
sensors

Article

Navigation Simulation of a Mecanum Wheel Mobile
Robot Based on an Improved A* Algorithm
in Unity3D

Yunwang Li 1,2,*, Sumei Dai 3,2,*, Yong Shi 2, Lala Zhao 1 and Minghua Ding 1

1 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
2 Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
3 School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
* Correspondence: yunwangli@cumt.edu.cn (Y.L.); sumei-dai@hotmail.com (S.D.)

Received: 28 April 2019; Accepted: 2 July 2019; Published: 5 July 2019
����������
�������

Abstract: Computer simulation is an effective means for the research of robot navigation algorithms.
In order to implement real-time, three-dimensional, and visual navigation algorithm simulation,
a method of algorithm simulation based on secondary development of Unity3D is proposed. With this
method, a virtual robot prototype can be created quickly with the imported 3D robot model,
virtual joints, and virtual sensors, and then the navigation simulation can be carried out using the
virtual prototype with the algorithm script in the virtual environment. Firstly, the scripts of the
virtual revolute joint, virtual LiDAR sensors, and terrain environment are written. Secondly, the A*
algorithm is improved for navigation in unknown 3D space. Thirdly, taking the Mecanum wheel
mobile robot as an example, the 3D robot model is imported into Unity3D, and the virtual joint,
sensor, and navigation algorithm scripts are added to the model. Then, the navigation is simulated
in static and dynamic environments using a virtual prototype. Finally, the navigation tests of the
physical robot are carried out in the physical environment, and the test trajectory is compared with
the simulation trajectory. The simulation and test results validate the algorithm simulation method
based on the redevelopment of Unity3d, showing that it is feasible, efficient, and flexible.

Keywords: navigation simulation; path planning; improved A* algorithm; Unity3D; Mecanum
wheel robot

1. Introduction

Navigation is one of the most challenging competencies required of an autonomous mobile
robot (AMR). It can be defined as the combination of the four fundamental competences: perception,
localization, path planning, map building, and interpretation. Robot navigation refers to the robot’s
ability to determine its own position in the environment and then to plan a path towards its goal
positions based on its knowledge about the environment and sensor values so as to reach its goal
positions as efficiently and reliably as possible. Research on navigation algorithms is necessary to
improve automatic mobile robots in all fields [1–6]. The navigation algorithm is the key technology for
the autonomous navigation of robots, and it is also a research hotspot in the field of AMR. The use
of modeling and simulations to develop navigation algorithms provides development flexibility
and the capability to conduct extensive testing of the algorithm under a variety of operational
environments and robot configurations [7]. So, algorithm simulations have been widely used in
navigation algorithm research.

Previously, the algorithm simulation of robots was usually developed using C++, Java,
MATLAB and other programing languages. In the study presented in [8], an algorithm for path
planning to a target for a mobile robot in an unknown environment was implemented in Borland C++;

Sensors 2019, 19, 2976; doi:10.3390/s19132976 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/13/2976?type=check_update&version=1
http://dx.doi.org/10.3390/s19132976
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2976 2 of 44

afterwards, it was tested with Visual Basic and DELPHI programming language. The motion of the
robot that moves from the initial position to the desired position following an estimated trajectory was
shown in the simulation. In the study presented in [9], a path finding simulator for the Pioneer 3DX
mobile robot was designed with GUI (Graphical User Interface) in MATLAB. Five different algorithms,
including the Dijkstra algorithm and A* algorithm, were implemented to determine the shortest path
for a mobile robot between nodes within various mazes using the simulator. Using this simulation
method, usually only two-dimensional simulation results can be displayed, and the display effect is
not good. In order to show the results of the algorithm better, sometimes the navigation algorithm
is simulated jointly by using programming language such as MATLAB and dynamic simulation
software such as ADAMS, RecurDyn. In the study presented in [10], the performance of an adaptive
impedance algorithm for tendon-driven dexterous hands was validated by using MATLAB and
ADAMS software in a joint simulation. A tendon-driven hand model was built and a control module
was generated in ADAMS. Then, the control system was built in MATLAB using the control module.
However, the simulation speed of this method is not very fast, and the simulation parameters can
only be set in advance, so the real-time performance of the simulation is poor. In the simulation of
some robots, especially industrial robots [11–13], the position coordinates of each part of the robot are
calculated by programming language, such as C++, and the corresponding 3D graphics are drawn by
OpenGL to display the corresponding calculation results dynamically. This kind of three-dimensional
motion simulation only shows the positions of the robot parts calculated by the kinematics equation,
not by the physical engine. It is usually used in the simulations of industrial robots, but it is difficult to
simulate some mobile robots with higher physical effect requirements using this method.

At present, there are also several commercial, professional robotic simulation platforms
including software such as Webots, MRDS, Gazebo, MORSE, V-REP, Simbad, USARSim, STDR/Stage,
and ARGoS [14–19]. Webots, an open-source robot simulator, can model and simulate any mobile robot,
including wheeled, legged, and flying robots. It includes a complete library of sensors and actuators,
and can be programmed in C, C++ and Java, or from third party software through TCP/IP [20]. By using
Webots, virtual environments can be achieved for robot simulations. Additionally, Webots allows 3D
models that use the VRML97 standard to be imported [21]. MRDS (Microsoft Robotics Developer
Studio) [22], a visual programming tool, is a Windows-based environment for robot control and
simulation. MRDS not only supports the visual programming language, but also supports many
programming languages such as Visual Basic, Visual C++, and IronPython. MRDS’s Visual Simulation
Environment (VSE) ensures a high quality simulated environment by using NVIDIATM PhysXTM to
create high fidelity 3D simulations with realistic object interactions [23]. Gazebo [24], a well-designed
simulator, makes it possible to rapidly test algorithms, design robots, perform regression testing,
and train AI systems using realistic scenarios. Gazebo offers the ability to accurately and efficiently
simulate populations of robots in complex indoor and outdoor environments. It supports multiple
physics engines (ODE, Bullet, DART). The graphic engine is robust and ensures the development of
high-quality 3D models. It has been widely used in robot and multi-robot system simulations [25–27]
Gazebo is mainly used in the Linux system. Although we can set up a workspace for compiling Gazebo
on Windows, it does not work in a very stable condition on Windows at present. V-rep (Virtual Robot
Experimentation Platform) is a general purpose robotic simulator with an integrated development
environment developed by Coppelia Robotics [28]. V-rep supports many programming languages and
has three graphical engines to compute faster dynamics and to simulate physics and object interactions.
It is commonly used for the navigation simulation of robots [29–31]. MORSE (Modular Open Robots
Simulation Engine) [32] is based on the open-source project Blender, a 3D game engine that comes
with an integrated bullet physics engine. MORSE operates from a command line, and it is a purely
Python application that supports almost any 3D model. Simbad, a 3D robot simulator, is a simple
testing platform to study artificial intelligence and AI algorithms for autonomous robots and agents.
However, this simulation tool does not provide a realistic simulation of the robot environment [33].
USARSim (Unified System for Automation and Robot Simulation) [18] is a 3D simulator based on the

Sensors 2019, 19, 2976 3 of 44

Unreal Tournament (UT) game engine. USARSim was developed to simulate multiple robots in search
and rescue environments. It supports sound sensors, touch sensors, lasers, odometry, and cameras.
Sim2Real (simulation to reality), which tends to be photo-realistic, is a hotspot in the research and
application of robot simulations at present. In the study presented in [34], the use of LiDAR sensor
modeling and data augmentation with GANs for autonomous driving was studied. CycleGANs
was employed to solve the sensor modeling problem for LiDAR to produce realistic LiDAR data
from a simulated LiDAR (sim2real). In the study presented in [35], Sim2Real viewpoint invariant
visual serving by recurrent control was studied. The paper describes how the resulting model can be
transferred to a real-world robot by disentangling perception from control and only adapting the visual
layers. The ROS (Robot Operating System) is an open-source, meta-operating system for robots, and it
is one of most popular types of robotics middleware. It currently only runs on Unix-based platforms.
Rviz (ROS visualization) is a 3D visualizer for displaying sensor data and state information from ROS.
Using Rviz, the current configuration on a virtual model of the robot can be visualized, and the live
representations of sensor values coming over ROS topics can also be displayed. ROS is widely used in
robot control and algorithm simulations. In order to better simulate the algorithms and display the
simulation results, ROS is usually combined with Gazebo and Rviz [15,36,37].

Unity3D is a game development platform. It is a fully integrated professional game engine
and also has a variety of inbuilt user interfaces and 3D rendering capabilities alongside its own
networking protocol [38]. Unity3D makes use of programming language and its own development
environment to create attractive 3D games and software. Unity3D also has a good simulation function
for kinematics and dynamics based on the physical engine, due to the integration of PhysX, which is
a scalable multi-platform game physics solution. In addition to game development, Unity3D has been
applied in a wide range of fields [39,40], such as virtual places, visualization building, virtual teaching
and training, and machine motion simulation. Unity3D is also used in robot kinematics, dynamics,
and navigation algorithm simulations. In paper [41], the method of robot simulation using the
graphics engine and physical engine of Unity3D is shown. This method obtains realistic simulations
of the execution of robotic tasks including sensing and motion primitives. Paper [42] presents the
implementation of a Unity3D-MATLAB simulator applied to the area of robotics. In the simulator,
Unity3D exchanges information with MATLAB to execute different proposed control algorithms.
In paper [43], a ROS-Unity3D based system is introduced for the monitoring of an industrial robotic
process as well as a framework to simulate and execute an industrial process monitoring task in Unity3D.
In paper [44], a novel real-time three-dimensional simulation system, ROSUnitySim, is presented
using ROS and Unity3D, for local planning by miniature unmanned aerial vehicles (UAVs) in cluttered
environments. The paper particularly introduces the modeling of environments and LiDAR sensor.
In the study presented in paper [45], the 3D shortest distance was studied using the A* algorithm
in Unity3D. The applications of Unity have also been extended to machine learning. The Unity
Machine Learning Agents Toolkit (ML–Agents) is an open-source Unity plugin for creating and
interacting with simulation environments using the Unity platform. By taking advantage of Unity as
a simulation platform, the toolkit enables the development of learning environments which are rich in
sensory and physical complexity, provide compelling cognitive challenges and supporting dynamic
multi-agent interactions [46]. In paper [47], in order to train and evaluate interactive agents in realistic
simulated environments, the Interactive Question Answering Dataset (IQUAD V1), which builds on
AI2-THOR [48], a photo-realistic customizable simulation environment for the integration of indoor
scenes with the Unity physics engine, is presented.

The types of professional robotic simulation software mentioned above each have their own
advantages and disadvantages. Researchers need to make reasonable choices based on their actual
needs. Some researchers have also analyzed and compared these simulators [15,17,19,49], as shown in
Table 1, which can provide references for making choices. The above professional robot simulation
platforms or simulators have their own characteristics and have been used widely. Users can choose
between them according to their own unique needs. However, many of them provide either unrealistic

Sensors 2019, 19, 2976 4 of 44

visual information, inaccurate physics, low task complexity, or a limited capacity for interactions
among artificial agents [47]. Since Unity3D has many advantages mentioned above, it is a good idea to
implement the navigation algorithm simulating autonomous mobile robots, taking advantage of the
realistic interactions between the robot and all the other elements of the environment that Unity3D
provides. In this paper, through the secondary development of Unity3D, a navigation simulation
platform based Unity3D is designed. Using the simulation platform, a virtual robot prototype can be
established quickly with the imported 3D robot model and virtual joints and sensors, and navigation
algorithm scripts can be added to the virtual prototype to carry out navigation simulations in the
virtual ground environment. In this paper, the A* algorithm was improved for navigation in unknown
3D environment. Taking the Mecanum wheeled mobile robot as an example, its 3D robot model was
imported into Unity3D, and the joint, sensor and navigation algorithm scripts are added to the model,
and then the improved A* navigation algorithm was simulated using the robot virtual prototype.
The test was carried out using the physical robot prototype in the physical environment, and the
simulation trajectory and test trajectory were compared to verify the feasibility and availability of the
proposed method.

