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Abstract
Multiple primary outcomes are sometimes collected and analysed in randomised
controlled trials (RCTs), and are used in favour of a single outcome. By collect-
ing multiple primary outcomes, it is possible to fully evaluate the effect that an
intervention has for a given disease process. A simple approach to analysingmul-
tiple outcomes is to consider each outcome separately, however, this approach
does not account for any pairwise correlations between the outcomes. Any cases
with missing values must be ignored, unless an additional imputation step is
performed. Alternatively, multivariate methods that explicitly model the pair-
wise correlations between the outcomes may be more efficient when some of
the outcomes have missing values. In this paper, we present an overview of rel-
evant methods that can be used to analyse multiple outcome measures in RCTs,
including methods based on multivariate multilevel (MM) models. We perform
simulation studies to evaluate the bias in the estimates of the intervention effects
and the power of detecting true intervention effects observedwhenusing selected
methods. Different simulation scenarios were constructed by varying the num-
ber of outcomes, the type of outcomes, the degree of correlations between the
outcomes and the proportions and mechanisms of missing data. We compare
multivariate methods to univariate methods with and without multiple imputa-
tion.When there are strong correlations between the outcomemeasures (ρ> .4),
our simulation studies suggest that there are small power gains when using the
MM model when compared to analysing the outcome measures separately. In
contrast, when there are weak correlations (ρ < .4), the power is reduced when
using univariatemethodswithmultiple imputationwhen compared to analysing
the outcome measures separately.
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1 INTRODUCTION

In most clinical trials, a single primary outcome is specified to investigate the effect of a health intervention and
this is often sufficient to determine whether the intervention is effective. However, for many diseases and disorders,
a patient’s health status cannot be adequately quantified using a single primary outcome. Examples include mental
health disorders, stroke (Mayo & Scott, 2011) and chronic obstructive pulmonary disease (COPD) (Agusti & Vestbo, 2011;
De Los Reyes, Kundey, & Wang, 2011; Teixeira-Pinto, Siddique, Gibbons, & Normand, 2009). Therefore, in these dis-
ease areas, multiple primary outcomes may be required to provide a comprehensive understanding of the effects of an
intervention.
These multiple outcomes may be of the same data type. For example, several continuous outcomes may be measured

to quantify cognitive and behavioural components in order to evaluate the effect of cognitive behavioural therapy on
patients with a depressive disorder. Alternatively, the outcomes may be of different data types. For example, researchers
might measure a continuous quality of life outcome and a binary outcome to indicate symptom relapse when evaluating
the effect of an antipsychotic drug on people with schizophrenia.
However, missing outcome data are a common problem for randomised controlled trials (RCTs) since it is not always

possible to measure all specified primary outcomes for all participants. In fact, a review of published trials showed that
outcome data weremissing in themajority of trials (Bell, Fiero, Horton, &Hsu, 2014). Missing outcome data will generally
result in a loss of power and may lead to biased estimates of the effect of the intervention. For example, patients in a
smoking cessation trial may bemore likely to drop out if they continue to smoke, and therefore the patients with observed
outcome data may not be a representative sample.
Several approaches have been used to analyse trials withmultiple outcomes in the presence of missing data. A common

approach, which is appealing due its simplicity, has been to analyse the outcomes separately within a univariate frame-
work (Vickerstaff, Ambler, King, Nazareth, & Omar, 2015). Patients are typically omitted from any analysis for which
they have missing outcome data. However, this approach does not account for the correlation between the outcomes and
consequently the precision of the estimates and the powermay be lower than that achieved by other approaches (Teixeira-
Pinto et al., 2009). A variation on this approach is to use multiple imputation to impute missing outcome data prior to
univariate analysis of the outcomes (White, Royston, & Wood, 2011). An advantage of this approach is that all outcomes
may be included in the imputation model and hence the correlation between the outcomes may be accounted for (White
et al., 2011).
More advanced approaches include the use of multivariate methods such as the multivariate multilevel (MM) model

and multivariate regression. These methods have been used to analyse examination results in schools (Goldstein
et al., 1993; Yang, Goldstein, Browne, & Woodhouse, 2002), crime trends (Mohan, Twigg, & Taylor, 2011; Tseloni &
Zarafonitou, 2008) and health-related behaviour (Maas, Verheij, Spreeuwenberg, & Groenewegen, 2008). However, the
use of these methods in trials has been limited despite their potential to increase power (Snijders & Bosker, 2012). For
example, the MM model has occasionally been used for exploratory analyses in clinical trials (Hassiotis et al., 2009;
King et al., 2002).
Our recent review of published trials in neurology and psychiatry showed that multiple primary outcomes were com-

monly used but often inadequately analysed (Vickerstaff et al., 2015).
When analysing multiple outcomes in a trial, it is important to control the familywise error rate (FWER), which is

