surface residues (Supplementary Figure S5B), we
found that RNA-binding residues showed a statistically sig-
nificant (P-value < 1e-15) shift toward smaller LN values
when compared with non-binding residues or background
residues, which means that RNA is more likely to interact
with residues located on globally concave surfaces. Inter-
estingly, the frequency of RNA-binding residues with a LN
value close to 1 was also higher. These residues are located
at extremely convex points. Next, we checked the distribu-
tion of local LN values for RNA-binding residues interact-
ing with a globally concave surface (surface residues with
global LN values smaller than 0.45 as shown in Supplemen-
tary Figure S5B). We can see from Supplementary Figure
S5C that the distribution pattern shows two peaks; one ex-
ists at a relatively small local LN value, corresponding to
concave surfaces, while the other exists at a moderately large
value, indicating convex points. The frequency of contacts
for flatter regions (i.e. around 0.5) was lower.

After manually checking many structures, a general rule
could be summarized as follows: An RNA molecule is more
likely to bind to globally concave surfaces of a protein, and
to locally convex or concave sites within that milieu. On a lo-
cal scale, however, convex (i.e. protruding) residues are more

likely to mediate RNA contacts. In Figure 1B, LN values for
the cys4-CRISPR RNA complex (PDB entry 4AL5) at dif-
ferent � values are mapped onto the protein surface. ROC
and PR curves based on non-ribosomal and the full dataset
are given in Supplementary Figure S6. Here, the AUC in-
creased 3.3 and 1.6% for the non-ribosomal and full sets,
respectively, after combining the LN feature with the con-
trol sequence features.

Contributions from solvent ASA

We found that neither predicted absolute ASA nor relative
ASA normalized by the ASA of the corresponding amino
acid in an extended tripeptide (Ala-X-Ala) could noticeably
improve classifier performance, in agreement with another
study (16). This arises, in part, from the fact that RNA can
make contact with an exposed amino acid side chain even
when the backbone is buried or conversely with an exposed
backbone with a buried side chain, as illustrated in Fig-
ure 1C. Thus, overall residue ASA is not necessarily the best
predictor of RNA-binding propensity. In particular, in the
case of non-specific interactions involving the protein back-
bone, overall residue ASA can be much smaller than that
of the residue as a whole. Using our novel normalization
procedure, however, which splits the ASA into three com-
ponents (total, side chain and main chain), RNA-binding
and non-binding residues could be distinguished, with an
increase in the AUC of 1.9 and 1.3% for the non-ribosomal
and full sets, respectively (Supplementary Figure S7). Here,
a neighbor list of length 11 was used to include information
about residues in a local surface patch.

Physicochemical prosperities of neighboring residues and pre-
dicted secondary structure

We found that both physicochemical features encoded from
a neighboring residue list in an ascending distance order
(Supplementary Figure S8), or predicted secondary struc-
ture for a sequential residue fragment (Supplementary Fig-
ure S9) could modestly increase the performance of the neu-
ral network. For the physicochemical feature, a neighbor list
of length 21 was used. For the predicted secondary struc-
ture, a sliding window of size 5 was used.

Putting it all together

After combining the above-mentioned sequence (including
the terms used in the control method) and structural fea-
tures, we compared the performance of our model with that
using only the sequence-based control method. The number
of columns for each kind of feature and the size of frag-
ment window used (either a sequential window or a spa-
tial window) are summarized in Table 1. A performance
summary of individual features and all features combined
together can be found in Table 2. Finally for each coding
fragment window, a 668-column feature vector was used.
We found that our novel feature-coding scheme could sig-
nificantly increase the prediction performance not only in
terms of the AUC but also in terms of PR measurements
for both datasets, as shown in Figure 2 (non-ribosomal and
full ROC and PR curves for binary prediction) and Sup-
plementary Figures S10 and S11 (di-nucleotide curves for
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Figure 2. Performance of all features. (A) Non-ribosomal dataset. Blue
curves indicate the performance of the control method (sequence features
used in the SRCPred method (12)), and red curves show the performance
when all features are used. (B) Full dataset. By varying the output cutoff of
the classifier, the TP rate against the FP rate is plotted on the ROC curve
for each cutoff value. Similarly, the precision rate against the TP rate is
plotted on the PR curve for each cutoff value.