Table 1. Comparison of common types of simulation software.

Unity3D Gazebo Webots V-rep MRDS MORSE Simbad USARSim SimSpark

Main Operating
System

Windows,
Linux,
MacOS

Linux
Windows,

Linux,
MacOS

Windows,
MacOS,
Linux

Windows Linux,
MacOS

Windows,
Linux,
MacOS

Windows,
Linux,
MacOS

Windows,
Linux,
MacOS

Main
Programming

Language
C# C++ C++ C++ C# Python Java C# C++

Main Physics
Engine PhysX ODE/Bullet/DART Fork of ODE ODE/Bullet PhysX Bullet Built-in

Karma
Physics
engine

ODE

Java
Programming Yes No Yes Yes No Yes Yes Yes No

Can import 3D
model Yes Yes Yes Yes Yes Yes No Yes Yes

Physical Fidelity High Medium High High High High Low High Medium

Functional
Fidelity High Medium Medium High High High Low High High

Ease of
Development High Medium Medium Medium Medium Medium Low High Low

This paper is organized as follows: In Section 2, the simulation platform based on Unity3D is
described, and the creation of the virtual joints, sensors, and environments in Unity3D is introduced.
An improved A* algorithm that can be used in an unknown 3D environment is introduced in
Section 3. Section 4 firstly describes the Mecanum wheel mobile robot and its kinematics model
and then introduces the virtual prototype of the robot and the navigation simulation process of the
improved A* algorithm on the simulation platform. In Section 5, a navigation accuracy measurement
experiment system for robots in the physical environment is created to evaluate the simulation effect
of the simulation platform created in Unity3D, and the test results of physical robot in the physical
environment are compared with the simulation results.

2. Simulation Platform Based on Unity3D

2.1. Elements of the Simulation Platform

The elements of the simulation platform include the mobile robot virtual prototype, a simulation
environment for the prototype, a kinematic model, virtual sensors, a virtual actuator, a graphics
engine, a physics engine, and a navigation algorithm. The mobile robot virtual prototype, which is
an autonomous entity with actuation and sensing capabilities, is the main element of the simulation

Sensors 2019, 19, 2976 5 of 44

platform [41]. The 3D model of the mobile robot can be modeled using any 3D modeling tool, such as
SolidWorks, and then it can be imported into Unity3D. The mass characteristics should be added to
the 3D model, and the actuation should be imposed on its mobile mechanisms, such as its wheels.
The virtual sensors should be imported to the virtual prototype to retain knowledge about the prototype
itself and about the environment. The virtual terrain environment includes ground features and
obstacle features. In the simulation process, the mobile mechanism of the virtual prototype interacts
with the ground features, such as uneven ground, slope, ditch, etc. The virtual sensor detects the
entity features of virtual obstacles, such as rocks, and carries out path planning according to the
navigation algorithm.

The virtual robot prototypes and terrain environment in the robot simulation platform based
on Unity3D will change according to the needs of different robot simulations. Different virtual
prototypes of robots have different mechanical structures and sensor configurations. In order to build
virtual prototypes efficiently, it is necessary to create parametric kinematic joints and parametric
sensor modules. The location of various types of obstacles and the ground features in the simulation
environment will also change. Therefore, in order to improve the efficiency of the creation of a virtual
terrain environment, parametric programming should be adopted.

2.2. Parametric Virtual Kinematic Joints

There are many kinds of mechanisms in the mechanical body of a mobile robot. Kinematic joints
(or simply, joints) are critical parts of a mechanism, which is a connection between two components of
the mechanism that imposes constraints on their relative movement. The types of motion allowed
and constrained are related to the characteristics of the mechanism, which are usually characterized
by the degrees of freedom it allows. In Unity3D, the configurable joint component can limit the
degrees of freedom of relative motion between two components. Configurable joints are extremely
customizable since they incorporate all the functionality of the other joint types. They can be used
to create anything from adapted versions of the existing joints to highly specialized joints. There are
two primary functions that the configurable joint can perform: movement/rotation restriction and
movement/rotation acceleration. These functions depend on a number of interdependent properties.
Restriction can be specified per axis and per motion type. The translation along an axis can be defined
as “X Motion”, “Y Motion”, and “Z Motion”. The rotation around an axis can be defined as “Angular
X Motion”, “Angular Y Motion”, and “Angular Z Motion”. Each one of these properties can be set to
“Free” (unrestricted), “Limited”, or “Locked” (restricted to zero movement). By adding configurable
joint components to the components of the joint and setting parameters, the degrees of freedom of
the joints can be set, and the simulation of various simple joints, such as the revolute joint and the
prismatic joint, can be realized. The virtual joints obtained by programming can be used to create
virtual prototypes.

Taking the revolute joint as an example, the programming requirements of a parameterized
virtual motion pair are introduced. The revolute joint is a kind of lower pair joint, which has one
degree of freedom. In a three-dimensional coordinate system, the revolute joint can only rotate around
a coordinate axis: X, Y, or Z. The degree of freedom of the revolute joint in Figure 1 is the degree of
freedom around the Z axis. If a revolute joint rotating around the Z axis is created, as shown in Figure 1,
“Angular Z Motion” should be set as “Free”, and “Angular X Motion” and “Angular Y Motion” should
be set as “Locked”. The “Anchor”, which is the point where the center of the joint is defined, needs to
be set. The “Position Damper” of the “Angular Z Drive” and “Connected Body” should also be set.
The script of the revolute joint can be compiled according to the requirements of the revolute joint.

Sensors 2019, 19, 2976 6 of 44

Sensors 2019, 19, x FOR PEER REVIEW 5 of 41

the entity features of virtual obstacles, such as rocks, and carries out path planning according to the
navigation algorithm.

The virtual robot prototypes and terrain environment in the robot simulation platform based on
Unity3D will change according to the needs of different robot simulations. Different virtual
prototypes of robots have different mechanical structures and sensor configurations. In order to build
virtual prototypes efficiently, it is necessary to create parametric kinematic joints and parametric
sensor modules. The location of various types of obstacles and the ground features in the simulation
environment will also change. Therefore, in order to improve the efficiency of the creation of a virtual
terrain environment, parametric programming should be adopted.

2.2. Parametric Virtual Kinematic Joints

There are many kinds of mechanisms in the mechanical body of a mobile robot. Kinematic joints
(or simply, joints) are critical parts of a mechanism, which is a connection between two components
of the mechanism that imposes constraints on their relative movement. The types of motion allowed
and constrained are related to the characteristics of the mechanism, which are usually characterized
by the degrees of freedom it allows. In Unity3D, the configurable joint component can limit the
degrees of freedom of relative motion between two components. Configurable joints are extremely
customizable since they incorporate all the functionality of the other joint types. They can be used to
create anything from adapted versions of the existing joints to highly specialized joints. There are two
primary functions that the configurable joint can perform: movement/rotation restriction and
movement/rotation acceleration. These functions depend on a number of interdependent properties.
Restriction can be specified per axis and per motion type. The translation along an axis can be defined
as “X Motion”, “Y Motion”, and “Z Motion”. The rotation around an axis can be defined as “Angular
X Motion”, “Angular Y Motion”, and “Angular Z Motion”. Each one of these properties can be set to
“Free” (unrestricted), “Limited”, or “Locked” (restricted to zero movement). By adding configurable
joint components to the components of the joint and setting parameters, the degrees of freedom of
the joints can be set, and the simulation of various simple joints, such as the revolute joint and the
prismatic joint, can be realized. The virtual joints obtained by programming can be used to create
virtual prototypes.

Taking the revolute joint as an example, the programming requirements of a parameterized
virtual motion pair are introduced. The revolute joint is a kind of lower pair joint, which has one
degree of freedom. In a three-dimensional coordinate system, the revolute joint can only rotate
around a coordinate axis: X, Y, or Z. The degree of freedom of the revolute joint in Figure 1 is the
degree of freedom around the Z axis. If a revolute joint rotating around the Z axis is created, as shown
in Figure 1, “Angular Z Motion” should be set as “Free”, and “Angular X Motion” and “Angular Y
Motion” should be set as “Locked”. The “Anchor”, which is the point where the center of the joint is
defined, needs to be set. The “Position Damper” of the “Angular Z Drive” and “Connected Body”
should also be set. The script of the revolute joint can be compiled according to the requirements of
the revolute joint.

Figure 1. Schematic diagram of the revolute joint.

2.3. Virtual Sensors

X

Z

O

Y
Angular Z Motion

Anchor

Figure 1. Schematic diagram of the revolute joint.

2.3. Virtual Sensors

Autonomous mobile robots need to be equipped with enough internal sensors and external
sensors to respectively detect the internal state and external environmental information of the robot.
Common internal sensors are motion output sensors such as encoders and inertial navigation systems.
Common external sensors include ultrasonic sensors, laser ranging sensors, and 2D and 3D LiDARs.
Only when these sensors are simulated can the robot detect its own motion state and the simulation
environment in Unity3D, so as to realize the autonomous control of the robot.

Physics.Raycast in Unity3D can help to simulate the ranging sensors. The function of
Physics.Raycast is to cast a ray of maxDistance length from an origin point in a specified direction
against all colliders in the scene. This ray returns detailed information on what is hit.

2.3.1. Two-Dimensional LiDAR

The LiDAR/LADAR/Laser radar, an instrument for laser detection and ranging, can cast a short,
pulsed laser to a target object and then time how long it takes for the light to return. LiDAR can also
provide an image of the target at the same time as determining the distance. The common types of 2D
LiDAR are shown in Figure 2. Based on the characteristics of 2D LiDAR, we used the Physics.Raycast
function in Unity3D to simulate it.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 41

Autonomous mobile robots need to be equipped with enough internal sensors and external
sensors to respectively detect the internal state and external environmental information of the robot.
Common internal sensors are motion output sensors such as encoders and inertial navigation
systems. Common external sensors include ultrasonic sensors, laser ranging sensors, and 2D and 3D
LiDARs. Only when these sensors are simulated can the robot detect its own motion state and the
simulation environment in Unity3D, so as to realize the autonomous control of the robot.

Physics.Raycast in Unity3D can help to simulate the ranging sensors. The function of
Physics.Raycast is to cast a ray of maxDistance length from an origin point in a specified direction
against all colliders in the scene. This ray returns detailed information on what is hit.

2.3.1. Two-Dimensional LiDAR

The LiDAR/LADAR/Laser radar, an instrument for laser detection and ranging, can cast a short,
pulsed laser to a target object and then time how long it takes for the light to return. LiDAR can also
provide an image of the target at the same time as determining the distance. The common types of
2D LiDAR are shown in Figure 2. Based on the characteristics of 2D LiDAR, we used the
Physics.Raycast function in Unity3D to simulate it.

(a) (b) (c)

Figure 2. Common 2D LiDAR photos: (a) Hokuyo Utm-30LX scanning laser rangefinder LiDAR; (b)
Quanergy's M8 LiDAR sensor; (c) SICK’s LMS151 field detection laser scanner

Firstly, variables for scripting are defined in Table 2 according to parameters of Physics.Raycast.
As shown in Figure 3, angle α is the value of scanAngle, and the angular bisector line of angle α is
the Z-axis direction of the LiDAR. The total number of laser lines in the range of angle α is the value
of laserResolution. Detection starts from the left-most laser line and proceeds to the right. First, the
radar rotates around the angle of scanAngle/2 to the left, and then it uses the Physics.Raycast function
to transmit a ray to the front. The result is stored in the result array. Next, the LiDAR rotates around
the deltaAngle angle to the right and casts another laser. The result is stored in the result array until
all the laser lines have been detected. Finally, the laser rotates the angle of the scanAngle to the left
to prepare for the next scan detection. Thus, the data stored in the result array are the detection results
of the LiDAR. Each value in the array is the distance from the obstacle detected by the left-to-right
laser line to the radar. If the value is–1, there is no the obstacle on the laser line. The distance to each
obstacle around the radar is obtained by reading the result array. Using this method, the script of 2D
LiDAR simulation can be compiled. In Unity3D, the page displayed after addition of the above 2D
LiDAR script is shown in Figure 4. After clicking the Play button of Unity3D, the distance values
measured by the function are displayed on the result array.