the probability of obtaining at least one false positive result across the outcomes. A common approach to control the
FWER is to adjust the p-values produced by each statistical test (Dmitrienko & D’Agostino, 2013). Another important
consideration for a trial with multiple primary outcomes is the definition of power since there are a number of ways that
this may be defined. When the objective of the trial is to detect an effect for at least one of the specified outcomes, it is
recommended to use the disjunctive power (Bretz, Hothorn, &Westfall, 2010; Dmitrienko, Tamhane, &Bretz, 2009)which
is the probability of detecting at least one true intervention effect across the outcomes as statistically significant (Westfall,
Tobias, & Wolfinger, 2011).
In this paper, we compare univariate andmultivariatemethods for the analysis of clinical trials with correlatedmultiple

primary outcomes in the presence of missing data. The paper is structured as follows. First, we describe two motivating
case studies. Thenwepresent an overviewof relevantmethods to analyse trialswith correlatedmultiple primary outcomes.
Finally, we present the results of a simulation study to compare the bias, power and FWER achieved by some of these
methods.
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2 MOTIVATING EXAMPLES

In this section, we describe two clinical trials that will be used to illustrate the different approaches to analysis. The first
trial has three continuous outcomes whereas the second has a mixture of continuous and binary outcomes.

2.1 Laser in glaucoma and ocular hypertension trial, LiGHT

LiGHT is a two-arm, individually RCT (Gazzard et al., 2019) that recruited 718 patients with ocular hypertension or glau-
coma taken from six centres across the United Kingdom. The primary outcome is EQ-5D, which measures quality of life.
In addition, there are two glaucoma-specific quality of life outcomes: Glaucoma Quality of Life (GQL) and Glaucoma
Utility Index (GUI). There are strong correlations between the baseline values of these three outcomes (EQ-5D and GQL
r=−0.51; EQ-5D and GUI r= 0.51; GQL and GUI r=−0.72). At 24-month follow-up, 652 patients provided some outcome
data although only 586 participants provided data on all three outcomes. In total, 652 (9% missing), 586 (18% missing) and
602 (16% missing) patients provided data for EQ-5D, GQL and GUI, respectively.

2.2 Ten Top Tips (10TT) trial

The 10TT is a two-arm, individually RCT (Beeken et al., 2012, 2017) that recruited 537 obese patients from 14 general prac-
tices across England. The aim of the trial was to investigate the effect of the 10TT intervention in primary care on obesity,
where the intervention consisted of a leaflet called ‘Ten Top Tips’ listing target behaviours alongside advice on repetition
and context stability (Beeken et al., 2012). The primary outcome is weight change (kg) and two important secondary out-
comes are change inwaist circumference (cm) and blood glucose level (mmol/L).Weight change andwaist circumferences
are continuous outcomes whereas blood glucose level is binary after being categorised into ‘standard’ and ‘high’ groups.
High blood glucose is defined as levels greater than 7.0 mmol/L (Organisation, 2018) with 18% of the trial participants
categorised in this group. Correlation coefficients measured at baseline show that weight is strongly correlated with waist
circumference (𝑟 = 0.78). There is a weak/moderate correlation between weight and blood glucose level (𝑟 = 0.28) and
blood glucose level and waist circumference (𝑟 = 0.36). At 3 months, 388 participants provided data on at least one out-
come variable, with 383 (29% missing), 378 (30% missing) and 330 (39% missing) values provided for weight change, waist
circumference and blood glucose level, respectively.

3 STATISTICALMETHODS FOR THE ANALYSIS OFMULTIPLE OUTCOMES

In this section, we briefly describe relevant methods that have been proposed to analyse multiple correlated outcomes in
clinical trials. Let us consider a two-arm trial with 𝑛 trial participants and 𝑚 correlated primary outcomes. The 𝑖th trial
participant is randomly assigned to either the intervention group ( 𝑥𝑖 = 1) or the control group ( 𝑥𝑖 = 0), for 𝑖 = 1, … , 𝑛.
Let 𝑌𝑖𝑗 be the value of the 𝑗th outcome for the 𝑖th participant and 𝛽1𝑗 represents the effect of the intervention on the 𝑗th
outcome. The aim of the trial is to test the null hypotheses𝐻0𝑗 ∶ 𝛽1𝑗 = 0 for 𝑗 = 1, … , 𝑚, where the 𝑗th null hypothesis
states that the intervention has no effect on the 𝑗th outcome. A test statistic 𝑡𝑗 is used to test each null hypothesis𝐻0𝑗 and
𝑝𝑗 is the corresponding unadjusted p-value. Further suppose that there is an overall null hypothesis 𝐻 (𝑚) =

⋂𝑚

𝑗=1
𝐻𝑗

and that the joint test statistic (𝑡1, … , 𝑡𝑚) has an m-variate distribution. Statistical significance is set to 𝛼. For clarity, the
subscript 𝑖 for participants is omitted inmost of the following notation and themodels include no covariates in addition to
that for the intervention. Unless otherwise stated, we consider only disjunctive power and hence an intervention is shown
to be effective if a statistically significant result is found for at least one outcome.