non-ribosomal and full sets). Importantly, contributions
from different features were approximately additive, result-
ing in an increase in the AUC of 6.8 and 4.1% for the non-
ribosomal and full sets, respectively, which indicates a low
redundancy between features. The new features that con-
tributed the most information were the LN and the normal-
ized ASA. When using the EC feature instead of the PSSM
feature, the performance decreased only slightly (data not
shown). This is a non-trivial result as the PSSM feature re-
quires 20 columns for each residue while the EC feature re-
quires just one. Therefore the novel features described here
are both information-rich and relatively compact. From the
PR plots, we can see that, when training with the non-
ribosomal dataset, the highest precision approached only
0.7 when sensitivity was extremely low. In contrast, the sen-
sitivity values estimated from the complete dataset under a
precision rate of 0.7 approached 1 (P-value of t-test < 1e-
12). In contrast, with the full dataset, which contains twice
the number of RNA binding sites, precision approached 1.0
at low sensitivity. Therefore, the neural network could learn
from ribosomal proteins in the full dataset and achieve a
better prediction even on non-ribosomal complexes. This
implies that, although ribosomal and non-ribosomal pro-
teins may be different in their RNA binding modes, they ap-
parently share common features as well. We only considered
RNA-binding residues under a 3.5 Å distance cutoff within
the same BU as ‘true’; consequently, non-binding residues
made up 89.4% of our RB205 dataset. This ratio was ∼85%
when using a 5 Å distance cutoff for RNA-binding residues.

In the best performing model (average sensitivity and speci-
ficity 0.775, sensitivity 0.763 and specificity 0.787) on the
RB205 dataset, non-binding residues were predicted to be
72.9%.

We next took a closer look at the reasons for FP and
FN predictions. We found that FP could be evolutionar-
ily conserved, exposed or charged, which could indicate a
role in mediating protein–protein interactions rather than
protein–RNA interactions. Though use of the LN feature
suppressed such FP to a great extent, some residues local-
ized at protein–protein interfaces that were chemically simi-
lar to RNA-binding residues were incorrectly positively pre-
dicted. With regard to the FN predictions, to a certain de-
gree these were due to the ASA term. That is, relatively
buried RNA-binding residues are harder to correctly iden-
tify as part of a binding site. Note that the relative im-
portance among RNA-binding residues is also a factor.
Some residues are crucial while others are more auxiliary.
Residues that surround other residues in strong RNA con-
tact are classified as RNA binding according to the distance
criterion but might play a more important role in support-
ing the structure of the binding site than in mediating RNA
contact directly. Our predictor overlooked some of these
supporting residues and aaRNA is expected to perform
better at identifying core binding residues than auxiliary
residues. Finally, some exposed and protruding residues in
RNA contact were predicted to be non-binding due their lo-
cal environment; after averaging over neighboring residues
the ASA of the protruding residue can be reduced.

Robustness to structural noise

Since the performance of structure-based classifiers could
be over-estimated when input structures are in their RNA-
bound conformations, we tested the robustness of our
model by using structures built by homology modeling us-
ing template structures selected within various sequence
identity thresholds. The distribution of templates under five
sequence identity thresholds is shown in Supplementary
Figure S12. The number of protein chains that was modeled
under different identity thresholds and their averaged root-
mean-square deviation from native structures are listed in
Supplementary Table S3. Note that even when using tem-
plates from the top group, where sequence identity can be
as high as 100%, predicted structures were not identical to
the template because we carried out energy minimization
on the models without RNA. Also, depending on the tem-
plate, the number of predicted residues differed in general,
especially when low sequence identity templates were used.
Therefore, under different sequence identity cutoffs, we re-
built the PDB dataset to include only residues that could be
reproduced in the model. Performance evaluated on the ho-
mology models built using the five different sequence iden-
tity thresholds are listed in Figure 3. We can see that, even
at a lowest sequence identity threshold (<30%), incorpo-
rating structural features was significantly better than us-
ing sequence features alone. Moreover, when high quality
but non-identical templates were used (identity <100%),
the AUC was nearly identical to that of the bound struc-
ture. These results imply that the aaRNA method is robust
against typical levels of input noise.



10094 Nucleic Acids Research, 2014, Vol. 42, No. 15

Table 1. Summary of feature columns and fragment sizes

Feature Name No. of columns No. of residues per fragment window

21-bit Sparse Coding 21 per residue 11 sequential residues (a sliding window of size 5)
GAC 20 per fragment whole protein sequence
PSSM 20 per residue 11 sequential residues
EC 1 per residue 11 sequential residues
LN 5 per residue 11 sequential residues
Normalized ASAs 3 per residue 11 spatial residues (a neighboring window of size 10)
Physicochemical (PC) property 10 per fragment 21 spatial residues (a neighboring window of size 20)
Predicted secondary structure 8 per residue 11 sequential residues

Since the GAC is calculated from a single protein sequence, for each coding fragment, a GAC vector will be appended. For the PC feature, for a coding
fragment a list of 21 neighboring residues will return 10 values.

