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Simple Summary: The p53 pathway is a major tumor suppressor pathway that prevents the propa-
gation of abnormal cells by regulating DNA repair, cell cycle progression, cell death, or senescence.
The multiple cellular processes regulated by p53 were more recently extended to the control of
metabolism, and many studies support the notion that perturbations of p53-associated metabolic
activities are linked to cancer development. Converging lines of evidence support the notion that, in
addition to p53, other key components of this molecular cascade are also important regulators of
metabolism. Here, we illustrate the underestimated complexity of the metabolic network controlled
by the p53 pathway and show how its perturbation contributes to human diseases including cancer,
aging, and metabolic diseases.

Abstract: The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53
protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard
mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA
repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by
p53 were more recently extended to the control of metabolism and many studies support the notion
that perturbations of p53-associated metabolic activities are linked to cancer development, as well as
to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although
much less documented than p53 metabolic activities, converging lines of evidence indicate that other
key components of this tumor suppressor pathway are also involved in cellular metabolism through
p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint,
the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network
controlled by these p53 regulators and the mechanisms by which their activities are coordinated
with p53 metabolic functions remain poorly understood. In this review, we highlight some of the
metabolic pathways controlled by several central components of the p53 pathway and their role in
tissue homeostasis, metabolic diseases, and cancer.

Keywords: p53 pathway; metabolism; network; cancer; aging; metabolic disease

1. Introduction

Functional inactivation of the p53 pathway is considered a prerequisite to cell trans-
formation. Many studies have shown that somatic or germline mutations of TP53, the
gene encoding the p53 tumor suppressor, as well as other genetic or epigenetic alterations
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perturbing the activity of upstream regulators of p53, promote carcinogenesis. Beside its
well-described canonical functions involved in DNA repair, cell division, cell death, and cel-
lular senescence, the importance of p53 metabolic activities in cancer progression is gaining
momentum. Several recent reviews have highlighted the diversity of the mechanisms by
which wild type (WT), but also the mutated forms of p53, are implicated in several major
metabolic pathways including glycolysis, oxidative phosphorylation (Oxphos), the pentose
phosphate pathway, redox homeostasis, polyamine biosynthesis, as well as amino-acid,
nucleotide, and lipid metabolism [1–5].

So far, most studies have focused on the importance of the p53 protein in metabolism,
but converging evidence indicates that other key components of this pathway play pivotal
functions in metabolism. In this review, we focus on one well-characterized branch of the
p53 pathway involving several bona fide oncogenes and tumor suppressors, including
the B lymphoma Mo-MLV insertion region 1 homolog (BMI1) protein, the Alternative
Reading Frame (ARF) tumor suppressor, the Mouse Double Minute 2 (MDM2) oncogene
and its partner MDM4, as well as the multifunctional E4F1 protein and p53. Extensive
characterization of this molecular cascade showed that BMI1 is an important component of
the polycomb repressive complex 1 (PRC1) which controls at the epigenetic level Cdkn2a,
the locus encoding ARF, a potent inhibitor of the Mouse Double Minute 2 (MDM2) protein
that negatively regulates p53. The MDM4 oncoprotein and the E4F1 protein also play im-
portant regulatory functions in this pathway. MDM2 and MDM4 heterodimerize through
their respective RING domains to form a ubiquitin E3 ligase complex that potentiates p53
proteasomal-mediated degradation. E4F1 was initially identified as a transcription factor
targeted by the viral oncoprotein E1A, but was later described as an atypical ubiquitin E3
ligase that controls p53 transcriptional functions independently of protein stability [6,7].
E4F1, ARF, and p53 can form a ternary complex involved in cell cycle regulation, an activity
which also reflects E4F1 ability to regulate the CHK1-dependent DNA-damage check-
point [8–10]. E4F1 directly binds to BMI1, and both proteins contribute to hematopoietic
and epidermal stem cell function [11,12]. Deregulation of this BMI1-ARF-MDM2/MDM4-
E4F1-p53 pathway has been widely associated to oncogenesis. In addition, it also plays
a major role in cellular senescence, an activity through which it may influence aging [13].
An important mechanism by which these proteins influence cancer progression and aging
involves the control of p53-associated metabolic functions. Nevertheless, several studies
indicate that these multifaceted proteins exert multiple metabolic activities independently
of p53, highlighting the underestimated complexity of the metabolic network regulated by
the p53 pathway (Figure 1). It is noteworthy that many of these proteins shuttle between
different subcellar compartments including the cytosol, the nucleus, the nucleolus, and
mitochondria where they exert distinct metabolic functions. The tight regulation of their
subcellular localization contributes to the control of metabolic enzymes or regulators, but
also to the transcriptional and post-transcriptional control of metabolic genes encoded by
the nuclear or the mitochondrial genomes (Figure 2). In this review, we summarize our
current understanding of the diverse metabolic functions played by these central compo-
nents of the p53 pathway and how their perturbation contributes to metabolic diseases and
cancer progression.
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Figure 1. The p53 network and metabolism. Various key components of this molecular cascade sense changes in oxygen 
or nutrient concentrations and ensure tissue homeostasis by regulating biomass production, bioenergetics, and redox ho-
meostasis through multiple metabolic pathways. Perturbations of this complex network contribute to aging, metabolic 
disorders, and cancer progression. 
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Figure 1. The p53 network and metabolism. Various key components of this molecular cascade sense changes in oxygen
or nutrient concentrations and ensure tissue homeostasis by regulating biomass production, bioenergetics, and redox
homeostasis through multiple metabolic pathways. Perturbations of this complex network contribute to aging, metabolic
disorders, and cancer progression.
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Figure 2. The BMI1, ARF, MDM2, MDM4, E4F1, and p53 proteins shuttle between different subcellular compartments
where they control different metabolic functions. Enz, metabolic enzyme; Ub, ubiquitin.
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2. The p53 Pathway Controls Multiple Metabolic Pathways