Table 2. Definition of variables for 2D laser simulation.

Variables Type Function of the Variables

laserResolution
Denotes the resolution of 2D LiDAR, that is, the number of laser lines emitted by the LiDAR in
a rotating cycle.

scanAngle float Denotes the scanning angle of the LiDAR, that is, the scanning range of the LiDAR.

deltaAngle float
Represents the angle between two adjacent laser lines, deltaAngle =
scanAngle/laserResolution.

Figure 2. Common 2D LiDAR photos: (a) Hokuyo Utm-30LX scanning laser rangefinder LiDAR;
(b) Quanergy's M8 LiDAR sensor; (c) SICK’s LMS151 field detection laser scanner

Firstly, variables for scripting are defined in Table 2 according to parameters of Physics.Raycast.
As shown in Figure 3, angle α is the value of scanAngle, and the angular bisector line of angle α is the
Z-axis direction of the LiDAR. The total number of laser lines in the range of angle α is the value of
laserResolution. Detection starts from the left-most laser line and proceeds to the right. First, the radar
rotates around the angle of scanAngle/2 to the left, and then it uses the Physics.Raycast function to
transmit a ray to the front. The result is stored in the result array. Next, the LiDAR rotates around the
deltaAngle angle to the right and casts another laser. The result is stored in the result array until all the
laser lines have been detected. Finally, the laser rotates the angle of the scanAngle to the left to prepare
for the next scan detection. Thus, the data stored in the result array are the detection results of the

Sensors 2019, 19, 2976 7 of 44

LiDAR. Each value in the array is the distance from the obstacle detected by the left-to-right laser line
to the radar. If the value is–1, there is no the obstacle on the laser line. The distance to each obstacle
around the radar is obtained by reading the result array. Using this method, the script of 2D LiDAR
simulation can be compiled. In Unity3D, the page displayed after addition of the above 2D LiDAR
script is shown in Figure 4. After clicking the Play button of Unity3D, the distance values measured by
the function are displayed on the result array.

Table 2. Definition of variables for 2D laser simulation.

Variables Type Function of the Variables

laserResolution Denotes the resolution of 2D LiDAR, that is, the number of
laser lines emitted by the LiDAR in a rotating cycle.

scanAngle float Denotes the scanning angle of the LiDAR, that is, the scanning
range of the LiDAR.

deltaAngle float Represents the angle between two adjacent laser lines,
deltaAngle = scanAngle/laserResolution.

result float An array that stores the results of radar detection. The size of
the array is the value of laserResolution.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 41

result float
An array that stores the results of radar detection. The size of the array is the value of
laserResolution.

Figure 3. Schematic diagram of 2D LiDAR detection.

Figure 4. Programming page of the 2D LiDAR script.

2.3.2. Three-Dimensional LiDAR

The common type of 3D LiDAR is shown in Figure 5. The main difference between 3D LiDAR
and 2D LiDAR is that 3D LiDAR casts multiple laser lines in order to realize multi-layer detection. In
Unity, 3D LiDAR is also simulated using Physics.Raycast. A two-dimensional array can be used to
store the detection return value. The definitions of variables for 3D LiDAR simulation are shown in
Table 3.

(a) (b) (c)

Figure 5. Three-dimensional LiDAR photos: (a) Velodyne VLP-16 LiDAR; (b) Velodyne HDL-64E
LiDAR; (c) RoboSensep’s RS-LiDAR-32.

Table 3. Definition of variables for 3D LiDAR simulation.

Variables Type Function of the Variables

lineNumber int
Represents the line number of the 3D LiDAR, defined as a drop-down selection variable.
There is a choice of 4 lines, 8 lines, 16 lines, 32 lines, and 64 lines.

laserResolution
Represents the resolution of 3D LiDAR in the horizontal direction, that is, the number of
laser lines emitted by the radar in one revolution.

scanAngle int Represents the scanning angle of the LiDAR, that is, the scanning range of the LiDAR.

deltaAngle float
Represents the angular spacing between two adjacent laser lines in the horizontal direction,
deltaAngle = scanAngle/laserResolution

deltaLineAngle float Represents the angular spacing between two adjacent laser lines in the vertical direction.

α

Z

X O 2D LiDAR

Lase

Figure 3. Schematic diagram of 2D LiDAR detection.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 41

result float
An array that stores the results of radar detection. The size of the array is the value of
laserResolution.

Figure 3. Schematic diagram of 2D LiDAR detection.

Figure 4. Programming page of the 2D LiDAR script.

2.3.2. Three-Dimensional LiDAR

The common type of 3D LiDAR is shown in Figure 5. The main difference between 3D LiDAR
and 2D LiDAR is that 3D LiDAR casts multiple laser lines in order to realize multi-layer detection. In
Unity, 3D LiDAR is also simulated using Physics.Raycast. A two-dimensional array can be used to
store the detection return value. The definitions of variables for 3D LiDAR simulation are shown in
Table 3.

(a) (b) (c)

Figure 5. Three-dimensional LiDAR photos: (a) Velodyne VLP-16 LiDAR; (b) Velodyne HDL-64E
LiDAR; (c) RoboSensep’s RS-LiDAR-32.

Table 3. Definition of variables for 3D LiDAR simulation.

Variables Type Function of the Variables

lineNumber int
Represents the line number of the 3D LiDAR, defined as a drop-down selection variable.
There is a choice of 4 lines, 8 lines, 16 lines, 32 lines, and 64 lines.

laserResolution
Represents the resolution of 3D LiDAR in the horizontal direction, that is, the number of
laser lines emitted by the radar in one revolution.

scanAngle int Represents the scanning angle of the LiDAR, that is, the scanning range of the LiDAR.

deltaAngle float
Represents the angular spacing between two adjacent laser lines in the horizontal direction,
deltaAngle = scanAngle/laserResolution

deltaLineAngle float Represents the angular spacing between two adjacent laser lines in the vertical direction.

α

Z

X O 2D LiDAR

Lase

Figure 4. Programming page of the 2D LiDAR script.

2.3.2. Three-Dimensional LiDAR

The common type of 3D LiDAR is shown in Figure 5. The main difference between 3D LiDAR and
2D LiDAR is that 3D LiDAR casts multiple laser lines in order to realize multi-layer detection. In Unity,
3D LiDAR is also simulated using Physics.Raycast. A two-dimensional array can be used to store the
detection return value. The definitions of variables for 3D LiDAR simulation are shown in Table 3.

Sensors 2019, 19, 2976 8 of 44

Sensors 2019, 19, x FOR PEER REVIEW 7 of 41

result float
An array that stores the results of radar detection. The size of the array is the value of
laserResolution.

Figure 3. Schematic diagram of 2D LiDAR detection.

Figure 4. Programming page of the 2D LiDAR script.

2.3.2. Three-Dimensional LiDAR

The common type of 3D LiDAR is shown in Figure 5. The main difference between 3D LiDAR
and 2D LiDAR is that 3D LiDAR casts multiple laser lines in order to realize multi-layer detection. In
Unity, 3D LiDAR is also simulated using Physics.Raycast. A two-dimensional array can be used to
store the detection return value. The definitions of variables for 3D LiDAR simulation are shown in
Table 3.

(a) (b) (c)

Figure 5. Three-dimensional LiDAR photos: (a) Velodyne VLP-16 LiDAR; (b) Velodyne HDL-64E
LiDAR; (c) RoboSensep’s RS-LiDAR-32.

Table 3. Definition of variables for 3D LiDAR simulation.

Variables Type Function of the Variables

lineNumber int
Represents the line number of the 3D LiDAR, defined as a drop-down selection variable.
There is a choice of 4 lines, 8 lines, 16 lines, 32 lines, and 64 lines.

laserResolution
Represents the resolution of 3D LiDAR in the horizontal direction, that is, the number of
laser lines emitted by the radar in one revolution.

scanAngle int Represents the scanning angle of the LiDAR, that is, the scanning range of the LiDAR.

deltaAngle float
Represents the angular spacing between two adjacent laser lines in the horizontal direction,
deltaAngle = scanAngle/laserResolution

deltaLineAngle float Represents the angular spacing between two adjacent laser lines in the vertical direction.

α

Z

X O 2D LiDAR

Lase

Figure 5. Three-dimensional LiDAR photos: (a) Velodyne VLP-16 LiDAR; (b) Velodyne HDL-64E
LiDAR; (c) RoboSensep’s RS-LiDAR-32.

Table 3. Definition of variables for 3D LiDAR simulation.

Variables Type Function of the Variables

lineNumber int
Represents the line number of the 3D LiDAR, defined
as a drop-down selection variable. There is a choice
of 4 lines, 8 lines, 16 lines, 32 lines, and 64 lines.

laserResolution
Represents the resolution of 3D LiDAR in the
horizontal direction, that is, the number of laser lines
emitted by the radar in one revolution.

scanAngle int Represents the scanning angle of the LiDAR, that is,
the scanning range of the LiDAR.

deltaAngle float
Represents the angular spacing between two adjacent
laser lines in the horizontal direction, deltaAngle =
scanAngle/laserResolution

deltaLineAngle float Represents the angular spacing between two adjacent
laser lines in the vertical direction.

maxLineAngle float Represents the angle between the top laser line in the
vertical direction and the horizontal plane.

result float A two-dimensional array, which stores the results of
radar detection.

resultVector Vector3 A two-dimensional array used to store the 3D vector
of the laser collision point relative to the radar.

The simulated 3D LiDAR here refers to IBEO’s 4-line and 8-line 3D LIDAR and Velodyne’s 16-line,
32-line and 64-line 3D LiDAR. The values of deltaLineAngle and maxLineAngle are shown in Table 4,
which are determined by the type and number of lines of the LiDAR.

Table 4. 3D LiDAR angles.

Radar Line
Number 4 Lines 8 Lines 16 Lines 32 Lines 64 Lines

deltaLineAngle 0.8◦ 0.8◦ 2◦ 1.29◦ 0.4254◦

maxLineAngle 1.2◦ 2.8◦ 15◦ 10◦ 2◦

As shown in Figure 6, angle α in Figure 6a represents the scanning range of the 3D LiDAR in
the vertical direction. The total number of laser lines in the vertical direction is the lineNumber.
The angular bisector of angle α is the Z-axis direction of the radar. Angle β in Figure 6a is the horizontal
scanning range of 3D LiDAR, that is, the value of scanAngle. The total number of laser lines in the
range of angle β is the value of laserResolution. As shown in Figure 6b, taking a laser line as an example,
L is the distance from the LiDAR to the collision point; angle ϕ is the angle between the laser line and
the horizontal plane, angle α can be obtained by the maxLineAngle and deltaLineAngle; and angle θ
is the angle between the laser line and the vertical plane in front of the radar and is obtained by the

Sensors 2019, 19, 2976 9 of 44

scanAngle and deltaAngle. The 3D vectors of the collision point relative to the LiDAR can be obtained
by the following formula: 

x
y
z

 =


cosϕ· cosθ

sinϕ
cosϕ· sinθ

·L

Sensors 2019, 19, x FOR PEER REVIEW 8 of 41

maxLineAngle float
Represents the angle between the top laser line in the vertical direction and the horizontal
plane.

result float A two-dimensional array, which stores the results of radar detection.

resultVector Vector3
A two-dimensional array used to store the 3D vector of the laser collision point relative to
the radar.

The simulated 3D LiDAR here refers to IBEO’s 4-line and 8-line 3D LIDAR and Velodyne’s 16-
line, 32-line and 64-line 3D LiDAR. The values of deltaLineAngle and maxLineAngle are shown in
Table 4, which are determined by the type and number of lines of the LiDAR.

Table 4. 3D LiDAR angles.