Table 2. Performance summary of individual features and all features combined together

Feature name Non-ribosomal dataset Complete dataset

Sequence-based control (SBC) 0.728 +/−0.001 0.812 +/−0.001
SBC + EC 0.741 +/−0.001 0.8196 +/−0.0003
SBC + LN 0.761 +/−0.001 0.828 +/−0.001
SBC + Normalized ASAs 0.7468 +/−0.0004 0.8253 +/−0.0007
SBC + Physicochemical (PC) property 0.7424 +/−0.0007 0.820 +/−0.001
SBC + Predicted secondarystructure 0.7374 +/−0.0004 0.8185 +/−0.0008
All together 0.796 +/−0.001 0.8526 +/−0.0008

Performance is measured in terms of AUC (mean ± Std) evaluated from five repetitions of five-fold cross-validation. SBC method indicates the sequence
features that adapted from the SRCPred method (12).

Benchmark testing on RB106, RB144, RB198, RB44 and
RB67

According to a recent study using a 5 Å cutoff to define
RNA-binding (16), the AUC of different classifiers using
PSSM features and their derivatives varied from 0.77 to
0.81. The best-performing method was the predictor RN-
ABindR 2.0. In the aforementioned study, a balanced train-
ing dataset of positive and undersampled negative residues
was prepared, while in our tests the datasets represented the
actual distributions observed in the PDB, in which there are
far more non RNA-binding residues. Nevertheless, when
trained and tested on three standard benchmark datasets
(RB106, RB144 and RB198) and evaluated in the same
way (residue-based and protein-based evaluation on struc-
ture data), our additional features exhibited considerable
improvement over sequence-based features alone, and ex-
ceed the previously reported AUC limit of 0.81 by 2–3%,
as demonstrated in Figure 4. In Table 3 the results of these
three benchmark tests are summarized. Performance dif-
ferences were assessed both at the residue level (Bench-
mark [r]) and at the protein level (Benchmark [p]). The
AUC distribution of the protein-chain based evaluation is
shown in Supplementary Figure S13. In both residue-level
and protein-level assessments the improvement in perfor-
mance of aaRNA over the alternative methods was highly
significant (P-values <10−5 and <10−10, respectively). To
be complete, the number of RNA-binding and non-binding
residues in the three benchmark datasets collected under a
3.5 or 5 Å distance cutoff are listed in the Supplementary
Table S2. The performance of our model built from three
benchmark datasets using a <3.5 Å cutoff as the RNA-
binding definition can be found in Supplementary Figure
S14. When a smaller cutoff was used, performances of mod-
els on three benchmarks all increased.

In prediction tests, the same RNA-binding residue dis-
tance cutoff of 3.5 Å was used. Prediction comparison be-
tween aaRNA and BindN+ methods based on merged and
cleaned RNABindR 2.0 datasets is shown in Supplemen-
tary Figure S15. We can see that the aaRNA method out-
performed the BindN+ method in terms of AUC. In addi-
tion, when applying our model to the RB44 dataset, which
has no structures in common with our training dataset, our
model achieved better performance than the sequence and
structure-based methods tested in (16,30) in most cases.
Using a residue-based evaluation, the AUC, MCC and F-
score calculated from our predictions were 0.8445, 0.483
and 0.593 (see Table 4), respectively, in contrast to the au-
thor’s Meta-predictor (30), which achieved an AUC of 0.835
and an MCC of 0.460. This Meta-predictor was built from
three best-performing predictors out of seven sequence-
based methods evaluated in (30), and performed better than
any of its component methods. Using a protein-based eval-
uation, aaRNA achieved better performance than other se-
quence or structure-based predictors in terms of MCC ex-
cept the DRNA method, the MCC of which is close to and
slightly higher than the aaRNA method. We noticed that on
a protein basis, the structure-based method DRNA was ac-
curate when predicting proteins structurally similar to those
in the training set. When query structures were uncharac-
terized by the predictor before (e.g. the RB67 benchmark),
the prediction error was more substantial, as shown in Ta-
ble 5. In spite of the fact that the mean MCC of the DRNA
on the RB44 dataset is still high after making average over
all protein chains, the prediction accuracy is limited when
new protein structures are introduced. A detailed compar-
ison of Accuracy, Specificity [+] (Precision), Sensitivity, F-
measure, MCC and AUC (if available from the predictors)
on the RB44 benchmark can be found in Table 4. A com-
parison of ROC and PR curves is given in Supplementary
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Table 3. Summary of benchmark (RB106, RB144 and RB198) results in terms of AUC (mean ± Std)