Several components of the p53 pathway control the production/utilization of several
classes of metabolites including amino-acids, lipids, and nucleotides. Although we still
lack an exhaustive vision of the complex metabolic network controlled by the p53 pathway,
growing evidence indicates that it contributes to many adaptive responses to changes in
nutrients and oxygen availability (Figure 3).
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Figure 3. Schematic representation of several metabolic pathways in which the different components of the p53 network are
implicated, including glycolysis, Oxphos, amino acid, and fatty acid metabolism.

2.1. Modulation of Mitochondrial Functions by the p53 Pathway

Mitochondria, the power factory of the cell, represents a metabolic hub that integrates
multiple signals originating from the p53 pathway. The p53 protein controls many mi-
tochondrial functions, including replication and integrity of the mitochondrial genome,
mitochondrial architecture and dynamics, activity of the electron transport chain (ETC), as
well as the flux of several metabolic pathways that take place in mitochondria. Different
laboratories have confirmed the localization of p53 in mitochondria where it directly con-
trols cell death as well as mitochondrial respiration independently of its transcriptional
functions [2,3]. More recently, mitochondrial pools of MDM2, MDM4, ARF, and BMI1 have
also been described. Mitochondrial MDM2 controls the activity of the ETC and regulates
mitochondria network dynamics independently of p53. Thus, in response to oxidative
stress or hypoxia, MDM2 translocates to the mitochondrial matrix where it preferentially
binds to the Light Strand Promoter (LSP), leading to transcriptional repression of NADH-
Dehydrogenase 6 (MT-ND6), a gene of the mitochondrial genome encoding an important
complex I subunit of the ETC. This mitochondrial function of MDM2 occurs both in p53-
proficient and in p53-deficient cells, and does not involve its ubiquitin E3 ligase activity [14].
The role of MDM2 in regulating mitochondrial respiration extends to cytosolic MDM2,
which binds and sequesters in the cytosol NADH:ubiquinone oxidoreductase 75 kDa Fe-S
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protein 1 (NDUFS1), a large Complex I subunit that promotes oxidative phosphorylation
and favors super complex formation [15]. MDM2 plays an important role both upstream
and downstream of the ETC. Indeed, a screen aiming at identifying synthetic lethal ap-
proaches based on drugs inhibiting metabolism highlighted an unsuspected role for MDM2
in sensing impaired bioenergetics triggered by pharmacological inhibition of complex I
in conditions of high alpha-ketoglutarate (αKG) levels. Such a combination led MDM2 to
regulate alternative exon usage affecting genes involved in glycolysis, thereby resulting
in the complete inhibition of glycolysis and the induction of a lethal energetic crisis [16].
Other aspects of mitochondrial homeostasis are controlled by MDM2. When mitochondrial
membrane potential is altered and respiration is not efficiently conducted, the recycling
of damaged mitochondria is necessary. This physiological process, called mitophagy, is
controlled, at least in part, by PARKIN, a ubiquitin E3 ligase that ubiquitinates MITO-
FUSIN1 on the mitochondrial outer membrane. The direct interaction between MDM2
and PARKIN enhances PARKIN enzymatic activity (self-ubiquitination and MITOFUSIN1
ubiquitination), thereby promoting mitophagy [17]. Interestingly, the links between the
p53 pathway and PARKIN extend to p53-mediated control of PARKIN transcription and to
p53-PARKIN protein-protein interaction [18–21]. Finally, p53 also controls the transcription
of SPATA18 (also called MIEAP), which gene product is involved in intramitochondrial
lysosome-like structures that eliminate oxidized mitochondrial proteins and thereby im-
prove mitochondrial functions [22]. These data reinforce the notion that the p53 network
plays a central role in quality control and mitochondria turnover.