Radar Line Number 4 Lines 8 Lines 16 Lines 32 Lines 64 Lines
deltaLineAngle 0.8° 0.8° 2° 1.29° 0.4254°
maxLineAngle 1.2° 2.8° 15° 10° 2°

As shown in Figure 6, angle α in Figure 6a represents the scanning range of the 3D LiDAR in the
vertical direction. The total number of laser lines in the vertical direction is the lineNumber. The
angular bisector of angle α is the Z-axis direction of the radar. Angle β in Figure 6a is the horizontal
scanning range of 3D LiDAR, that is, the value of scanAngle. The total number of laser lines in the
range of angle β is the value of laserResolution. As shown in Figure 6b, taking a laser line as an
example, L is the distance from the LiDAR to the collision point; angle φ is the angle between the laser
line and the horizontal plane, angle α can be obtained by the maxLineAngle and deltaLineAngle; and
angle θ is the angle between the laser line and the vertical plane in front of the radar and is obtained
by the scanAngle and deltaAngle. The 3D vectors of the collision point relative to the LiDAR can be
obtained by the following formula:

(a) (b)

Figure 6. Schematic diagram of 3D LiDAR detection: (a) the scanning range of the 3D LiDAR; (b)
schematic diagram of the radar detection results transformation.

ቈ𝑥𝑦𝑧቉ = ൥cos𝜑 ൉ cos𝜃sin𝜑cos𝜑 ൉ sin𝜃൩ ൉ 𝐿

The program page for adding a 3D LiDAR script to the components in Unity3D is shown in
Figure 7.

Figure 7. Program page of the 3D LiDAR script.

Y

X

Z

α

β

O

3D LiDAR

Scanning range
Y

φ Z

L

O

θ
X

Laser P(X, Y, Z)

Figure 6. Schematic diagram of 3D LiDAR detection: (a) the scanning range of the 3D LiDAR;
(b) schematic diagram of the radar detection results transformation.

The program page for adding a 3D LiDAR script to the components in Unity3D is shown
in Figure 7.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 41

maxLineAngle float
Represents the angle between the top laser line in the vertical direction and the horizontal
plane.

result float A two-dimensional array, which stores the results of radar detection.

resultVector Vector3
A two-dimensional array used to store the 3D vector of the laser collision point relative to
the radar.

The simulated 3D LiDAR here refers to IBEO’s 4-line and 8-line 3D LIDAR and Velodyne’s 16-
line, 32-line and 64-line 3D LiDAR. The values of deltaLineAngle and maxLineAngle are shown in
Table 4, which are determined by the type and number of lines of the LiDAR.

Table 4. 3D LiDAR angles.

Radar Line Number 4 Lines 8 Lines 16 Lines 32 Lines 64 Lines
deltaLineAngle 0.8° 0.8° 2° 1.29° 0.4254°
maxLineAngle 1.2° 2.8° 15° 10° 2°

As shown in Figure 6, angle α in Figure 6a represents the scanning range of the 3D LiDAR in the
vertical direction. The total number of laser lines in the vertical direction is the lineNumber. The
angular bisector of angle α is the Z-axis direction of the radar. Angle β in Figure 6a is the horizontal
scanning range of 3D LiDAR, that is, the value of scanAngle. The total number of laser lines in the
range of angle β is the value of laserResolution. As shown in Figure 6b, taking a laser line as an
example, L is the distance from the LiDAR to the collision point; angle φ is the angle between the laser
line and the horizontal plane, angle α can be obtained by the maxLineAngle and deltaLineAngle; and
angle θ is the angle between the laser line and the vertical plane in front of the radar and is obtained
by the scanAngle and deltaAngle. The 3D vectors of the collision point relative to the LiDAR can be
obtained by the following formula:

(a) (b)

Figure 6. Schematic diagram of 3D LiDAR detection: (a) the scanning range of the 3D LiDAR; (b)
schematic diagram of the radar detection results transformation.

ቈ𝑥𝑦𝑧቉ = ൥cos𝜑 ൉ cos𝜃sin𝜑cos𝜑 ൉ sin𝜃൩ ൉ 𝐿

The program page for adding a 3D LiDAR script to the components in Unity3D is shown in
Figure 7.

Figure 7. Program page of the 3D LiDAR script.

Y

X

Z

α

β

O

3D LiDAR

Scanning range
Y

φ Z

L

O

θ
X

Laser P(X, Y, Z)

Figure 7. Program page of the 3D LiDAR script.

2.4. Construction of Virtual Simulation Environment

When the virtual prototype of a robot is simulated in Unity, it is necessary to create virtual
environments to simulate the real environments. When building a simulation environment, it is
necessary to simulate the ground and various other obstacles so that the motion state of the robot can
be observed when it passes through obstacles. This section briefly introduces the creation of stochastic
ground and parameterized obstacles.

2.4.1. Stochastic Ground Simulation

In Unity, Terrain is the most important component for building the terrain environment. Using the
HeightMap parameter option in Terrain, ground can be constructed by importing an image in RAW
format. The gray scale of each pixel in the RAW image corresponds to the height of each position in
Terrain. Thus, when constructing stochastic ground, we can first generate a gray image corresponding
to the height of each location of the ground by writing a program, then convert the image into
RAW format, and finally, import the RAW image into the Terrain component to generate a random
ground surface.

Usually, the power spectrum of pavement irregularity is used to express the magnitude of
random pavement irregularity. For the 3D modeling of stochastic ground or road, many methods
can be used such as the white noise method, the Fast Fourier Transform (FFT) method, and the

Sensors 2019, 19, 2976 10 of 44

harmonic superposition method. This section describes the selection of the sine wave superposition
principle and the writing of the program in C# language to calculate the unevenness distribution of
the pavement, thus converting the pavement height to generate the corresponding three-dimensional
random pavement. The basic principle of the sinusoidal wave superposition method is as follows:

For the spatial frequency n1 < n < n2, the variance of ground roughness σ2
d can be obtained from

the power spectral density of ground roughness Gd(n), and the formula can be expressed as

σ2
d =

∫ n2

n1

Gd(n)d

The power spectral density of ground roughness Gd(n) can be obtained from the Chinese national
standard GB7031-86, and the fitting expression is as follows:

Gd(n) = Gd(n0)(
n
n0

)
−W

n > 0

where, n0 references the spatial frequency, generally taken as n0 = 0.1 m−1.
W is Frequency index that determines the frequency structure of the pavement power spectral

density, generally taking W = 2;
In the integral operation, the spatial frequency n1 < n < n2 can be divided into m intervals with

widths of ∆ni. This is replaced by the power spectral density of pavement roughness Gd
(
nmid,i

)
at

the center frequency nmid,i (i = 1, 2, · · · , m) of each cell, and the variance of pavement roughness σ2
d is

obtained by the discrete method, and the formula can be changed to Gd
(
nmid,i

)
∆ni

σ2
d =

m∑
i=1

Gd
(
nmid,i

)
∆ni

So, we can use the sinusoidal wave function to represent the ground surface model and get the
Stochastic ground surface roughness. The spatial frequency of the sinusoidal wave function is nmid,i

(i = 1, 2, · · · , m), the standard deviation is,
√

Gd
(
nmid,i

)
∆ni ,and the formula of the sinusoidal wave

function is
qi(x) =

√
2Gd

(
nmid,i

)
∆ni sin

(
2πnmid,ix + θi

)
By superposing the sinusoidal wave functions of m intervals, the model of random pavement

roughness can be obtained. The formula is as follows:

q(x) =
m∑

i=1

√
2Gd

(
nmid,i

)
∆ni sin

(
2πnmid,ix + θi

)
θi is a random number belonging to [0, 2π].
The above formula represents a longitudinal unevenness distribution of the ground surface.

For 3D space, it is necessary to obtain the longitudinal and lateral ground surface irregularities of the
ground surface. The lateral roughness model of the pavement is the same as that for the longitudinal
direction. After the same discrete process, the ground roughness in 3D space can be obtained:

q(x, y) =
m∑

i=1

√
2Gd

(
nmid,i

)
∆ni sin

(
2πnmid,ix + θi(x, y)

)
where θi(x, y) is a random number belonging to [0, 2π].

After obtaining the ground roughness formula in 3D space, the program can be written in C#
language to generate the corresponding grayscale image and then saved in PNG format. After Gaussian

Sensors 2019, 19, 2976 11 of 44

blur processing, the image is saved in RAW format. Finally, the RAW format image is imported and
converted to 3D terrain using the Terrain component in Unity software.

Figure 8a shows the PNG image generated by the program, Figure 8b shows the PNG image of
the Gus fuzzification process, and Figure 8c shows the terrain created in Unity3D from the RAW image
converted from Figure 8b.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 41

𝑞(𝑥) = ෍ ට2𝐺𝑑൫𝑛𝑚𝑖𝑑,𝑖൯∆𝑛𝑖sin (2𝜋𝑛𝑚𝑖𝑑,𝑖𝑥 + 𝜃𝑖)௠
௜ୀଵ

𝜃௜ is a random number belonging to [0, 2π].
The above formula represents a longitudinal unevenness distribution of the ground surface. For

3D space, it is necessary to obtain the longitudinal and lateral ground surface irregularities of the
ground surface. The lateral roughness model of the pavement is the same as that for the longitudinal
direction. After the same discrete process, the ground roughness in 3D space can be obtained:

𝑞(𝑥, 𝑦) = ෍ ට2𝐺𝑑൫𝑛𝑚𝑖𝑑,𝑖൯∆𝑛𝑖sin (2𝜋𝑛𝑚𝑖𝑑,𝑖𝑥 + 𝜃𝑖(𝑥, 𝑦))௠
௜ୀଵ

where 𝜃௜(𝑥, 𝑦) is a random number belonging to [0, 2π].
After obtaining the ground roughness formula in 3D space, the program can be written in C#

language to generate the corresponding grayscale image and then saved in PNG format. After
Gaussian blur processing, the image is saved in RAW format. Finally, the RAW format image is
imported and converted to 3D terrain using the Terrain component in Unity software.

Figure 8a shows the PNG image generated by the program, Figure 8b shows the PNG image of
the Gus fuzzification process, and Figure 8c shows the terrain created in Unity3D from the RAW
image converted from Figure 8b.

(a) (b) (c)

Figure 8. Using the script to create stochastic ground: (a) PNG image; (b) PNG image after Gauss blur;
(c) stochastic ground after Gauss blur.

2.4.2. Simulation of Parameterized Obstacles

In the simulation environment, it is necessary to extract and simplify the features of real
obstacles such as the slope, step, channel, convex terrain, and so on. In the obstacle simulation, the
slope step can be considered to be composed of five cubes, the undulating ground is composed of
several triangular prisms, and the round convex terrain is composed of a cylinder and a cube, as
shown in Figure 9b,d,e, respectively. The scattered gravel pavement can also be automatically created
by parameterization, as shown in Figure 9a. According to the values of the parameters in Table 5, a
test terrain platform with a length of 15,000 mm and a width of 4000 mm is built, as shown in Figure
9c. In this paper, the script of obstacle simulation is not introduced in detail.

Table 5. The parameters of the test terrain platform.

Obstacle type Variables Description of the Obstacles and the Parameters Values

Scattered
gravel

pavement

Rang/mm The edge length of a square scattered gravel pavement 2000
number The number of rocks in the square 1000
Size/mm The size of the rock in the scattered gravel pavement. 20

DeltaSize/mm

DeltaSize indicates the fluctuation range of rock sizes in the gravel
pavement. By setting DeltaSize, the size and shape of the gravel

pavement change, and stochastic generation of the gravel pavement
can be realized.

5

Figure 8. Using the script to create stochastic ground: (a) PNG image; (b) PNG image after Gauss blur;
(c) stochastic ground after Gauss blur.