Benchmark [r] RNABindR 2.0 PSSM Sequence-based control aaRNA

RB106 0.81 0.776 ± 0.001 * 0.803 ± 0.001 * 0.8251 ± 0.0009
RB144 0.81 0.782 ± 0.001 * 0.801 ± 0.002 * 0.830 ± 0.001
RB198 0.80 0.7696 ± 0.0007 * 0.7974 ± 0.0007 * 0.8343 ± 0.0004

Benchmark [p] RNABindR 2.0 PSSM Sequence-based control aaRNA
RB106 0.74 0.721 ± 0.119 ** 0.735 ± 0.109 ** 0.765 ± 0.116
RB144 0.74 0.723 ± 0.118 ** 0.733 ± 0.111 ** 0.778 ± 0.105
RB198 0.73 0.716 ± 0.114 ** 0.738 ± 0.106 ** 0.784 ± 0.103

The corresponding ROC plots and AUC distribution patterns are given in Figure 4 (residue-based evaluation) and Supplementary Figure S13 (protein-
based evaluation), respectively. RNABindR 2.0 is the best-performing sequence-based method from various approaches evaluated in the work (16). Its
reported performance is listed. Sequence-based control method represents three sequence features of the aaRNA, which are adapted from the work SR-
CPred (12). In Benchmark [r], AUCs were measured on a protein-residue basis, and reported AUCs are the average results of five repetitions of five-fold
cross-validation. The average AUC of the aaRNA method is significantly greater than that of the PSSM or sequence-based control method using a t-test.
In Benchmark [p], AUCs were individually calculated for each protein chain, and a paired Wilcoxon test was applied to check whether the distribution of
the aaRNA AUC is shifted to the right relative to that of the PSSM and sequence-based control. The significance of differences between the alternative
methods and aaRNA is indicated by * for P-values < 10-5 and ** for P-values < 10-10.

Figure 3. Performance evaluation using homology models. The left panel
(A) shows the performance on the non-ribosomal set and the right panel
(B) shows the performance on the full set. The figure shows the perfor-
mance for the top, <100%, <90%, <50% and <30% homologs in sub-
figures. Since the number of residues generally decreases as the threshold
is lowered, performance is only comparable within a given set. The per-
formance using bound structures, homology models and sequence-based
control are indicated by ‘PDB’, ‘Homo’ and ‘Seq-CTRL’.

Figure S16A. Since the number of residues in the raw RB44
dataset and the homology model datasets are different, pre-
diction results for the two methods are not directly compa-

Figure 4. Performance of our feature-coding scheme on three benchmark
datasets under a 5 Å distance cutoff for RNA-binding residues. The three
benchmarks shown are RB106 (A), RB144 (B) and RB198 (C). The label
‘PSSM’ indicates the AUC achieved with PSSM features only. The label
‘Seq-CTRL’ indicates the result with the sequence-based control and the
label ‘aaRNA’ for all of our proposed features.
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Figure 5. Comparison of prediction results of aaRNA, BindN+ and SR-
CPred. The figure shows the Csy4-crRNA complex (PDB entry 4AL5).
(A) actual contact pattern of the complex. Red colored residues are in
RNA contact under a 3.5 Å cutoff. (B) mapping of aaRNA binary binding
propensities onto residues, with high (low) colored red (blue). (C) residues
in red are positively predicted by the aaRNA under a stringency of 85% ex-
pected specificity. (D–E) show the raw and the threshold-calibrated (85%
expected specificity), respectively, for BindN+ colored in the same way. (F)
prediction results for SRCPred for any di-nucleotide under a 0.05 expected
precision.

rable. However, as Supplementary Figure S16B shows, use
of homology models does not impair aaRNA AUC signifi-
cantly, suggesting that the performance reported here is ro-
bust against such small changes in the input data. When
testing different predictors on the most up-to-date RB67
benchmark, aaRNA performed better than all other pre-
dictors either on a residue- or a protein-basis. Structural
features introduced in aaRNA shed some light on the hall-
marks of RNA-binding residues common to various RNA-
binding proteins, which resulted in higher prediction power
when exploring novel proteins. Results for the RB67 bench-
mark are listed in Table 5. The corresponding AUC and PR
curves can be found in Supplementary Figure S17.