3.1 Combined outcome

One straightforward approach to analysing multiple outcomes is to combine the outcomes into a single composite out-
come. For example, to combine two time-to-event outcomes, we might consider the time until the first event (Dmitrienko
et al., 2009). An example of this might be time from randomisation until either nonfatal ischemic stroke, fatal ischemic
stroke or early death. The composite outcome approach avoids testing outcomes separately and the need to adjust p-values
(Phillips &Haudiquet, 2003). The composite outcome needs to be specified before the trial starts and all of its components
should be of equal importance when assessing the effect of the intervention (Montori et al., 2005). A composite outcome
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may not be appropriate when the effects of an intervention differ in magnitude and/or direction across the outcomes
(Pogue, Devereaux, Thabane, & Yusuf, 2012). In particular, the latter may result in a large loss of power.

3.2 Analysing outcomes separately

As discussed earlier, a common approach to analysing multiple outcomes is to analyse each outcome separately within a
univariate framework. However, any correlations between the outcomes are not used and an extra imputation step may
be required in the presence of missing data.

3.3 Multivariate analysis

More advanced techniques, including multivariate methods (Goldstein, 2011), have been proposed that enable multiples
outcomes to be analysed simultaneously taking into account the correlations between them (Teixeira-Pinto & Normand,
2009). The use of these methods could potentially lead to improved precision and greater power (McCulloch, 2008) and
hence smaller sample sizes. In addition, depending on the objective of the trial, we may also estimate an overall effect of
the intervention across outcomes, as well as a separate effect for each outcome.

3.3.1 Global statistical tests

Another multivariate approach is to use a global testing procedure to estimate an overall effect of the intervention across
outcomes, with the trial deemed a success if the overall effect is statistically significant. Conceptually, the interpretation
of results obtained from global test procedures and the analysis of composite outcomes are similar, and both avoid the
issues associated with testing outcomes separately. However, unlike composite outcomes, global test procedures account
for the correlations between outcomes. Methods include themultivariate analysis of variance (MANOVA), the one-degree
of freedom global test developed by Roy (Roy, Lin, & Ryan, 2003) and the test statistics developed by O’Brien (O’Brien,
1984) and extended by Pocock et al. (Pocock, 1997). Global testing procedures require balanced data across all outcomes
and will omit observations if any outcome values are missing. Given this limitation, global testing procedures are not
widely used in clinical trials and therefore are not discussed further.

3.3.2 Multivariate regression

Multivariate regression is an extension of multiple regression that allows for multiple outcomes of the same type to be
analysed. For example, this approach may be used to analyse several continuous or several binary outcomes. Multivariate
regression also requires balanced data across the outcomes.

3.3.3 Factorisation modelling

This approach involves factorising the joint distribution of two correlated outcomes into a marginal distribution and a
conditional distribution. Univariate (UV) models can then be fitted to both components of this factorisation (Teixeira-
Pinto & Harezlak, 2013). It is possible to use different types of outcomes within this framework although the estimated
intervention effects are likely to be different from those obtained by analysing the outcomes separately because of different
distributional assumptions.
With two correlated outcomes, one continuous (𝑌1) and one binary (𝑌2), we can use one of the two possible fac-

torisations of their joint distribution 𝑓𝑌1, 𝑌2
(𝑦1, 𝑦2) = 𝑓𝑌1 | 𝑌2

(𝑦1|𝑦2)𝑓𝑌2
(𝑦2). Fitzmaurice and Laird (1995) describe a

factorisation model which uses a linear model for 𝑌1 and a probit model for 𝑌2, and includes a covariate for intervention
group. The model is

𝑌1 = 𝛽01 + 𝛽11𝑥 + 𝜏 (𝑌2 − 𝜇2) + ∈1,

𝑝𝑟𝑜𝑏𝑖𝑡 (𝜇2) = 𝛽02 + 𝛽12 𝑥,
(1)

where ∈1 ∼ 𝑁(0, 𝜎2
𝑐 ) is a normally distributed random variable with mean zero and variance 𝜎2

𝑐 , and 𝜏 quantifies
the association between 𝑌1 and 𝑌2. Catalano and Ryan (1992) propose the ‘reverse’ of this model which uses the
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other possible factorisation 𝑓𝑌1, 𝑌2
(𝑦1, 𝑦2) = 𝑓𝑌1

(𝑦1)𝑓𝑌2 | 𝑌1
(𝑦2|𝑦1). This is described in Teixeira-Pinto and Hare-

zlak (2013). At present, there is no guidance on how to analyse more than two outcomes using the factorisation
model.