2.4.2. Simulation of Parameterized Obstacles

In the simulation environment, it is necessary to extract and simplify the features of real obstacles
such as the slope, step, channel, convex terrain, and so on. In the obstacle simulation, the slope step can
be considered to be composed of five cubes, the undulating ground is composed of several triangular
prisms, and the round convex terrain is composed of a cylinder and a cube, as shown in Figure 9b,d,e,
respectively. The scattered gravel pavement can also be automatically created by parameterization,
as shown in Figure 9a. According to the values of the parameters in Table 5, a test terrain platform with
a length of 15,000 mm and a width of 4000 mm is built, as shown in Figure 9c. In this paper, the script
of obstacle simulation is not introduced in detail.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 41

Slope step

Glength
(L1/mm)

The slope step is composed of five cubes. The variables representing
the shape are shown in Figure 9b. W represents the width of the slope

step.

500

Tlength2
(L2/mm)

500

Width
(W/mm)

2000

Height
(H/mm)

100

LeftAngle
(α1/°)

10/15

RightAngle
(α2/°)

10/15

Undulating
ground

Number (N)

The undulating ground is composed of several triangular prisms, as
shown in Figure 9d; N represents the number of triangular prisms, and

W represent the width of the undulating ground.

3/4
Length (L/mm) 300

Height
(H/mm)

50

Width
(W/mm)

2000

Round convex
obstacle

GLength
(L/mm)

The round convex is a combination of a cylinder and a cube. As shown
in Figure 9e, W represents the width of the round convex.

600/1200

Radius
(R/mm)

300

Height
(H/mm)

30

Width
(W/mm)

2000/4000

Figure 9. Test terrain platform built using multiple modules: (a) scattered gravel pavement; (b) slope
step; (c) test terrain platform; (d) undulating ground; (e) round convex obstacle.

2.4.3. Virtual Environments for Navigation Simulation of the Robot

Several different simulation grounds and obstacles were created to simulate the experimental
navigation environment for a robot. A stochastic ground was created by using the stochastic ground
surface generation program, and a pit and a mound obstacle terrain which could not be passed by
robots were added by the adjustment function of the Terrain component in Unity, as shown in Figure
10a. There were many small folds on the stochastic ground. Figure 10b is an enlarged view of an area
of the stochastic ground in Figure 10a. A planar ground with three obstacles was also created, as
shown in Figure 10c.

Figure 9. Test terrain platform built using multiple modules: (a) scattered gravel pavement; (b) slope
step; (c) test terrain platform; (d) undulating ground; (e) round convex obstacle.

Sensors 2019, 19, 2976 12 of 44

Table 5. The parameters of the test terrain platform.

Obstacle type Variables Description of the Obstacles and the Parameters Values

Scattered gravel
pavement

Rang/mm The edge length of a square scattered gravel
pavement 2000

number The number of rocks in the square 1000

Size/mm The size of the rock in the scattered gravel pavement. 20

DeltaSize/mm

DeltaSize indicates the fluctuation range of rock sizes
in the gravel pavement. By setting DeltaSize, the size

and shape of the gravel pavement change,
and stochastic generation of the gravel pavement can

be realized.

5

Slope step

Glength (L1/mm)

The slope step is composed of five cubes. The
variables representing the shape are shown in

Figure 9b. W represents the width of the slope step.

500

Tlength2 (L2/mm) 500

Width (W/mm) 2000

Height (H/mm) 100

LeftAngle (α1/◦) 10/15

RightAngle (α2/◦) 10/15

Undulating ground

Number (N) The undulating ground is composed of several
triangular prisms, as shown in Figure 9d; N

represents the number of triangular prisms, and W
represent the width of the undulating ground.

3/4

Length (L/mm) 300

Height (H/mm) 50

Width (W/mm) 2000

Round convex obstacle

GLength (L/mm)
The round convex is a combination of a cylinder and

a cube. As shown in Figure 9e, W represents the
width of the round convex.

600/1200

Radius (R/mm) 300

Height (H/mm) 30

Width (W/mm) 2000/4000

2.4.3. Virtual Environments for Navigation Simulation of the Robot

Several different simulation grounds and obstacles were created to simulate the experimental
navigation environment for a robot. A stochastic ground was created by using the stochastic ground
surface generation program, and a pit and a mound obstacle terrain which could not be passed
by robots were added by the adjustment function of the Terrain component in Unity, as shown in
Figure 10a. There were many small folds on the stochastic ground. Figure 10b is an enlarged view of
an area of the stochastic ground in Figure 10a. A planar ground with three obstacles was also created,
as shown in Figure 10c.Sensors 2019, 19, x FOR PEER REVIEW 12 of 41

(a) (b) (c)

Figure 10. Simulation environments for the robot: (a) stochastic ground with a pit and a mound; (b)
an enlarged view of the area S of the stochastic ground; (c) a planar ground with three obstacles.

3. Improved A* Algorithm

Path planning is the task of finding a continuous path that will drive the robot from the start
point to the target point. Based on the information about the obstacles, the working environment of
a robot can be categorized as a completely known environment, a partially known environment, or a
completely unknown environment. It can also be categorized as a static environment or a dynamic
environment [50-52]. There are many path planning and navigation algorithms, such as PRM, RRT,
EST, RRT*, APF, MPC, ANN, GA, PSO, ACO, and D* [53], compared to which the A* algorithm has
advantages such as its simple principles, easy realization, and high efficiency. Thus, it has been
widely investigated and applied. To increase the applicability of the A* algorithm, meet the
requirements for navigation tasks, generate more smooth paths, and reduce the length and turning
times, many improved A* algorithms have been proposed and studied in depth. A 3D A* algorithm
was studied to configure the path between two nodes in a 3D environment, and was shown to be
faster than an A* Algorithm with 2D layers [45]. An improved A* algorithm was studied to improve
the safety and smoothness of the planned path and to reduce the movement time of the robot in
complex terrain [53]. Several modifications (Basic Theta*, Phi*) and improvements (RSR, JPS) of the
A* algorithm have been studied to reduce the computational time and optimize the path optimality
[54]. A modified A* algorithm for path planning with efficient coverage was presented, and can be
used to generate waypoints in order to cover the narrow spaces [55]. An improved A* algorithm
considering water current, traffic separation, and berthing for vessel path planning [56], which
achieves the trade-off between path length and navigation safety, was proposed. So, the A* algorithm
has good expansibility and adaptability and can be improved according to the actual working
environment of the robot. Although the research interest of this paper is to propose a new method of
navigation algorithm simulation in Unity3D, the research focus is not on the algorithm itself. In order
to verify the availability and reliability of the simulation platform based on Unity3D, it is necessary
to select the appropriate robot prototype and navigation algorithm. Therefore, the A* algorithm was
selected to test and study the robot navigation simulation proposal.

3.1. Introduction of the A* Algorithm

The A* search algorithm is a global optimization and state space heuristic algorithm. It can be
seen as an improved version of the Dijkstra algorithm with the addition of an evaluation function
[57]. In the search process, each search position in the state space is evaluated, and the least evaluated
position is selected. Then, the search is carried out from this location until the target point is found.
This can omit a large number of invalid search paths and improve the efficiency.

The evaluation function of the A* algorithm is as follows: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
where f(n) is the estimated cost of arriving at the target node from the initial node through node n. g
(n) is the actual cost for travelling from the initial node to node n in the state space. h (n) represents
the cost of estimating the optimal path from node n to target node. When the evaluation cost h (n) is

A mound Starting point

Target point A pit

S
Obstacle 1 Obstacle 2

Obstacle 3

Starting point

Target point

Figure 10. Simulation environments for the robot: (a) stochastic ground with a pit and a mound; (b) an
enlarged view of the area S of the stochastic ground; (c) a planar ground with three obstacles.

3. Improved A* Algorithm

Path planning is the task of finding a continuous path that will drive the robot from the start
point to the target point. Based on the information about the obstacles, the working environment
of a robot can be categorized as a completely known environment, a partially known environment,

Sensors 2019, 19, 2976 13 of 44

or a completely unknown environment. It can also be categorized as a static environment or a dynamic
environment [50–52]. There are many path planning and navigation algorithms, such as PRM, RRT,
EST, RRT*, APF, MPC, ANN, GA, PSO, ACO, and D* [53], compared to which the A* algorithm
has advantages such as its simple principles, easy realization, and high efficiency. Thus, it has
been widely investigated and applied. To increase the applicability of the A* algorithm, meet the
requirements for navigation tasks, generate more smooth paths, and reduce the length and turning
times, many improved A* algorithms have been proposed and studied in depth. A 3D A* algorithm
was studied to configure the path between two nodes in a 3D environment, and was shown to be faster
than an A* Algorithm with 2D layers [45]. An improved A* algorithm was studied to improve the
safety and smoothness of the planned path and to reduce the movement time of the robot in complex
terrain [53]. Several modifications (Basic Theta*, Phi*) and improvements (RSR, JPS) of the A* algorithm
have been studied to reduce the computational time and optimize the path optimality [54]. A modified
A* algorithm for path planning with efficient coverage was presented, and can be used to generate
waypoints in order to cover the narrow spaces [55]. An improved A* algorithm considering water
current, traffic separation, and berthing for vessel path planning [56], which achieves the trade-off

between path length and navigation safety, was proposed. So, the A* algorithm has good expansibility
and adaptability and can be improved according to the actual working environment of the robot.
Although the research interest of this paper is to propose a new method of navigation algorithm
simulation in Unity3D, the research focus is not on the algorithm itself. In order to verify the availability
and reliability of the simulation platform based on Unity3D, it is necessary to select the appropriate
robot prototype and navigation algorithm. Therefore, the A* algorithm was selected to test and study
the robot navigation simulation proposal.

3.1. Introduction of the A* Algorithm

The A* search algorithm is a global optimization and state space heuristic algorithm. It can be
seen as an improved version of the Dijkstra algorithm with the addition of an evaluation function [57].
In the search process, each search position in the state space is evaluated, and the least evaluated
position is selected. Then, the search is carried out from this location until the target point is found.
This can omit a large number of invalid search paths and improve the efficiency.

The evaluation function of the A* algorithm is as follows:

f (n) = g(n) + h(n)

where f (n) is the estimated cost of arriving at the target node from the initial node through node n. g
(n) is the actual cost for travelling from the initial node to node n in the state space. h (n) represents the
cost of estimating the optimal path from node n to target node. When the evaluation cost h (n) is closer
to the real value, the efficiency of the algorithm is higher, and the likelihood of finding the optimal
solution is higher. The flow chart of the A* algorithm is shown in Figure 11.

Sensors 2019, 19, 2976 14 of 44

Sensors 2019, 19, x FOR PEER REVIEW 13 of 41

closer to the real value, the efficiency of the algorithm is higher, and the likelihood of finding the
optimal solution is higher. The flow chart of the A* algorithm is shown in Figure 11.

Figure 11. A* algorithm flowchart.

3.2. Improvement of the A* Algorithm for Navigation in an Unknown Environment

The A* navigation algorithm is a global path planning algorithm for use in known environments.
When a mobile robot navigates in an unknown environment, it needs to move while detecting and
planning the path in real time according to the terrain and obstacles detected.

The strategy of the improved A* algorithm is to use the A* algorithm to conduct path planning
in unknown environments and to make the mobile robot plan its movements. The robot continuously
detects the surrounding environment in the course of movement and projects the detected
environmental information into the map. If the detected obstacles do not block the planned path, the
robot will continue to move along the original path. If the obstacles detected obstruct the planned
path, the current position of the robot is set as the starting point of navigation, and the shortest path
to the target point is re-planned according to the new environmental information at this time. On the

Is the OPEN
table empty?

Is n the target node? Path is found

Yes

Yes

No

START

No

Put the starting point
into the OPEN table

Path does not exist

The node n with the lowest f
value in the OPEN table is
put into the CLOSED table

Is N in the CLOSED table?

Is N in the OPEN table?

Taking n as the parent node
of N, the evaluation of N is

calculated, and N is added to
OPEN table.

Is the current g value
smaller?

Taking n as the parent node of
N, update the evaluation of N.

Yes

No

Yes

Yes
No

No

Check associated node N of n

Figure 11. A* algorithm flowchart.