In addition to the benchmark tests presented above,
we provide an illustrative example in Figure 5, the Csy4-
crRNA complex. In general, sequence-based predictors
were more likely to predict charged, polar or aromatic
residues on the surface as positive binding sites regardless
of their local structural environment. In contrast, due to
spatial features introduced here, aaRNA gave more prior-
ity to such residues when localized in characteristic RNA
binding sites, as learned from the training set. Hence, the
aaRNA method could effectively decrease the number of
FP predictions, as compared to Figure 5C, E, and F. Im-
portantly, these structural features could facilitate identi-
fication of RNA binding sites that are invisible from the
point of view of the linear amino acid sequence. As a result,
more residues in actual RNA contact could be predicted
by aaRNA, and the resulting binding patch appeared more
native-like, as illustrated in Figure 5B and C.

aaRNA server

The aaRNA server was built by using the model trained
from the complete dataset (RB205). The aaRNA server ac-
cepts protein sequences or structures in FASTA and PDB

formats, respectively. Structures can be input as PDB iden-
tifiers or files in PDB format. When only sequence infor-
mation is provided, a homology model will be built in ad-
vance of the prediction. When a structure includes multi-
ple chains that function together as a complex, the com-
plex can be treated as a single entity or split into individ-
ual chains and the features will be computed accordingly.
The output includes binary (binding/non-binding) and di-
nucleotide propensities as a list of scores (between 0 and 1)
indexed by the residue number of the target protein. A plot
is also displayed showing the binary and di-nucleotide bind-
ing propensities. Users can refer to the di-nucleotide specific
binding probabilities in addition to the binary scores when
target RNA is enriched with a specific di-nucleotide com-
position or certain types of di-nucleotides are of interest. To
facilitate analysis, surface maps of EC, LN under local and
global scales, and binary binding propensities are displayed
side by side in JSmol Applets on the result page. A high-
quality surface map can be locally reproduced with Pymol
after downloading a tar-compressed file for this purpose.
Depending on the query protein, the time used for predic-
tion can vary significantly. Once a job is finished, users will
be notified by email with a link containing the result page.

DISCUSSION

In this study, we have looked at protein–RNA interactions
from the point of view of the protein and attempted to pre-
dict where and in what way an RNA molecule would bind.
If we consider the most general case, as represented by the
‘full’ dataset, Figure 2B indicates an AUC-based accuracy
of 85%. This value can be interpreted as the probability
that a randomly chosen ‘true’ RNA-binding residue will
be ranked above a randomly chosen ‘false’ RNA-binding
residue. If we examine the corresponding PR curve, we can
see that there is a roughly linear tradeoff between precision
(defined as the faction of predicted residues that are true
RNA binders) and recall (the fraction of true RNA binders
predicted). This, in turn, indicates that we can associate a
residue-level confidence with our predictions, a result that
is useful for downstream analysis. In terms of such analy-
sis, we currently envision two concrete outcomes from this
work, one global and one local.

A global approach is to use aaRNA to identify novel
RNA-binding proteins on a genomic scale. This would po-
tentially be beneficial if used in tandem with other high-
throughput analyses such as microarray or RNAseq-based
gene expression data. Since many such datasets have already
been made public for cell lines of interest to specific research
domains, such as immunology (https://www.immgen.org)
or cancer (http://lifesciencedb.jp/cged/), data mining for
RNA-binding proteins could facilitate further discrimina-
tion between transcriptional and post-transcriptional regu-
lation of gene expression. Currently, aaRNA has only been
applied to bona fide RNA-binding proteins, and no attempt
has been made to distinguish binders from non-binders.
However, such a binary classification would appear to be
a natural extension that is not biased toward obvious RNA
binding motifs.