3.3.4 Latent modelling

Several researchers have suggestedmethods that use latent variables (LVs) tomodel multiple correlated outcomes, includ-
ing McCulloch (2008), Sammel, Ryan, and Legler (1997) and Dunson (2000). McCulloch (2008) suggests specifying a ran-
dom effect 𝑙 that is shared across outcomes. Assuming we have one continuous normally distributed outcome (𝑌1) and a
binary outcome (𝑌2), the model is

𝑌1 = 𝛽01 + 𝛽11𝑥 + 𝑙 + ∈1

𝑃 (𝑌2 = 1) = 𝜙 (𝛽02 + 𝛽12𝑥 + 𝜆𝑙) ,
(2)

where 𝑒1 ∼ 𝑁(0, 𝜎2
1
), 𝑙 ∼ 𝑁(0, 𝜎2

𝑙
) and 𝜎2

1
and 𝜎2

𝑙
are unknown variances. We assume that the LV 𝑙 completely specifies

the pairwise correlation between the outcomes and hence, conditional on this variable, the two outcomes are independent.
The parameter 𝜆 accounts for the fact that the linear predictors for𝑌1 and𝑌2 are on different scales andwill have different
variances.
The estimated effects of the intervention from this model are conditional on the LV and consequently they may not

be comparable to the estimates obtained from the other methods discussed. To obtain estimates for binary outcomes
that are comparable to those obtained from univariate analysis, we divide the regression coefficient 𝛽12 by

√
𝜆2𝜎2

𝑙
+ 𝜎2

2

(Teixeira-Pinto & Normand, 2009), where 𝜎2
2
is fixed to 1 if a probit link function is used. A detailed discussion regard-

ing coefficient adjustments can be found in Teixeira-Pinto and Normand (2008). Note that in model (2), there are three
variance–covariance parameters (𝜎2

1
, 𝜎2

𝑙
and 𝜆) that need to be estimated. However, there are only two quantities we can

use to estimate these parameters and hence, it is necessary to impose an additional constraint to ensure that the model
is not over parameterised and the model parameters are identifiable (Teixeira-Pinto & Normand, 2009). One option is
to fix the variance of the LV 𝜎2

𝑙
. A similar restriction is needed when analysing multiple continuous or multiple binary

outcomes. McCulloch (2008) also investigated the use of this model for other types of outcomes. Sammel et al. (1997) dis-
cuss another LV model for mixed discrete and continuous outcomes which allows the use of any distribution from the
exponential family.

3.3.5 The MMmodel

The MM model has been suggested as another approach to analyse correlated multiple outcomes. In the MM model,
multiple outcomes are considered to be nested within individuals and are treated in a similar manner to how repeated
measurements are treated within the multilevel modelling framework (Goldstein, 2011, Goldstein, Carpenter, Kenward,
& Levin, 2009). For two continuous outcomes 𝑌1 and 𝑌2, the following model is used:

𝑌𝑗 = 𝑧1𝑗 (𝛽01 + 𝛽11𝑥 + ∈1 ) + 𝑧2𝑗(𝛽02 + 𝛽12𝑥 + ∈2 ),

𝑧1𝑗 = 1 if𝑗 = 1 and 𝑧1𝑗 = 0 otherwise,

𝑧2𝑗 = 1 − 𝑧1𝑗,

(3)

where 𝑧𝑘𝑗 is an indicator for outcome 𝑌𝑗 and ∈𝑗 ∼ 𝑁(0,𝛀𝑢)is the random error for the level two structure where 𝛀𝑢 is
the unknown covariance matrix. Level one variation is not specified as the level exists solely to define the multivariate
structure. The formulation as a multilevel model allows for estimation of a covariance matrix even if some of the outcome
data are missing, as long as missingness at random (Goldstein, 2011). In the above model, two intervention effects are
specified, one for each outcome. However, a common effect across both outcomes can also be specified. In addition,
the model can handle mixed outcome types (Goldstein et al., 2009).
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TABLE 1 The simulation factors

Variable Simulation factors
Number of outcomes 2 or 4
Outcome type Continuous; binary; mixed (half-continuous and half-binary)
Correlation between
outcomes

.0, .2, .4, .6, .8

Effect size (ES) of
intervention effect

Continuous outcomes
Equal: ES = 0.35 for all outcomes.
Varying: ES = (0.2, 0.4)T or ES = (0.1, 0.2, 0.3, 0.4)T for two and four outcomes, respectively.