3.2. Improvement of the A* Algorithm for Navigation in an Unknown Environment

The A* navigation algorithm is a global path planning algorithm for use in known environments.
When a mobile robot navigates in an unknown environment, it needs to move while detecting and
planning the path in real time according to the terrain and obstacles detected.

The strategy of the improved A* algorithm is to use the A* algorithm to conduct path planning in
unknown environments and to make the mobile robot plan its movements. The robot continuously
detects the surrounding environment in the course of movement and projects the detected environmental
information into the map. If the detected obstacles do not block the planned path, the robot will
continue to move along the original path. If the obstacles detected obstruct the planned path, the current
position of the robot is set as the starting point of navigation, and the shortest path to the target point is
re-planned according to the new environmental information at this time. On the whole, this path is not

Sensors 2019, 19, 2976 15 of 44

the shortest path from the original starting point to the target point, but it can avoid the roundabout
path of the mobile robot.

3.3. Improvement of the A* Algorithm for Navigation in 3D Space

The A* algorithm is suitable for path planning in 2D space and cannot be used directly for
navigation in a 3D environment. For the A* algorithm, there are two types of storage information for
each grid point, which are the location information of the node in 2D space and whether the node can
be passed. In order to use the A* navigation algorithm in 3D space, two variables, maxHeight and
minHeight, which store information in 3D space, need to be expanded to represent the maximum and
minimum heights of nodes, respectively. As shown in Figure 12, the cuboids represent the nodes in the
grid. Each node has its corresponding position information on the plane. The white cuboids represent
the nodes through which the robot can pass, while the gray cuboids represent the nodes that the robot
cannot pass through. The improved A* algorithm can record the height information of the nodes and
realize the 3D map reconstruction, so that the robot can navigate in the 3D space.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 41

whole, this path is not the shortest path from the original starting point to the target point, but it can
avoid the roundabout path of the mobile robot.

3.3. Improvement of the A* Algorithm for Navigation in 3D Space

The A* algorithm is suitable for path planning in 2D space and cannot be used directly for
navigation in a 3D environment. For the A* algorithm, there are two types of storage information for
each grid point, which are the location information of the node in 2D space and whether the node can
be passed. In order to use the A* navigation algorithm in 3D space, two variables, maxHeight and
minHeight, which store information in 3D space, need to be expanded to represent the maximum
and minimum heights of nodes, respectively. As shown in Figure 12, the cuboids represent the nodes
in the grid. Each node has its corresponding position information on the plane. The white cuboids
represent the nodes through which the robot can pass, while the gray cuboids represent the nodes
that the robot cannot pass through. The improved A* algorithm can record the height information of
the nodes and realize the 3D map reconstruction, so that the robot can navigate in the 3D space.

Figure 12. Schematic diagram of the improved node information.

The A* algorithm is used to navigate in 2D space, and for the reconstruction of a 2D map, 2D
LiDAR is used. As shown in Figure 13, 2D LiDAR casts laser lines, and when an obstacle is detected,
the position information of the obstacle is projected into a 2D map, that is, the gray grid nodes, and
the corresponding nodes of the obstacle are changed to be inaccessible.

Figure 13. Obstacle judgment of the A* algorithm.

When terrain reconstruction is performed in 3D space, the undulating ground and obstacles can
be detected by 3D LiDAR. As shown in Figure 14, the irregular square is a block of undulating ground
divided in a grid, The laser cast from a 3D LiDAR can detect all positions on the undulating ground,
and all height information is updated to the variables of the node, As shown in the square on the
right, the height of the top surface (maxHeight) of the square is the value of the node, and the height
of the bottom surface (minHeight) is the value of the node. The height of the square is h (h =
maxHeight-minHeight). Figure 15 shows how to update the node height information.

Figure 12. Schematic diagram of the improved node information.

The A* algorithm is used to navigate in 2D space, and for the reconstruction of a 2D map,
2D LiDAR is used. As shown in Figure 13, 2D LiDAR casts laser lines, and when an obstacle is detected,
the position information of the obstacle is projected into a 2D map, that is, the gray grid nodes, and the
corresponding nodes of the obstacle are changed to be inaccessible.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 41

whole, this path is not the shortest path from the original starting point to the target point, but it can
avoid the roundabout path of the mobile robot.

3.3. Improvement of the A* Algorithm for Navigation in 3D Space

The A* algorithm is suitable for path planning in 2D space and cannot be used directly for
navigation in a 3D environment. For the A* algorithm, there are two types of storage information for
each grid point, which are the location information of the node in 2D space and whether the node can
be passed. In order to use the A* navigation algorithm in 3D space, two variables, maxHeight and
minHeight, which store information in 3D space, need to be expanded to represent the maximum
and minimum heights of nodes, respectively. As shown in Figure 12, the cuboids represent the nodes
in the grid. Each node has its corresponding position information on the plane. The white cuboids
represent the nodes through which the robot can pass, while the gray cuboids represent the nodes
that the robot cannot pass through. The improved A* algorithm can record the height information of
the nodes and realize the 3D map reconstruction, so that the robot can navigate in the 3D space.

Figure 12. Schematic diagram of the improved node information.

The A* algorithm is used to navigate in 2D space, and for the reconstruction of a 2D map, 2D
LiDAR is used. As shown in Figure 13, 2D LiDAR casts laser lines, and when an obstacle is detected,
the position information of the obstacle is projected into a 2D map, that is, the gray grid nodes, and
the corresponding nodes of the obstacle are changed to be inaccessible.

Figure 13. Obstacle judgment of the A* algorithm.

When terrain reconstruction is performed in 3D space, the undulating ground and obstacles can
be detected by 3D LiDAR. As shown in Figure 14, the irregular square is a block of undulating ground
divided in a grid, The laser cast from a 3D LiDAR can detect all positions on the undulating ground,
and all height information is updated to the variables of the node, As shown in the square on the
right, the height of the top surface (maxHeight) of the square is the value of the node, and the height
of the bottom surface (minHeight) is the value of the node. The height of the square is h (h =
maxHeight-minHeight). Figure 15 shows how to update the node height information.

Figure 13. Obstacle judgment of the A* algorithm.

When terrain reconstruction is performed in 3D space, the undulating ground and obstacles
can be detected by 3D LiDAR. As shown in Figure 14, the irregular square is a block of undulating
ground divided in a grid, The laser cast from a 3D LiDAR can detect all positions on the undulating
ground, and all height information is updated to the variables of the node, As shown in the square
on the right, the height of the top surface (maxHeight) of the square is the value of the node, and the
height of the bottom surface (minHeight) is the value of the node. The height of the square is h
(h = maxHeight-minHeight). Figure 15 shows how to update the node height information.

Sensors 2019, 19, 2976 16 of 44
Sensors 2019, 19, x FOR PEER REVIEW 15 of 41

Figure 14. Schematic diagram of 3D LiDAR terrain detection.

Figure 15. Node height information update flowchart (H = the height of the collision point).

After 3D terrain detection, it is necessary to determine whether the robot can pass through a
certain area according to the height information of the nodes. The first criterion is the height
difference (maxHeight − minHeight) of the nodes, and the criterion is that the size of the grid is
multiplied by a coefficient. The magnitude of this coefficient is determined by the obstacle-
overcoming ability of the robot, which is highly related to the maximum obstacle that the robot can
cross.

The second criterion is the height difference between the node and the surrounding nodes. As
shown in Figure 16, the intermediate gray blocks represent the nodes to be detected, and the eight
white blocks represent the nodes around the nodes to be detected. The median height ((maxHeight +
minHeight)/2) of the node to be detected is subtracted from the median height of the surrounding
nodes, and the absolute value of the difference is used to determine whether the robot can pass
through the node. The criterion is that the horizontal distance of the two nodes is multiplied by a
coefficient. The coefficient is determined by the slope-climbing ability of the robot and is related to
the maximum slope that the robot can climb.

h

A grid of undulating ground

maxHeight

minHeight

Laser 3D LiDAR Collision points

Figure 14. Schematic diagram of 3D LiDAR terrain detection.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 41

Figure 14. Schematic diagram of 3D LiDAR terrain detection.

Figure 15. Node height information update flowchart (H = the height of the collision point).

After 3D terrain detection, it is necessary to determine whether the robot can pass through a
certain area according to the height information of the nodes. The first criterion is the height
difference (maxHeight − minHeight) of the nodes, and the criterion is that the size of the grid is
multiplied by a coefficient. The magnitude of this coefficient is determined by the obstacle-
overcoming ability of the robot, which is highly related to the maximum obstacle that the robot can
cross.

The second criterion is the height difference between the node and the surrounding nodes. As
shown in Figure 16, the intermediate gray blocks represent the nodes to be detected, and the eight
white blocks represent the nodes around the nodes to be detected. The median height ((maxHeight +
minHeight)/2) of the node to be detected is subtracted from the median height of the surrounding
nodes, and the absolute value of the difference is used to determine whether the robot can pass
through the node. The criterion is that the horizontal distance of the two nodes is multiplied by a
coefficient. The coefficient is determined by the slope-climbing ability of the robot and is related to
the maximum slope that the robot can climb.

h

A grid of undulating ground

maxHeight

minHeight

Laser 3D LiDAR Collision points

Figure 15. Node height information update flowchart (H = the height of the collision point).

After 3D terrain detection, it is necessary to determine whether the robot can pass through a certain
area according to the height information of the nodes. The first criterion is the height difference
(maxHeight −minHeight) of the nodes, and the criterion is that the size of the grid is multiplied by
a coefficient. The magnitude of this coefficient is determined by the obstacle-overcoming ability of the
robot, which is highly related to the maximum obstacle that the robot can cross.

The second criterion is the height difference between the node and the surrounding nodes.
As shown in Figure 16, the intermediate gray blocks represent the nodes to be detected, and the eight
white blocks represent the nodes around the nodes to be detected. The median height ((maxHeight
+ minHeight)/2) of the node to be detected is subtracted from the median height of the surrounding
nodes, and the absolute value of the difference is used to determine whether the robot can pass through
the node. The criterion is that the horizontal distance of the two nodes is multiplied by a coefficient.
The coefficient is determined by the slope-climbing ability of the robot and is related to the maximum
slope that the robot can climb.

Sensors 2019, 19, 2976 17 of 44

Sensors 2019, 19, x FOR PEER REVIEW 16 of 41

Figure 16. Schematic diagram to determine whether a node can pass through a certain area

3.4. Programming Implementation of the Improved A* Algorithm

The A* algorithm consists of four programs. The functions of the programs are to create nodes,
to create grids, to calculate paths, to detect the environment, and to reconstruct maps. These are
introduced separately.

3.4.1. Creation of Nodes

The function of this program is to build a classification for nodes, which can directly generate
objects of this class when creating each node in the grid. This simplifies the program and means that
it does not need to be attached to Unity. It can be directly called by other programs. First, we define
the name of the class as Node and then define the data members of the class, as shown in Table 6.

Table 6. Definitions of variables of data members from the class Node.

Variables Type Function of the Variables

canWalk bool
Store information on whether the node can pass through a certain area. If the
value of the variable is true, the node can pass through; if false, it cannot.

worldPos Vector3 Stores the 3D coordinates of the node in the world coordinate system.

gridX, gridY int
Stores the 2D coordinates of the node in the map, that is, the node is located in the
gridY row and the gridX column of all the nodes in the map.

maxHeight, minHeight float
Store the height information of the node and is used to calculate whether the
robot can pass through the node.

gCost, hCost and fCost int
These three variables store the three estimated values of the A* algorithm
mentioned above, so as to calculate the target path.

The way to get the target path from the parent variable is as follows: The target node is regarded
as the first node of the path. The parent node of the target node is regarded as the second node of the
path, and the parent node of the second node is regarded as the third node of the path until the
starting node is found. The combination of the obtained nodes is the calculated target path. After the
data member definition is finished, the constructor of the class is defined, and the four data members
of the class, canWalk, worldPos, gridX, and gridY, are assigned values in the constructor.