Other key regulators of the p53 pathway control mitochondrial functions beyond
their effects on p53. BMI1 represses the transcription of genes (Alox5, Alox15, Cyp24a1,
Cyp26a1, Bnip3l, Pmaip1, Duox1, Duox2, Cdo1) encoded by the nuclear genome that in-
fluence mitochondrial function and redox homeostasis independently of its role on the
epigenetic control of the Cdkn2a locus. Consistently, cells isolated from Bmi1 knock-out
(KO) mice display impaired mitochondrial respiration and a marked increase in the in-
tracellular levels of reactive oxygen species (ROS) that lead to the engagement of the
CHK2-dependent DNA damage checkpoint [23]. BMI1 activity in metabolism also involves
its mitochondrial localization where it directly controls polynucleotide phosphorylase,
a ribonuclease responsible for mitochondrial RNA (mtRNA) transcripts decay, thereby
regulating mtRNA homeostasis and bioenergetics [24]. In addition, the multifunctional
protein E4F1, through its intrinsic transcriptional activity, and independently of its actions
on p53, controls the expression of genes encoding a complex I subunit (Ndufs5) or a com-
ponent of the mitochondrial import machinery (Tomm7), as well as gene sets involved in
cardiolipin (a mitochondria-specific phospholipid) biosynthesis and maturation (Dnajc19,
Crls1, Taz) or in pyruvate oxidation (Mpc1, Dlat, Dld, Pdpr, Slc25A9). Consistently, genetic
inactivation of E4f1 in murine transformed fibroblasts impacts on oxygen consumption
and other metabolic pathways that are compartmentalized in mitochondria (see below),
confirming that this E4F1-controlled transcriptional program strongly influences cellular
metabolism [9]. Finally, the MDM4 oncoprotein and the N-terminally truncated isoform
of the ARF tumor suppressor that is generated upon translation initiation at an internal
in-frame AUG codon at position 45 (also called small mitochondrial Arf or p15smArf), have
both been detected in mitochondria [25–28]. Although these mitochondrial pools of MDM4
and ARF were initially associated to the control of cell death, it is tempting to speculate that,
similarly to other components of the p53 pathway exhibiting mitochondrial localization,
they also contribute to various mitochondrial activities involved in metabolism. Altogether,
these studies indicate that the p53 pathway is tightly connected to mitochondria functions
to fine tune metabolism.

2.2. Implication of the p53 Pathway in Pyruvate Metabolism

Pyruvate is a central metabolite that stands at the crossroads of glycolysis and Ox-
phos. Pyruvate is imported in mitochondria to fuel the tri-carboxylic acid (TCA) cycle
and sustain mitochondrial respiration, but also to contribute to several anabolic pathways
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implicated in de novo fatty acid and cholesterol synthesis, gluconeogenesis, and nucleotide
metabolism. One key enzyme of pyruvate metabolism is the pyruvate dehydrogenase
(PDH) complex (PDC), a large multi-subunit metabolic enzyme that converts pyruvate
into Acetyl-CoenzymeA (AcCoA) in the mitochondrial matrix. Decreased PDC activity
redirects pyruvate metabolism towards lactate or alanine production by the lactate dehy-
drogenases (LDH) and alanine amino-transferases (ALAT), respectively. The p53 pathway
is linked to the PDC at multiple levels. Thus, whereas p53 was found to repress the tran-
scription of PDK2, a gene encoding an inhibitory kinase of the PDC, MDM2 inhibition
stabilizes the protein levels of dihydrolipoamide dehydrogenase (DLD), the E3 subunit
of the PDC [29,30]. Furthermore, the shuttling of the MDM2-DLD complex between the
cytosol and the nucleus is modulated by the pharmacological inhibitor Nutlin3A, which
interferes with p53-MDM2 interaction. Strikingly, the E4F1 protein was also identified as a
key regulator of the PDC. Thus, E4F1 directly controls the transcription of genes encod-
ing several essential subunits and regulators of the PDC in various cell types, including
the E2 and E3 subunits of the PDC core enzyme (Dlat, Dld), the mitochondrial pyruvate
carrier (Mpc1/Brp44l), the mitochondrial transporter of the PDH co-factor Thiamine Py-
rophosphate/TPP (Slc25a19), and the regulatory subunit of the PDC phosphatases (Pdpr).
Consistent with its role in the regulation of the PDC, stable isotope tracing experiments
using 13C-labelled glucose showed that E4f1 inactivation, decreases glucose-derived Ac-
CoA production and enhances lactate production [31–33]. Perturbation of E4F1 functions
in pyruvate metabolism has clinical implications. Indeed, a non-synonymous homozygous
mutation (K144Q) in the coding region of the human E4F1 gene was recently identified
in two siblings of an Italian family presenting clinical symptoms reminiscent of those of
Leigh syndrome patients [34]. The Leigh syndrome is a severe inborn metabolic disorder
characterized by a progressive subacute necrotizing encephalomyelopathy resulting from
various mitochondrial defects affecting the PDC or the ETC. Consistent with these findings,
genetically engineered mouse models lacking E4F1 in their skeletal muscles or in the central
nervous system display phenotypes that recapitulate some of the clinical symptoms of
Leigh syndrome patients, including chronic lactate acidemia, muscular endurance defects,
microcephaly, and neuronal degeneration [33]. Finally, the tight connections between the
p53 pathway and pyruvate metabolism are also illustrated by findings showing that MDM2
and p53 are part of a regulatory network in pancreatic beta cells controlling the activity of
pyruvate carboxylase (PC), thereby influencing glucose-stimulated insulin secretion and
glucose homeostasis [35]. Altogether, these data indicate that the p53 pathway is closely
linked to pyruvate metabolism in many cell types and that perturbations of this complex
network contribute to various human diseases, including inborn metabolic disorders,
type-II diabetes, and cancer.