Binary outcomes
Equal: 50% and 65% event rate in control and intervention arms, respectively, for all outcomes.

Mixed outcomes
Constant: ES = 0.35 for all outcomes.

Missing data
mechanism

Missing completely at random (MCAR), missing at random (MAR), missing not at random (MNAR)

Percentage of missing
data values

Low and high levels of missingness.
Percentages varied on depending on the missingness mechanisms and the number of outcomes, as
described below:

MCAR and MAR, two outcomes
Low: 15% and 25% missing values in outcomes 1 and 2
High: 30% and 50% missing values in outcomes 1 and 2

MCAR and MAR, four outcomes
Low: 15%, 15%, 25% and 25% missing values in outcomes 1, 2, 3 and 4
High: 20%, 30%, 40% and 50% missing values in outcomes 1, 2, 3 and 4

MNAR, two outcomes
Low: 15% missing values in outcome 1
High: 50% missing values in outcome 1
High overlapping: 30% and 50% of observations in outcomes 1 and 2 were missing.

MNAR, four outcomes
Low: 15% missing values in outcomes 1 and 2
High: 50% missing values in outcomes 1 and 2
High overlapping: 20%, 30%, 40% and 50% of observations were missing for each of the outcomes
respectively.

3.3.6 Summary of the multivariate methods

The factorisation, LV andMMmodels can handle continuous outcomes, binary outcomes or amixture of both. In addition,
these models can handle nonoverlapping missingness, where values may be missing for some but not all of some of the
outcomes. That is, the number of observations does not need to be balanced across outcomes. Also, the factorisation, LV
and MMmodels can easily be extended to handle several outcomes although the factorisation model can be cumbersome
with more than two outcomes.

4 SIMULATION STUDY

In this section, we use simulation to compare the MM and LV models to univariate models with (MI+UV) and with-
out multiple imputation (UV) with respect to power and FWER. Recommendations are made regarding which of these
methods provide the most power while controlling the FWER. Several scenarios were considered by varying the number
of outcomes, the outcome type, the correlation between outcomes, the size of the intervention effect, the missing data
mechanism and the percentage of missing data values. Details of the different simulation factors are described in Table 1.
We used the following model to simulate outcome values for two continuous outcomes 𝐘𝑖 = (𝑌𝑖,1, 𝑌𝑖,2),

𝐘𝑖 = 𝛃0 + 𝛃1𝑥𝑖 + 𝜖𝑖,
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TABLE 2 The percentage of missing observations per quartile used to simulate MNAR data

Percentage of observations missing per quartilePercentage of missing
observations First Second Third Fourth
0% 0 0 0 0
15% 0 7.5 22.5 30
20% 0 10 30 40
30% 0 15 45 60
40% 0 20 60 80
50% 0 25 75 100

where 𝑥𝑖 indicates whether participant 𝑖 received intervention (𝑥𝑖 = 1) or control (𝑥𝑖 = 0), 𝛽1 = ( 𝛽11, 𝛽12 )
𝑇 is a vector

of intervention effects for each outcome, ∈𝐢 are errors which are realisations of a multivariate normal distribution

𝜖𝑖 =
(
𝜖𝑖,1, 𝜖𝑖,2

)𝑇
∼ 𝑁

( (
0

0

)
,

(
1 𝜌

𝜌 1

) )
,

where 𝜌 is the correlation between outcomes. Thismodelwas extended in an obviousway to simulate four continuous out-
comes. A similar approach was used to simulate binary outcomes, with an extra final step to dichotomise the continuous
outcomes at zero.
The sample size was set at 260 for the continuous and mixed scenarios and 340 for the binary scenarios, with equal

numbers of participants being allocated to the two intervention groups. These numbers were obtained from sample size
calculations for a single outcome using the equal effect sizes in Table 1, 5% statistical significance and 80% power.
We introduced missing data under a variety of assumptions. We use three forms of missingness: (a) missingness com-

pletely at random (MCAR), (b)missing at random (MAR) and (c)missing not at random (MNAR).Missingness was imple-
mented by simulating values from a multivariate Bernoulli distribution (Leisch et al., 1998) and setting the outcome vari-
ables to be missing according to the corresponding binary indicator. In the MAR scenarios, the probability of missingness
depends on the intervention groupwith outcomes being 1.5 timesmore likely to bemissing in the control arm compared to
the intervention arm. To simulate the data under anMNARmechanism, the probability of missingness was set to increase
with increasing outcome values. First, a data set with nomissing values was simulated. Then the observations were sorted
in ascending order based on the outcome in which missing values were to be introduced and divided into quartile groups.
Missingness was then introduced randomly into each quartile group using Table 2.
To estimate the FWER, we specified that the intervention had no effect (𝛃1 = 0) then calculated the proportion of times

that a significant test result was observed for at least one of the outcomes over 10,000 simulations. The Holm adjustment
was used to control the FWER (Holm, 1979). To estimate the disjunctive power, a similar approach was used with a spec-
ified intervention effect (𝛃1 ≠ 0). The bias in the estimated effects was calculated as the difference between the average
effect estimates over simulations and the true values. Monte Carlo standard errors (MCSE) were also calculated to provide
an estimate of simulation accuracy for each scenario.
The following methods of analysis were used:

1. UV models. This was used as the comparator for the other methods.
2. MI+UVmodels.
3. MMmodel.
4. LV model.

For the univariate approach, continuous outcomes were analysed using a linear regression model and binary outcomes
were analysed using a probit regression model. The latter was used as it corresponds to how the data were generated.
Multiple imputation was implemented using chained equations (MICE) since this is one of the most widely used meth-

ods to impute missing data (Sterne et al., 2009). Outcomes in the two arms were imputed separately which is equivalent
to imputing missing values conditional on intervention arm. Forty imputations were used for all scenarios, which is the
recommended number of imputations when 50% of the data are missing (Graham, Olchowski, & Gilreath, 2007). Esti-
mates were pooled across imputed data sets using Rubin’s rules (Rubin, 2004). The LV models used adaptive quadrature
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(Rabe-Hesketh, Skrondal, & Pickles, 2005) with 10 integration points to fit themodels bymaximum likelihood estimation.
To ensure that the model is not over parameterised, we fixed the latent factor variance to 0.8 (Grilli & Rampichini, 2006)
in the scenarios with continuous and mixed outcomes. In the scenarios with binary outcomes, we fixed the latent factor
to 1. TheMMmodel was implemented in MLwiN via R using the package ‘R2MLwiN’. TheMI+UVmodel was implemented
using the ‘mice’package in R; and the LV method was implemented using GLLAMM (www.gllamm.org) in Stata Release
14 (StataCorp, 2015).

4.1 Results

4.1.1 MCAR andMARmechanisms

The results for the different methods in different simulation scenarios with either MCAR or MAR missing data mech-
anisms are shown in Tables 3a, 3b and 3c. When analysing two binary outcomes the MM model occasionally did not
converge, most frequently when the correlation between the outcomes was strong (𝜌 = .8) and there was no effect of
intervention. When analysing four binary outcomes, the MM model often did not converge and consequently we do not
report these results. TheMCSE for the estimates of FWER and disjunctive power were similar for all methods. TheMCSE
ranged from 0.0016 to 0.0026 for the FWER estimates and from 0.0026 to 0.0050 for the disjunctive power estimates.

Bias
The effect estimates were unbiased for the UV and MI+UV approaches when analysing continuous outcomes (results
shown in theAppendix) since the intervention group, whichwas the predictor ofmissingness, was included in themodels.
However, a small bias was observed when analysing two binary outcomes using theMI+UVmethod (results shown in the
Appendix). This may be because the MICE routine in R requires us to use logistic regression to impute missing values for
binary variables instead of probit regression, which was used to simulate the binary outcomes. The effect estimates were
unbiased when analysing two continuous outcomes using the MMmodel (results shown in the Appendix).

FWER
The FWER was around the 5% level for the UV approach for all outcome types, whereas it varied between 2.8% and 5.5%
for the MI+UV approach when analysing continuous outcomes and was slightly conservative when analysing binary
outcomes. The FWER fluctuated around the 5% level for the MM model, with the highest level of 5.8% observed when
there were high levels of missing data. When using the LV model, the FWER ranged from 2.7% to 5.7% when analysing
continuous and mixed outcomes.

Disjunctive power
The MM and LV models show increased disjunctive power compared to the UV and MI+UV approaches when analysing
two continuous outcomes with missing data. These models show power gains over the UV approach even when there
is weak correlation, although these gains are modest when the proportion of missing data is less than 30%. The MI+UV
approach had lower disjunctive power than the UV approach with two continuous outcomes in weak to moderate cor-
relation scenarios. When there is zero or weak correlation (𝜌 = .2) between the outcomes, the imputed outcome val-
ues are highly variable which leads to slightly higher empirical standard errors for the effect estimates compared to
those obtained by the UV approach (shown in the Appendix). Consequently, disjunctive power is reduced when using
the MI+UV approach, particularly when the correlations between outcomes are weak to moderate. When the outcomes
are strongly correlated and missing data are not overlapping across outcomes, the observed outcome values are highly
predictive of the missing outcome values which lead to smaller empirical standard errors for the MI+UV approach and
disjunctive power similar to that of the MM and LVmodels. When analysing four continuous outcomes, the performance
of the MI+UV approach is slightly improved (results presented in the Appendix), although the disjunctive power is still
slightly lower than that of the UV approach when the outcomes are uncorrelated.
With two binary outcomes, the disjunctive power of the MM model but was slightly higher than that of the other