3.4.2. Creation of Grids

The function of this program is to divide the map into grids and create nodes at the intersections
of grids. This program needs to be attached to Unity, and the objects in Unity are used to assign
values to variables in the program. The data members for the Grid program are defined, as shown in
Table 7.

Table 7. Variables of data members of the program grid.

Variables Type Functions of the Variables

nodeRadius float
Represents the radius of the node, which determines the spacing of the grid, and the
spacing between the two nodes is twice that of nodeRadius.

nodeDiameter float
Represents the diameter of the node and the value of the variable is twice the
nodeRadius.

Figure 16. Schematic diagram to determine whether a node can pass through a certain area

3.4. Programming Implementation of the Improved A* Algorithm

The A* algorithm consists of four programs. The functions of the programs are to create nodes,
to create grids, to calculate paths, to detect the environment, and to reconstruct maps. These are
introduced separately.

3.4.1. Creation of Nodes

The function of this program is to build a classification for nodes, which can directly generate
objects of this class when creating each node in the grid. This simplifies the program and means that it
does not need to be attached to Unity. It can be directly called by other programs. First, we define the
name of the class as Node and then define the data members of the class, as shown in Table 6.

Table 6. Definitions of variables of data members from the class Node.

Variables Type Function of the Variables

canWalk bool
Store information on whether the node can pass through a certain
area. If the value of the variable is true, the node can pass through;
if false, it cannot.

worldPos Vector3 Stores the 3D coordinates of the node in the world coordinate
system.

gridX, gridY int
Stores the 2D coordinates of the node in the map, that is, the node
is located in the gridY row and the gridX column of all the nodes
in the map.

maxHeight, minHeight float Store the height information of the node and is used to calculate
whether the robot can pass through the node.

gCost, hCost and fCost int These three variables store the three estimated values of the A*
algorithm mentioned above, so as to calculate the target path.

The way to get the target path from the parent variable is as follows: The target node is regarded
as the first node of the path. The parent node of the target node is regarded as the second node of the
path, and the parent node of the second node is regarded as the third node of the path until the starting
node is found. The combination of the obtained nodes is the calculated target path. After the data
member definition is finished, the constructor of the class is defined, and the four data members of the
class, canWalk, worldPos, gridX, and gridY, are assigned values in the constructor.

3.4.2. Creation of Grids

The function of this program is to divide the map into grids and create nodes at the intersections
of grids. This program needs to be attached to Unity, and the objects in Unity are used to assign values
to variables in the program. The data members for the Grid program are defined, as shown in Table 7.

Sensors 2019, 19, 2976 18 of 44

Table 7. Variables of data members of the program grid.

Variables Type Functions of the Variables

nodeRadius float
Represents the radius of the node, which determines the spacing of
the grid, and the spacing between the two nodes is twice that of
nodeRadius.

nodeDiameter float Represents the diameter of the node and the value of the variable is
twice the nodeRadius.

gridSize Vector2 Stores the grid area, that is, the map range.

Robot, endPoint Transform The two variables store the location of the robot and the location of
the target point respectively.

gridCntX, gridCntY int The values of gridCntX and gridCntY can be calculated by gridSize
and nodeDiameter.

grid Node The 2D array, grid [gridCntX, gridCntY], stores the nodes separated
by the grid.

path List<Node>
The path set is used to store the target path calculated in the
A* algorithm.

The area size of the grids is determined by the starting position and the target position of the
robot. The calculation method of the gridSize value used in this program is as follows:

gridSize.x = Mathf.Abs(endPoint.transform.position.x-robot.transform.position.x) * 1.5f;

gridSize.y = Mathf.Abs(endPoint.transform.position.z-robot.transform.position.z) * 1.5f.

After the data member definition has been completed, the member functions of the program
are defined. The member function “CreatGrid” of the program is a program for dividing the grid,
which runs when simulation begins in Unity. Firstly, the starting point of grid map is defined, which is
the origin of the 2D map, where the starting point is selected in the lower left corner of the grid dividing
area. The center point of the grid division area is calculated, and the coordinates of the center point
are the average values of the coordinates of the starting position and the target position of the robot,
that is, transform.position = (endPoint.transform.position + robot.transform.position)/2.

In Figure 17, Point C is the center of the grid division area, and Point S is the starting point of the
grid map. The program for calculating coordinates of S point is as follows:

startPoint = transform.position − (gridSize.x/2 − nodeRadius) × Vector3.right −

(gridSize./2 × nodeRadius) × Vector3.forward.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 41

gridSize Vector2 Stores the grid area, that is, the map range.

Robot, endPoint Transform
The two variables store the location of the robot and the location of the target point
respectively.

gridCntX,
gridCntY

int
The values of gridCntX and gridCntY can be calculated by gridSize and
nodeDiameter.

grid Node The 2D array, grid [gridCntX, gridCntY], stores the nodes separated by the grid.
path List<Node> The path set is used to store the target path calculated in the A* algorithm.

The area size of the grids is determined by the starting position and the target position of the
robot. The calculation method of the gridSize value used in this program is as follows:

gridSize.x = Mathf.Abs(endPoint.transform.position.x-robot.transform.position.x) * 1.5f；
gridSize.y = Mathf.Abs(endPoint.transform.position.z-robot.transform.position.z) * 1.5f.

After the data member definition has been completed, the member functions of the program are
defined. The member function “CreatGrid” of the program is a program for dividing the grid, which
runs when simulation begins in Unity. Firstly, the starting point of grid map is defined, which is the
origin of the 2D map, where the starting point is selected in the lower left corner of the grid dividing
area. The center point of the grid division area is calculated, and the coordinates of the center point
are the average values of the coordinates of the starting position and the target position of the robot,
that is, transform.position = (endPoint.transform.position + robot.transform.position)/2.

In Figure 17, Point C is the center of the grid division area, and Point S is the starting point of
the grid map. The program for calculating coordinates of S point is as follows:

startPoint = transform.position − (gridSize.x/2 − nodeRadius) × Vector3.right − (gridSize. /2 ×
nodeRadius) × Vector3.forward.

Figure 17. Schematic diagram of the dividing grid.

The other grid nodes in the map can be obtained from the starting point of the grid map plus a
multiple of the node diameter, that is, the coordinates of the node in the 2D grid map. In the 2D grid
map presented in Figure 16, the abscissa of point P is the abscissa of the starting point plus twice the
diameter of the node, and the ordinate of point P is the ordinate of the starting point plus three times
the diameter of the node. The corresponding calculation formula is

worldPoint = startPoint + Vector3.right × (2 × nodeDiameter) + Vector3.forward × (3 ×
nodeDiameter).

3.4.3. Planning Path

The function of this program is to use the A* algorithm to calculate the shortest path from the
starting position of the robot to the target position according to the map. This program needs to be
attached to Unity, as some objects in Unity are used to assign values to some variables in the program.
In addition, the above Grid program needs to be called.

Starting point S

P

Center of the grid
division area

C

O

2D Grid map

Grid node

nodeRadius

X

Z

X-axis coordinates of C

Figure 17. Schematic diagram of the dividing grid.

The other grid nodes in the map can be obtained from the starting point of the grid map plus
a multiple of the node diameter, that is, the coordinates of the node in the 2D grid map. In the 2D grid
map presented in Figure 16, the abscissa of point P is the abscissa of the starting point plus twice the

Sensors 2019, 19, 2976 19 of 44

diameter of the node, and the ordinate of point P is the ordinate of the starting point plus three times
the diameter of the node. The corresponding calculation formula is

worldPoint = startPoint + Vector3.right × (2 × nodeDiameter) + Vector3.forward × (3 × nodeDiameter).

3.4.3. Planning Path

The function of this program is to use the A* algorithm to calculate the shortest path from the
starting position of the robot to the target position according to the map. This program needs to be
attached to Unity, as some objects in Unity are used to assign values to some variables in the program.
In addition, the above Grid program needs to be called.

A program named “Findpath” is defined, and then the data members of the program are defined,
including robot, endPoint and grid, as shown in Table 8. After the data member definition has
been completed, the member functions of the program are defined. A function is defined to assign
the grid variables, that is, to call the Grid program. The assignment of variables uses the function
grid = GetComponent<Grid>() in Unity. Next, a function is defined to calculate the path, and the
calculated path is assigned to the path variable in the Grid program. The function first defines two
variables of the List <Node> type: openSet and closeSet. Then, the program is written according to the
flow chart of the A* algorithm shown in Figure 11.

Table 8. Definition of data members of the Findpath program.

Variables Type Function of the Variables

robot, endPoint Transform These two variables are used to store the current location and
target location of the robot.

grid Grid The “grid” is an object generated by the raster program
created above for calling the previous program.

openSet List<Node>
The openSet corresponds to the OPEN table in the A*
algorithm, which is used to store the nodes to be computed.

closeSet List<Node>
The closeSet corresponds to the CLOSED table in the A*
algorithm, which is used to store the computed nodes.

If the number of elements in the openSet becomes zero, the path to the target point cannot be
found; if the number of elements in the openSet is not zero, the following operation is performed:
The node with the smallest fCost value in the openSet is moved into the closeSet. If this node is the
target node at this time, then the path is found; otherwise, the calculation will continue. The nearest
node of the current smallest node should be searched. If the nearest node is neither in the closeSet nor
an obstacle, the current smallest node is set as the parent of the nearest node, the estimated value of the
nearest node is updated, and the nearest node is added to the openSet.

3.4.4. Environment Exploration and Topographic Reconstruction

The function of this program is to detect the environment by using 3D LiDAR and to create a 3D
grid map. The path calculated by the “findpath” program drives the robot along the path to reach the
target position. First, a program named “Navigation” is defined, and its data members and related
variables are defined, as shown in Table 9. In the calculation of the path based on the A* algorithm,
the robot is regarded as a particle, and the obstacle expansion method is used to obtain the path. The A,
B, C, and D rectangles in Figure 18 represent the positions and sizes of the four obstacles, and rectangle
E represents the size of the robot. The dotted line frame in the figure shows the shape of the obstacle
after expanding the “barriderDistance” distance.

Sensors 2019, 19, 2976 20 of 44

Table 9. Definition of data members and related variables in the “Navigation” program.

Variables Type Function of the Variables

Robot, endPoint Transform Stores the current position and target position of the robot.

barriderDistance float Stores the distance of the obstacle expanding outward. The
value of the variable is related to the size of the robot.

wheel Gameobject The array stores the four wheels of the robot. The program
makes the robot move by driving the four wheels to rotate.

speed float Represents the moving speed of the robot.
lidarPos Vector3 Represents the correction of the radar position.

grid Grid To call a Grid program.
LiDAR lidar3D To call the lidar3D program.

posSensor outputSensor To call the outputSensor program.
robotSize1, robotSize2 Vector3 Stores the sizes of the robot.Sensors 2019, 19, x FOR PEER REVIEW 19 of 41

Figure 18. Schematic diagram of obstacle expansion.

As shown in Figure 19, Point C is the center position of the robot, that is, the current coordinate
of the robot; Point B is the location of the LiDAR. The variable lidarPos stores three-dimensional
vectors from point O to point C to correct the position of the robot from the radar position. The three-
dimensional vectors of the collision point relative to point O measured by LiDAR and lidarPos can
be used to obtain the three-dimensional vectors of the collision point relative to point C. Finally, two
vector 3 variables RobSize1 and RobSize2 are defined. The variables store the size of the robot. When
the LiDAR detects obstacles in this range, it is regarded as detecting the robot itself, ignoring the
point automatically and preventing errors

Figure 19. Schematic diagram of LiDAR position correction and detection results filtration.

In Figure 19, taking the overhead sketch of the robot as an example and taking the center O of
the LiDAR as the origin, the shape and size of the robot are shown in the outermost solid box. Point
R1 and point R2 correspond to the 3D vectors of the robotSize1 and robotSize2 variables, which store
the size of the robot. The stored size is slightly larger than the actual size of the robot. When the
LiDAR detects obstacles inside the robot, such as points O2 and O3, it is regarded as detecting the
robot itself. These points are automatically ignored. If the detection point is regarded as an obstacle
outside the robot, such as points O1 and O4, the point is projected into the map. The flow chart for

O2

O1

O3

O4

O

X

Z

R1

R2

C

O
3D LiDAR Laser

Robot

C

Y
Z

Figure 18. Schematic diagram of obstacle expansion.