2.3. Role of the p53 Pathway in Amino-Acid Metabolism

p53 has been linked to several aspects of glutamine, serine/glycine, and proline
metabolism, and p53-deficient cells are more sensitive to serine/glycine or to glutamine
deprivation [36–43]. The control of MDM2 subcellular localization is also implicated in
amino-acid metabolism, as illustrated by findings showing that MDM2 is recruited to
chromatin independently of p53 to regulate genes involved in serine/glycine, as well as in
glutamine/glutamate, metabolism. Through its binding to the ATF4 transcription factor,
chromatin-bound MDM2 activates a transcriptional program composed of several genes
encoding transporters involved in serine uptake (SLC1A4) or its intracellular processing
(SERINC1), as well as enzymes implicated in de novo serine synthesis, an anabolic pathway
that converts the glycolytic intermediate 3-phosphoglycerate (3PG) into serine through
a multi-step enzymatic cascade implicating phosphoglycerate dehydrogenase (PHGDH),
phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH). The
recruitment of MDM2 to chromatin is triggered by serine and glycine deprivation, oxidative
stress, or upon inhibition of the M2 isoform of pyruvate kinase (PKM2), a glycolytic enzyme
for which serine is an allosteric activator [44]. Recruitment of MDM2 to chromatin, which
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likely involves conformational changes implicating its central acidic domain, but occurs
independently of its E3 ligase function, is inhibited by its phosphorylation on serine 166
and threonine 351, an event modulated by the glycolytic enzyme PKM2 [45]. Strikingly,
chromatin-bound MDM2 and p53 display antagonistic activities on the transcription of
genes involved in serine metabolism. Thus, whereas MDM2 activates the transcription of
SLC1A4, SERINC1, PHGDH, PSAT1, and PSPH, p53 was previously found to repress the
PHGDH promoter, illustrating the complex interplay between the p53 pathway and serine
metabolism [45,46]. Serine/glycine and glutamine/glutamate metabolism contribute to
various anabolic pathways, including glutathione (GSH) and nucleotide biosynthesis [47].
Consistent with its role in these metabolic pathways, chromatin-bound MDM2 was shown
to influence the redox status of both normal and cancer cells through the regulation of
glutathione synthesis and recycling [45]. The notion that MDM2 is a central player of serine
metabolism was recently confirmed in liposarcomas (LPS), a sarcoma subtype characterized
by a systematic amplification of MDM2. Interestingly, LPS, but not other sarcoma subtypes,
display high levels of chromatin-bound MDM2. These data support the notion that the
strong selective pressure for MDM2 amplification in LPS likely reflects its predominant role
in serine metabolism to support nucleotide synthesis in these highly proliferating cancer
cells. Interestingly, this study pointed at one important limitation of therapeutic strategies
based on the utilization of Nutlin3A, a well-characterized compound targeting MDM2-p53
interaction. Thus, Nutlin3A stabilized p53, but unexpectedly promoted MDM2 recruitment
to chromatin and the activation of its metabolic target genes in LPS cells, providing a
molecular explanation for the poor clinical efficacy of this class of MDM2 inhibitors in LPS
patients. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2
by SP141, a distinct MDM2 inhibitor that triggers its degradation, or interfering with
serine metabolism, efficiently impaired LPS growth in pre-clinical models, providing a
strong rationale for new therapeutic approaches based on drugs targeting MDM2-mediated
control of serine metabolism in LPS [48].