approaches. With mixed outcomes, the MI+UV approach and the MM model performed similarly with slightly higher
disjunctive power than that of the UV approach. The LV model had the lowest power when the outcome correlation was
0.6 or higher.
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F IGURE 1 Bias in estimating the intervention effects when simulating two continuous outcomes and data are MNAR
Note. The dark blue dots represent the average of the estimated treatment effects (𝛽) for outcome 1. The light blue dots represent the average
of the estimated treatment effects (𝛽) for outcome 2. The five dots (of either colour) clustered together represent different correlations between
outcomes from 0 (left) to .8 (right) in increments of .2. Each graph corresponds to a different level of missing data as indicated. The true
intervention effect is represented by the black horizontal line. The Monte Carlo standard errors for the estimated bias was between .0005 and
.0007 for all scenarios

Similar results are observed when analysing four continuous outcomes or when there are varying effect sizes (results
presented in the Appendix). The MM model was the only multivariate approach we considered in these scenarios, and
the MNAR scenario, as its performance was superior to that of the LV model in the previous simulations.

MNARmechanism
Both the MMmodel and MI+UV approach assume that the missing values are MAR. We generated missing values under
an MNAR mechanism to investigate if bias in the effect estimates could be reduced by using the correlation between
outcomes. As expected, use of either the MM model or MI+UV approach did not reduce bias when the outcomes were
uncorrelated. However, bias was reduced when the outcomes were strongly correlated and there were high levels of miss-
ing data. In particular, there was a notable reduction in bias when the outcome correlation exceeded 0.4. However, neither
approach was able to remove the bias entirely. Results are shown in Figure 1.
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TABLE 4 Analysis of the LiGHT data set using the UV, MI+UV, MM and LV models

N Mean diff.a SEa 95% CIa p-Value
UV
EQ-5D 652 −0.000 0.008 (−0.016, 0.015) .967
GQL 586 −0.476 0.457 (−1.373, 0.422) .298
GUI 602 0.014 0.008 (−0.001, 0.029) .063
MI+UV
EQ-5D 652 −0.000 0.008 (−0.016, 0.015) .958
GQL 652 −0.559 0.449 (−1.44, 0.323) .213
GUI 652 0.015 0.008 (0.000, 0.030) .052
MM
EQ-5D 652 −0.000 0.008 (−0.016,0.015) .954
GQL 652 −0.455 0.454 (−1.344,0.435) .317
GUI 652 0.014 0.008 (−0.001,0.029) .071
LV
EQ-5D 652 −0.001 0.008 (−0.016, 0.014) .873
GQL 652 −0.392 0.425 (−1.23, 0.442) .357
GUI 652 0.013 0.007 (−0.001, 0.026) .072

aStandardised intervention effects.
Abbreviations: CI, confidence interval; GQL, glaucoma quality of life scale; GUI, glaucoma utility index; LV, latent variable model; Mean diff, mean difference;
MM, multilevel multivariate model; SE, standard error; UV, univariate model; MI+UV, multiple imputation followed by univariate model.

5 CASE STUDIES

5.1 Reanalysis of the LiGHT and 10TT trials

We now reanalyse the two real data sets, LiGHT and 10TT, to illustrate differences and similarities between the MM,
MI+UV, LV and UV approaches. The code used to implement the MM model in Stata, R and MlwiN is provided in the
Appendix.

5.1.1 Laser in glaucoma and ocular hypertension trial, LiGHT

In this analysis, the 24-month outcomes were used and the corresponding baseline values for each outcomewere adjusted
for in the models.
On theEQ-5DandGUI scales, a higher scoremeans better quality of life,whereas on theGQL scale, a higher scoremeans

poorer quality of life. When using the MM model, the GQL scale was reversed to enable the estimation of intervention
effects that are in the same direction.
The results for the four models are displayed in Table 4. The UV approach uses a different number of participants

for each outcome depending on the amount of missingness whereas the MI+UV, MM and LV approaches use all 652
participants for the analyses. The standard errors of the effect estimates are very similar across the approaches.
In summary, similar results are obtained from all approaches possibly due to the relatively small proportion of missing

data. One advantage of the MM model is that a joint effect could also be calculated, if appropriate, for some or all of the
outcomes. For example, a joint effect could be estimated for the glaucoma specific scales GUI and GQL while simultane-
ously estimating an individual effect for EQ-5D. In a trial scenario, the decision to estimate a joint effect would need to be
made at the start of the study and documented in the statistical analysis plan.