A more local extension of the current work would be
to utilize predicted RNA binding propensities in protein–

https://www.immgen.org
http://lifesciencedb.jp/cged/
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Table 4. Summary of the independent benchmark RB44 results in terms of MCC

Evaluation Method Accuracy
Specificity [+]
(Precision)

Sensitivity
(Recall) F-measure MCC AUC

aaRNA 0.823 0.551 0.643 0.593 0.483 0.845
BindN+ 0.835 0.614 0.468 0.531 0.439 0.819

Residue- RNAbindR 2.0 0.805 0.514 0.532 0.523 0.401 0.801
based Seq-CTRL 0.804 0.510 0.600 0.552 0.430 0.807

KYG 0.771 0.449 0.638 0.527 0.392 0.808
DRNA 0.788 0.480 0.660 0.556 0.430 N/A
OPRA 0.746 0.403 0.551 0.465 0.311 N/A
aaRNA 0.793 0.477 0.625 0.525 0.395 0.819
BindN+ 0.755 0.429 0.699 0.520 0.380 0.791 *

Protein- RNAbindR 2.0 0.737 0.415 0.593 0.474 0.326 0.761 **
based Seq-CTRL 0.763 0.459 0.547 0.473 0.343 0.782 ***

KYG 0.727 0.397 0.672 0.486 0.334 0.775 ****
DRNA 0.776 0.482 0.618 0.521 0.400 N/A
OPRA 0.727 0.346 0.467 0.362 0.211 N/A

The same RNA-binding residue distance cutoff of 3.5 Å was used. Two evaluation methods (residue-based and protein-based) are used to estimate the
performance of different predictors. Because the output of DRNA and OPRA methods provides no score describing residues’ RNA-binding propensities,
an ROC analysis cannot be performed to estimate their AUCs. Except the DRNA method evaluated on a protein basis, which got a slightly higher
MCC, aaRNA achieved better MCCs and AUCs than other sequence or structure-based methods, both in residue-based and protein-based performance
evaluation. Paired Wilcoxon tests on protein-averaged AUCs of aaRNA and other methods indicated significant differences (P* < 3e-4, P** < 8e-7, P***
< 5e-8 and P**** < 2e-4).

Table 5. Summary of the independent benchmark RB67 results in terms of MCC

Evaluation Method Accuracy
Specificity [+]
(Precision)

Sensitivity
(Recall) F-measure MCC AUC

aaRNA 0.882 0.437 0.494 0.464 0.399 0.842
BindN+ 0.862 0.372 0.491 0.423 0.351 0.814

Residue- RNAbindR 2.0 0.867 0.376 0.438 0.404 0.331 0.798
based Seq-CTRL 0.886 0.443 0.401 0.421 0.358 0.811

KYG 0.804 0.274 0.542 0.364 0.284 0.780
DRNA 0.842 0.298 0.392 0.339 0.254 N/A
OPRA 0.843 0.301 0.403 0.345 0.261 N/A
aaRNA 0.844 0.428 0.449 0.398 0.323 0.814
BindN+ 0.828 0.377 0.463 0.397 0.301 0.780 *

Protein- RNAbindR 2.0 0.750 0.296 0.616 0.372 0.272 0.764 **
based Seq-CTRL 0.797 0.355 0.488 0.372 0.286 0.787 ***

KYG 0.769 0.298 0.505 0.349 0.240 0.716 ****
DRNA 0.795 0.319 0.397 0.331 0.229 N/A
OPRA 0.797 0.242 0.259 0.203 0.116 N/A

Different predictors were compared in the same way as the RB44 benchmark. When tested on this up-to-date benchmark, the aaRNA got a superior
performance than all others. Paired Wilcoxon tests on protein-averaged AUCs of aaRNA and other methods indicated significant differences (P* < 2e-4,
P** < 2e-5, P*** < 7e-5 and P**** < 4e-9).

RNA docking simulations. Current docking methods are
not optimized for protein–RNA interactions and there is
no standard statistics-based potential for such studies. Ob-
vious contributions to the binding energy, such as electro-
statics, surface burial, etc., can be computed, but there is
not currently an established framework for combining them
into an overall score. The importance of charged, polar
and aromatic protein residues to RNA-binding has been
reported previously (36,37); however, considering the fact
that the number of possible Van der Waals contacts be-
tween protein and target RNA (∼92% of total interactions)
exceeds by far the number of hydrogen bond contacts, an
equally important factor to protein–RNA interaction could
be shape complementarity at the binding interface. Since
RNA is a highly flexible molecule, it makes practical sense
to map RNA-binding propensities onto relatively rigid pro-
tein molecular surfaces. RNA-folding methods in combina-
tion with flexible docking could then be used to generate

models for downstream experimental validation. This type
of approach would be particularly attractive for transient
protein–RNA interactions, which are likely to occur in situ-
ations such as regulation of mRNA decay, host-pathogen
interactions and processing of noncoding RNAs. Along
these lines, one way of improving prediction accuracy will
be to take RNA folding into consideration. While this will
by no means be easy, aaRNA provides a foundation for such
future endeavors.
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