2.4. The p53 Pathway and Nucleotide Metabolism

In LPS cells, chromatin-bound MDM2 promotes both purine and pyrimidine biosyn-
thesis independently of p53 [48]. Paradoxically, cytosolic MDM2 has been shown to
monoubiquitinate and reduce the activity of Dihydrofolate Reductase (DHFR), a key en-
zyme involved in folate metabolism that generates precursors for purine synthesis [49].
Interestingly, MDM2 localization in the nucleolus was previously shown to be regulated
by the binding of adenine-containing nucleotides to the Walker A or P loop motif and
conformational changes of its C terminus domain [50]. Altogether, these data illustrate the
importance of the different cellular pools of MDM2 in nucleotide metabolism. In addition
to being crucial for nucleotide synthesis, MDM2 is also involved in the repair of oxidized
bases through its ubiquitin E3 ligase function. Indeed, during oxidative stress, it contributes
to the opening of chromatin to promote Base Excision Repair (BER) via Histone 2B ubiquiti-
nation, a process involving its phosphorylation by the kinase MPS1 [51]. Finally, inhibition
of the multifunctional protein E4F1 in p53-deficient cells, through a yet unidentified molec-
ular mechanism impinging on orotate metabolism, profoundly affects pyrimidine, but
not purine, biosynthesis [9]. Although these data illustrate various mechanisms by which
MDM2 and E4F1 contribute to nucleotide metabolism independently of p53, it is likely
that these activities are somehow coordinated with p53-mediated control of nucleotide
synthesis which occurs, at least in part, through the regulation of the Ribonucleotide Reduc-
tase (RRM2) gene [52,53]. Proper coordination of this complex metabolic network likely
contributes to sustain the strong demand in nucleotides of rapidly proliferating cells.

2.5. The p53 Pathway, Lipid Metabolism and Adipocyte Cell Fate

An important aspect of p53 metabolic activities relates to its multiple roles in lipid
transport and storage, in fatty acids biosynthesis and their desaturation, in cholesterol and
sphingolipid metabolism, as well as in fatty-acid oxidation (FAO). Moreover, several groups
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have documented that p53 interferes with adipocyte differentiation [3,54]. Interestingly,
MDM2, MDM4, and BMI1 are also involved in lipid metabolism and adipocyte differentia-
tion, supporting the notion that the entire p53 pathway is pivotal for lipid homeostasis in
stressed and cancer cells, as well as in normal tissues. The importance of p53-mediated
control of lipid metabolism was nicely illustrated using genetically engineered mouse mod-
els exhibiting impaired MDM2 or MDM4 activity. Indeed, mice harboring the Mdm2C305F

allele, which encodes a mutant exhibiting impaired binding to the RPL11 and RPL5 ribo-
somal proteins, display defective response to nutritional challenge due to their inability
to control p53-mediated regulation of FAO [55]. Another example of the links between
the p53 pathway and fatty acid synthesis comes from the analysis of Mdm4 KO mice
expressing a p53 acetylation mutant harboring lysine to arginine (K to R) substitutions on
the key lysines 117, 161, and 162 of its DNA binding domain (also called p533KR) that is
unable to induce cell cycle arrest, apoptosis, and senescence, but remains competent for its
metabolic activities [56,57]. Strikingly, these Mdm4KO; p533KR compound mice are resistant
to high-fat diet (HFD)-induced obesity, a phenotype that was attributed to enhanced FAO.
At the molecular level, this effect was linked to the transcriptional regulation of Long-chain
fatty acid elongase 3 (Elovl3), a p53-target gene influencing adipocyte cell fate and energy
expenditure. Importantly, MDM2 and BMI1 were also suggested to control adipocyte cell
fate determination independently of p53. This MDM2 activity was linked to its ability to
regulate cAMP-mediated induction of CCAAT/enhancer-binding protein delta (C/EBP∆)
expression by facilitating the recruitment of the cAMP regulatory element-binding protein
(CREB)-regulated transcription coactivator (CRTC2) to the c/EBP∆ promoter [58]. Finally,
the polycomb member BMI1 suppresses adipogenesis of bone marrow stromal progenitors
in the hematopoietic stem cell niche through the epigenetic control of a PAX3-regulated
developmental program, explaining some of the Cdkn2a-independent cell-extrinsic effects
of BMI1 deficiency on hematopoietic stem cell maintenance [59]. Hence, these results
indicate that the p53 pathway exerts multiple functions influencing adipocyte cell fate and
lipid homeostasis, and this has a major impact on tissue homeostasis, metabolic diseases,
aging, and cancer development.