5.1.2 The 10TT trial

For the analysis of the 10TT trial, the outcomes were standardised and the corresponding baseline variables were adjusted
for in the various models.
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TABLE 5 Analysis of Ten Top Tip data set using UV, MI+UV, MM and LV models

N Coef.
Standard
error

95% Confidence
interval p-Value

UV
Weight change 383 −0.052 0.018 (−0.088, −0.016) .004
Waist circumference 378 −0.069 0.0483 (−0.164, 0.026) .153
Blood glucosea 330 −0.151 0.298 (−0.734, 0.433) .612
MI+UV
Weight change 388 −0.052 0.018 (−0.088, −0.016) .004
Waist circumference 388 −0.074 0.048 (−0.169, 0.020) .122
Blood glucosea 388 −0.174 0.304 (−0.770, 0.421) .566
MM
Weight change 388 −0.053 0.018 (−0.088, −0.016) .004
Waist circumference 388 −0.071 0.048 (−0.165, 0.023) .141
Blood glucosea 388 −0.180 0.295 (−0.759, 0.398) .542
LV
Weight change 388 −0.054 0.024 (−0.102, −0.008) .021
Waist circumference 388 −0.092 0.123 (−0.333, −0.150) .455
Blood glucosea 388 −0.194 0.214 (−0.614, 0.225) .364

aBlood glucose as a categorical variable: normal/high.
Abbreviations: LV, latent variable model; MM, multilevel multivariate model; UV, univariate model; MI+UV, multiple imputation followed by univariate model.

The estimated effect for blood glucose differs slightly between the models (Table 5) which may be due to higher propor-
tion of missing data for this outcome. In summary, the MM and LV models allow both continuous and binary outcomes
to be analysed simultaneously. However, we found that in this trial reanalysis, use of the MM and LV models made little
difference to the results and conclusions when compared to those obtained using the UV approach.

6 DISCUSSION

In this paper, we have reviewed the statistical methodology that can be used to analyse multiple correlated outcomes
in clinical trials. We have performed a simulation study to investigate differences in bias, FWER and disjunctive
power achieved using the MM model, an LV model and a univariate model with (MI+UV) and without (UV) multiple
imputation.
The simulation results suggest that the disjunctive powermay be increased by usingMMmodels as opposed to analysing

each outcome separately with or without multiple imputation (UV and MI+UV). However, we found that the power
gains were generally small unless the outcomes were strongly correlated or there were high levels of missing data. Pituch,
Whittaker, and Chang (2016) and Snijders and Bosker (2012) reported efficiency gains for MM model compared to UV
models in presence of missing data based on case studies.
When the pairwise correlations between the outcomes were weak, the power was reduced when using the MI+UV

approach compared to using the UV approach. These findings are consistent with the results presented in Sullivan,White,
Salter, Ryan, and Lee (2018), which state that MI may be less efficient than complete case analysis due to Monte Carlo
simulation error. When missing values are MNAR, the MI+UV approach and the MMmodel produce very similar effect
estimates and hence a similar level of bias. Both approaches provide some improvement over the UV model when the
outcome correlations are .6 or higher. As expected, neither MI+UV nor MM removed the bias entirely. As a consequence,
any inferences and conclusions made within the trial setting should be confirmed with sensitivity analyses under the
alternative assumptions that the missing data are MNAR.
The MM model offers a computational advantage to the MI+UV approach as the MM model enables the analysis to

be performed in just one step. In contrast, MI+UV method requires three steps: specifying the imputation model and
performing the imputation; fitting the analysis model to each of the imputed data sets and combining the results across
the imputed data sets.
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When a single primary outcome is specified in a trial, the MM model can still be used for the analysis of secondary
outcomes. Alternatively, when there aremissing values in the primary outcome, both the primary and secondary outcomes
may be analysed simultaneously using the MMmodel. In addition, the MMmodel allows for joint effects to be estimated
although this should be documented in advance in a statistical analysis plan.
The results from the LV model are dependent on the constraints imposed on the model. In this paper, we fixed the

latent factor variance. For a discussion of alternative constraints, see Skrondal and Rabe-Hesketh (2004). A limitation
of our simulation study is that we only considered normally distributed continuous outcomes. As further work, we sug-
gest investigating continuous outcomes that follow alternative distributions, including skewed distributions or those with
heavier tails.
The work focused on methods that have been previously suggested to analyse multiple outcomes in clinical trials.

However, other methods are also available including copula models (Chen & Hanson, 2017; de Leon & Wu, 2011) and
generalised estimation equations (GEE) (Prentice & Zhao, 1991; Teixeira-Pinto & Normand, 2011). The GEE approach is
robust to the misspecification of the correlation between the outcomes but has been shown to be less efficient estimates
compared to the LV model (Teixeira-Pinto & Normand, 2011).
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