2.6. The p53 Pathway and Iron Metabolism

Controlling iron levels is vital for cell survival, and iron overload promotes carcino-
genesis. p53 and MDM2 are pivotal in a complex network influencing iron uptake, storage,
and usage, both at the systemic and the cellular levels [60]. p53 regulates the transcription
of several key iron regulators including Hepcidin (HAMP), iron-sulfur cluster assembly enzyme
(ISCU), Ferredoxin reductase (FDXR), and Frataxin (FXN) [61–65]. Moreover, its activities
are directly modulated by intracellular iron levels [66,67]. Changes in free iron levels also
modulate MDM2 mRNA and protein levels, at least in part through the binding of IRP2 to
the 3′ untranslated region (3′UTR) of MDM2 mRNA, thereby influencing indirectly p53
protein stability [68,69]. The links between high iron levels and enhanced MDM2-mediated
degradation of p53 in hepatocytes may contribute to the increased risk of hepatocellular
carcinoma in patients affected by chronic liver disease [68].

One important biological process associated to the control of iron metabolism by
the p53 pathway is ferroptosis, an iron-dependent cell death mechanism linked to lipid
peroxidation [4,70]. Beside the well-recognized role of p53 in ferroptosis, which involves
the transcriptional and the non-transcriptional regulation of inducers and regulators of
ferroptosis, recent work from Venkatesh et al. showed that MDM2 and MDM4 interfere
with the ability of cells to build up defenses against lipid peroxidation. Inhibition of
MDM2 and/or MDM4 allows cells to accumulate endogenous lipophilic antioxidants
such as CoenzymeQ10 (CoQ), an effect mediated by PPARα and FSP1 [71]. Interestingly,
p53-mediated control of the mevalonate pathway has also been shown to contribute to
CoQ biosynthesis, suggesting that p53, MDM2, and MDM4 control synergistic metabolic
functions converging on this key metabolite [72,73].
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2.7. The p53 Pathway Is Highly Connected to Autophagy

Previous studies underlined the importance of p53 in the autophagy network to
promote cell survival. However, p53 can also trigger autophagic cell death in various
severe stress conditions [74]. p53 can regulate mitophagy as well as macroautophagy, a
process leading to the synthesis of double-membrane vesicles and their fusion to lysosomes
to recycle macromolecules and maintain intracellular pools of metabolites. Depending
on its subcellular localization, its mutational status, and stress type, p53 can inhibit or
stimulate autophagy through multiple mechanisms including the transcriptional control
of many autophagy-related genes, the regulation of the mTORC1 kinase which tightly
controls the autophagic process according to the intracellular energy and nutrient levels,
through the regulation of BLC2 family members which also control autophagy, or upon
direct interaction with the key autophagic regulator BECLIN 1 [75–80]. Several studies
suggest that the links between the p53 pathway and autophagy extend to other components
of this cascade, including E4F1 and MDM2. Thus, genetic inactivation of E4f1 has been
shown to induce autophagy in leukemic cells [81] and MDM2 was also shown to be
regulated upon accumulation of the autophagy substrate p62/SQSTM1 in KRASG12D-
driven pancreatic cancer cells [82]. In addition, MDM2 controls the balance between
apoptosis and autophagy in Nutlin-treated cells. Indeed, Nutlin blocks autophagy and
promotes apoptosis in MDM2-amplified cancer cells, whereas it promotes autophagy in
MDM2 non-amplified cells. This differential effect was associated with αKG levels and
the transcriptional regulation of ATG genes, through an epigenetic mechanism implicating
the regulation of the αKG-dependent demethylase JMJD2b [83,84]. Several laboratories
have also reported that ARF can modulate autophagy, at least in part through its direct
interaction with BCL-XL that negatively regulates BECLIN1. Although conflicting results
were reported regarding the roles played by smARF and full-length ARF in autophagy,
shRNA-mediated silencing of ARF in a B cell lymphoma model impaired autophagy
and tumor growth, suggesting that ARF plays a cytoprotective function in some, but not
necessarily all, cancer cells [26,85–87]. Finally, the polycomb member BMI1 was shown
to directly bind and repress Cyclin G2 (CCNG2) in CML cells to control autophagy by
activating the PKC-AMPK-JNK-ERK pathway [88].

2.8. The p53 Pathway and Hypoxia

Cells adapt their metabolism to changes in nutrient and oxygen availability. Decreased
oxygen concentration triggers a complex cellular response coordinated by the Hypoxia-
Inducible-Factor (HIF) transcription factors, as well as different components of the p53
pathway. This biological process includes various metabolic adaptations during which p53,
but also MDM2 and MDM4, modulate the activity of the ETC and the production of ROS as
well as the levels of anti-oxidant molecules to influence cell survival. Initially, HIF1α, the
limiting partner of this heterodimeric transcription factor, was shown to directly bind and
stabilize p53 [89]. Since, other mechanisms leading to p53 activation have been proposed,
such as HIF1α interaction with MDM2, a process inhibiting MDM2-mediated degradation
of p53 and which bridges p53 to HIF1α [90]. The downregulation of MDM2 upon its
phosphorylation by the p38 mitogen-activated protein kinase contributes to p53 activation
in hypoxic neuronal cells [91]. Furthermore, a proteomic study aiming at characterizing
new partners of the von Hippel Lindau (VHL) tumor suppressor, an essential component
of the ubiquitin E3-ligase complex that mediates proteasomal-mediated degradation of
HIFs, identified ARF as a partner of the long isoform of VHL. ARF disrupts the E3 ligase
complex containing VHL and instead enhances its interaction with the arginine methyl-
transferase PRMT3 which methylates p53 [92]. Several other key components of the p53
pathway can also contribute to the cellular response to hypoxia independently of p53. As
previously mentioned, MDM2 translocates to the mitochondrial matrix where it represses
the transcription of MT-ND6 and thereby specifically impacts on complex I activity. Strong
evidence associates uncoupling of the ETC to the production of mitochondrial ROS by
complex I and/or complex III. Consistent with its role in the regulation of complex I activ-
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ity in hypoxic cells, enhanced recruitment of MDM2 to mitochondria leads to increased
mitochondrial ROS levels. Moreover, mitochondrial MDM2 plays a physiological role in
muscular cells in response to low oxygen conditions. Indeed, mice lacking MDM2 and p53
in their skeletal muscles display increased ND6 levels that correlate with higher complex
I activity, and consistently, MDM2; p53 double KO animals exhibit increased muscular
endurance in mild hypoxic conditions when compared to p53 KO mice. Interestingly,
increased mitochondrial-MDM2 levels enhance the migratory and invasive properties of
cancer cells, suggesting that mitochondrial-MDM2 could also increase cancer cell aggres-
siveness in tumoral hypoxic areas [14]. In contrast, ARF antagonizes hypoxia-induced
migration of cancer cells through its direct binding to the COOH-terminal binding protein
(CtBP) family of metabolically-regulated transcriptional co-repressors [93]. Finally, MDM4
also plays a significant role in modulating p53 activities in hypoxic conditions, a process
involving MDM4 phosphorylation by the CHK1 kinase and its subsequent sequestration in
the cytoplasm by the 14.3.3 protein [94]. Hence, these data indicate that many components
of the p53 pathway contribute to coordinate the cellular response to hypoxia.

3. Discussion

A rapidly increasing number of studies support the notion that many, if not all,
components of the p53 pathway are key metabolic regulators and that their metabolic
functions extend beyond their ability to control the p53 protein. Through their implication
in various metabolic pathways, many of these p53 regulators contribute to the three main
outputs of metabolism: bioenergetics, biomass production, and maintenance of redox
homeostasis. The data mentioned in this review illustrate interesting connections between
several components of the p53 pathway and various metabolic pathways (Figure 4). Their
importance in metabolism also involves the regulation of other key biological processes
such as autophagy and the control of metabolite uptake and export.

There is currently no unifying model explaining how p53 and its many regulators
coordinate metabolism, but this notion raises important questions relevant to many physi-
ological and pathological contexts including aging, metabolic diseases, and cancer. First, if
p53 is the major downstream effector of this pathway, one may wonder why these different
components of the p53 pathway contribute to metabolism through both p53- dependent
and independent mechanisms? In comparison to a linear pathway, a branched network
is more adapted to respond to multiple types of metabolic challenges. In normal cells,
such adaptive responses would require dynamic changes of small amplitude occurring at
multiple levels of these highly plastic metabolic networks but which, altogether, ensure
cellular homeostasis. Although speculative at the moment, we propose a model where the
coordinated metabolic functions of all these regulators of the p53 pathway play synergistic
functions that help cells to cope with the multiple metabolic challenges they face on a
daily basis, thereby providing a fitness advantage in the long term. Another possibility
is that these various components of the p53 pathway play distinct roles as sensors, me-
diators, or effectors during these metabolic responses. p53 is a major effector of many
metabolic stress responses by controlling the transcription of numerous metabolic genes [3].
Nevertheless, several studies have shown that its DNA binding properties are directly
controlled by intracellular ROS, heme, or ceramide levels, supporting the notion that p53
is also a bona fide metabolic sensor [66,95,96]. MDM2 plays a central role as a mediator
in the cellular response to changes in serine levels. Indeed, its recruitment to chromatin
stands between the metabolic sensor PKM2, a glycolytic enzyme which has its activity
modulated by intracellular levels of serine, and the ATF4 transcription factor that controls
the expression of genes implicated in de novo serine synthesis and serine transport [45].
It will be interesting to investigate whether the activities of other components of the p53
pathway are directly modulated by metabolites through conformational changes affecting
protein–protein interactions, DNA binding, subcellular localization, or E3 ligase function.
A non-mutually exclusive explanation is that the various metabolic activities regulated by
p53, MDM2, MDM4, BMI1, ARF, and E4F1 define important feed-back loops that guarantee
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the proper control of cellular responses to changes in nutrient/oxygen concentrations over
time. Thus, it is possible that when cells face a transient decrease in intracellular serine
levels, they initially activate de novo serine synthesis by chromatin-bound MDM2, but
later induce p53-mediated repression of PHGDH through a yet-to-be defined mechanism
to bring back the activity of this key anabolic pathway to basal levels [45,46]. Many other
feed-back loops operating within this molecular cascade are likely to fine tune metabolism
according to the levels of several key metabolites. Recent findings showing that MDM2
controls glycolysis independently of p53 upon energetic shortage resulting from ETC-CI
deficiency in conditions of high αKG levels, together with observations indicating that
restoring WT-p53 functions in pancreatic cancer cells results in accumulation of αKG,
suggest that this key metabolite is central to p53-associated metabolic networks [16,97].
Altogether, these converging lines of evidence indicate that the p53 pathway controls a
highly ramified metabolic network that is essential to maintain cellular homeostasis.
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Figure 4. Roles of MDM2, MDM4, ARF, BMI1, and E4F1 in various metabolic pathways.

Second, it is interesting to consider these complex metabolic functions from an evo-
lutionary standpoint. The observation that p53, and perhaps other key regulators of the
p53 pathway, initially favor cell survival in conditions of nutrient deprivation, led to the
hypothesis that one of their evolutionary conserved functions is to protect, both at the
cellular and at the systemic levels, body integrity in conditions of limited access to nutri-
ents. This notion was initially proposed by Murphy and colleagues in studies aiming at
understanding functional differences of the arginine and proline variants at codon 72 of
the TP53 gene. Interestingly, population-based studies and genetically-engineered mouse
models indicate that this single nucleotide polymorphism (SNP) is not associated to higher
cancer incidence, but rather to increased body weight and enhanced risk for diabetes [98].
Compared to cells expressing the proline variant (P72), those harboring the arginine variant
(R72) display increased cell survival in conditions of nutrient deprivation, but not upon
genotoxic stress [99]. These findings led to the hypothesis that the R72 allele may have
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been selected in populations in which a better response to nutrient deprivation provides a
selective advantage. It is noteworthy that some Li-Fraumeni patients with germline muta-
tions of TP53 have been shown to display an increased Oxphos capacity in their skeletal
muscles [100]. These genetic traits confirm the tight links between p53 and metabolism, a
function that may have influenced their selection in human populations. Genetic studies
have linked other SNPs in the MDM2 and MDM4 genes to increased cancer incidence
or premature aging [101–106]. Evaluating whether some of these polymorphisms also
correlate with metabolic phenotypes may unravel new interesting connections between
MDM2/MDM4 and metabolic diseases. Another striking illustration of the importance of
these metabolic activities in human diseases is the recent identification of Leigh syndrome
patients harboring a homozygous mutation in the E4F1 gene [34]. It is tempting to specu-
late that this Italian family harboring the E4F1K144Q mutation represents just the tip of the
iceberg, and that future studies will link other components of the p53 pathway to inborn
metabolic disorders of currently unknown etiology. Although the identification of these
families may require a massive sequencing effort, the characterization of their associated
clinical symptoms will likely improve our understanding of the complex roles of the p53
pathway in metabolism.

Finally, the complexity of the metabolic network regulated by the p53 pathway has
direct clinical implications for the design of new cancer therapies. It is time to reconsider
the over-simplistic concept that all the genetic alterations occurring at various levels on
the p53 cascade lead to the same consequence, e.g., functional inactivation of p53. At least
from a metabolic standpoint, genetic alterations of these different components of the p53
pathway will rewire metabolism very differently. Moreover, the cellular contexts in which
they occur will dramatically influence the associated molecular consequences. Although
challenging, characterizing in a systematic manner the multiple metabolic defects triggered
by the most common genetic alterations of the p53 pathway and integrating them into
computational models should provide a more complete picture and help the design of
rationalized therapies targeting potential metabolic bottlenecks.
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