As shown in Figure 19, Point C is the center position of the robot, that is, the current coordinate of the
robot; Point B is the location of the LiDAR. The variable lidarPos stores three-dimensional vectors from
point O to point C to correct the position of the robot from the radar position. The three-dimensional
vectors of the collision point relative to point O measured by LiDAR and lidarPos can be used to obtain
the three-dimensional vectors of the collision point relative to point C. Finally, two vector 3 variables
RobSize1 and RobSize2 are defined. The variables store the size of the robot. When the LiDAR detects
obstacles in this range, it is regarded as detecting the robot itself, ignoring the point automatically and
preventing errors

Sensors 2019, 19, 2976 21 of 44

Sensors 2019, 19, x FOR PEER REVIEW 19 of 41

Figure 18. Schematic diagram of obstacle expansion.

As shown in Figure 19, Point C is the center position of the robot, that is, the current coordinate
of the robot; Point B is the location of the LiDAR. The variable lidarPos stores three-dimensional
vectors from point O to point C to correct the position of the robot from the radar position. The three-
dimensional vectors of the collision point relative to point O measured by LiDAR and lidarPos can
be used to obtain the three-dimensional vectors of the collision point relative to point C. Finally, two
vector 3 variables RobSize1 and RobSize2 are defined. The variables store the size of the robot. When
the LiDAR detects obstacles in this range, it is regarded as detecting the robot itself, ignoring the
point automatically and preventing errors

Figure 19. Schematic diagram of LiDAR position correction and detection results filtration.

In Figure 19, taking the overhead sketch of the robot as an example and taking the center O of
the LiDAR as the origin, the shape and size of the robot are shown in the outermost solid box. Point
R1 and point R2 correspond to the 3D vectors of the robotSize1 and robotSize2 variables, which store
the size of the robot. The stored size is slightly larger than the actual size of the robot. When the
LiDAR detects obstacles inside the robot, such as points O2 and O3, it is regarded as detecting the
robot itself. These points are automatically ignored. If the detection point is regarded as an obstacle
outside the robot, such as points O1 and O4, the point is projected into the map. The flow chart for

O2

O1

O3

O4

O

X

Z

R1

R2

C

O
3D LiDAR Laser

Robot

C

Y
Z

Figure 19. Schematic diagram of LiDAR position correction and detection results filtration.

In Figure 19, taking the overhead sketch of the robot as an example and taking the center O of the
LiDAR as the origin, the shape and size of the robot are shown in the outermost solid box. Point R1
and point R2 correspond to the 3D vectors of the robotSize1 and robotSize2 variables, which store the
size of the robot. The stored size is slightly larger than the actual size of the robot. When the LiDAR
detects obstacles inside the robot, such as points O2 and O3, it is regarded as detecting the robot itself.
These points are automatically ignored. If the detection point is regarded as an obstacle outside the
robot, such as points O1 and O4, the point is projected into the map. The flow chart for determining
whether a point (taking O1 as an example) is located in a robot in 3D space is shown in Figure 20.

The results of 3D LiDAR measurements in LiDAR variables are processed. The first step is to
determine whether the collision point of the LiDAR is within the range of robotSize1 and robotSize2
variables. If so, this point will be skipped, and the next point will be detected. If not, the point will be
corrected, and the coordinate system of the 3D LiDAR itself will be rotated to the same direction as the
world coordinate system. As shown in Figure 21, the coordinate system X’Y’Z’ is the self-coordinate
system of the 3D LiDAR, and the coordinate system XYZ is in the same direction as the world coordinate
system, and the origins of the two coordinate systems are the same. The relative rotation angle of the
two coordinate systems is the Euler angle of the 3D LiDAR. The Euler angle used in Unity is in the
order ZXY. To transform the world coordinate system into its own coordinate system, X’Y’Z’, it should
be rotated γ around the Z axis first, then α around the X axis, and finally β around the Y axis.

Sensors 2019, 19, 2976 22 of 44

Sensors 2019, 19, x FOR PEER REVIEW 20 of 41

determining whether a point (taking O1 as an example) is located in a robot in 3D space is shown in
Figure 20.

Figure 20. Detection results filtration flowchart.

The results of 3D LiDAR measurements in LiDAR variables are processed. The first step is to
determine whether the collision point of the LiDAR is within the range of robotSize1 and robotSize2
variables. If so, this point will be skipped, and the next point will be detected. If not, the point will be
corrected, and the coordinate system of the 3D LiDAR itself will be rotated to the same direction as
the world coordinate system. As shown in Figure 21, the coordinate system X’Y’Z’ is the self-
coordinate system of the 3D LiDAR, and the coordinate system XYZ is in the same direction as the
world coordinate system, and the origins of the two coordinate systems are the same. The relative
rotation angle of the two coordinate systems is the Euler angle of the 3D LiDAR. The Euler angle used
in Unity is in the order ZXY. To transform the world coordinate system into its own coordinate
system, X’Y’Z’, it should be rotated γ around the Z axis first, then α around the X axis, and finally β
around the Y axis.

XO1 > 0?

Yes

Yes

START

Yes

XO1 > X R1? |XO1| > XR2?

YO1 > 0?

YO1 > Y R1? |YO1|>YR2?

No

No
No

No

No

No

Yes

ZO1 > 0?

ZO1 > Z R1? |ZO1| > ZR2?

Yes

No

No

Yes

Yes

No

Yes

Point O1 is
inside the robot

Point O1 is not
inside the robot

Point O1 is not
inside the robot

Yes

Figure 20. Detection results filtration flowchart.
Sensors 2019, 19, x FOR PEER REVIEW 21 of 41

Figure 21. Coordinate correction of the 3D LiDAR.

After the data members definition is completed, the member functions of the program are
defined. A variable for storing the initial position of the robot is defined, and the displacement of the
robot from the initial position to the current position, i.e., the 3D vector of the current position of the
robot relative to the initial position, is obtained by simulating the output sensor of the inertial
navigation sensor on the robot body. Through this 3D vector, the current position of the robot can be
obtained, and the localization of the robot can be realized.

The rotation matrix of rotating degree α around the X axis is as follows:

𝑅௫(𝛼) = ൥1 0 00 cos𝛼 െsin𝛼0 sin𝛼 cos𝛼 ൩

The rotation matrix of rotating degree β around the Y axis is as follows:

𝑅௬(𝛽) = ൥ cos𝛽 0 sin𝛽0 1 0െsin𝛽 0 cos𝛽൩

The rotation matrix of rotating degree γ around the Z axis is as follows:

𝑅௭(𝛾) = ൥cos𝛾 െsin𝛾 0sin𝛾 cos𝛾 00 0 1൩

The Euler angle of a 3D LiDAR is obtained. It rotates its own coordinate system in the same
direction as that of the world coordinate system, contrary to the rotation order mentioned above. It
is necessary to first rotate β around the Y axis, then α around the X axis, and finally γ around the Z
axis. Thus, the rotation matrix of the Euler angle is as follows: 𝑅௪ = 𝑅௬(𝛽) ൉ 𝑅௫(𝛼) ൉ 𝑅௭(𝛾)

= ൥ cos𝛽cos𝛾 + sin𝛽sin𝛼sin𝛾 െcos𝛽sin𝛾 + sin𝛽sin𝛼cos𝛾 sin𝛽cos𝛼cos𝛼sin𝛾 cos𝛼cos𝛾 െsin𝛼െsin𝛽cos𝛾 + cos𝛽sin𝛼sin𝛾 sin𝛽sin𝛾 + cos𝛽sin𝛼cos𝛾 cos𝛽cos𝛼൩

The formula for correcting the detection results of the 3D LiDAR is as follows: 𝑉௪ = 𝑅௪ ൉ 𝑉௦

The result of the modified 3D LiDAR is the three-dimensional vector relative to the center of the
3D LiDAR. The three-dimensional vector of the collision point relative to the center of the robot is
obtained by adding the lidarPos variable mentioned above. By adding the results to the three-
dimensional coordinates of the robot in the world coordinate system, the three-dimensional
coordinates of the collision point in the world coordinate system can be obtained and projected to the
map for map reconstruction. Then, the locations of obstacles are judged according to the map

O
X

Z
Y

Y’ Z’

X’

Figure 21. Coordinate correction of the 3D LiDAR.

After the data members definition is completed, the member functions of the program are defined.
A variable for storing the initial position of the robot is defined, and the displacement of the robot from
the initial position to the current position, i.e., the 3D vector of the current position of the robot relative
to the initial position, is obtained by simulating the output sensor of the inertial navigation sensor
on the robot body. Through this 3D vector, the current position of the robot can be obtained, and the
localization of the robot can be realized.

The rotation matrix of rotating degree α around the X axis is as follows:

Rx(α) =


1 0 0
0 cosα − sinα
0 sinα cosα



Sensors 2019, 19, 2976 23 of 44

The rotation matrix of rotating degree β around the Y axis is as follows:

Ry(β) =


cos β 0 sin β

0 1 0
− sin β 0 cos β


The rotation matrix of rotating degree γ around the Z axis is as follows:

Rz(γ) =


cosγ − sinγ 0
sinγ cosγ 0

0 0 1


The Euler angle of a 3D LiDAR is obtained. It rotates its own coordinate system in the same

direction as that of the world coordinate system, contrary to the rotation order mentioned above. It is
necessary to first rotate β around the Y axis, then α around the X axis, and finally γ around the Z axis.
Thus, the rotation matrix of the Euler angle is as follows:

Rw = Ry(β)·Rx(α)·Rz(γ)

=


cos β cosγ+ sin β sinα sinγ − cos β sinγ+ sin β sinα cosγ sin β cosα

cosα sinγ cosα cosγ − sinα
− sin β cosγ+ cos β sinα sinγ sin β sinγ+ cos β sinα cosγ cos β cosα


The formula for correcting the detection results of the 3D LiDAR is as follows:

Vw = Rw·Vs

The result of the modified 3D LiDAR is the three-dimensional vector relative to the center
of the 3D LiDAR. The three-dimensional vector of the collision point relative to the center of the
robot is obtained by adding the lidarPos variable mentioned above. By adding the results to the
three-dimensional coordinates of the robot in the world coordinate system, the three-dimensional
coordinates of the collision point in the world coordinate system can be obtained and projected to
the map for map reconstruction. Then, the locations of obstacles are judged according to the map
information, and the canWalk variable of nodes is updated. Finally, the calculated path is used to
control the robot’s movement.

4. Simulation Based on Unity3D

4.1. Introduction of the Mecanum Wheel Mobile Robot

4.1.1. Kinematics Model of the Mecanum Wheel Mobile Robot

According to the current position of the robot and the position of the nodes on the path, the moving
direction of the robot is obtained. According to the kinematic model of the Mecanum wheeled mobile
robot, the velocity relationship of the four wheels of the robot is calculated. Finally, according to the
speed variable, the velocity of the four wheels is obtained and added to the four wheels of the robot.
The arrangement of Mecanum wheels of the Mecanum wheel mobile robot in this paper is shown in
Figure 22. The angle α between the roller axle and the hub axle is 45 ◦C

Sensors 2019, 19, 2976 24 of 44

Sensors 2019, 19, x FOR PEER REVIEW 22 of 41

information, and the canWalk variable of nodes is updated. Finally, the calculated path is used to
control the robot’s movement.

4. Simulation Based on Unity3D

4.1. Introduction of the Mecanum Wheel Mobile Robot

4.1.1. Kinematics Model of the Mecanum Wheel Mobile Robot

According to the current position of the robot and the position of the nodes on the path, the
moving direction of the robot is obtained. According to the kinematic model of the Mecanum wheeled
mobile robot, the velocity relationship of the four wheels of the robot is calculated. Finally, according
to the speed variable, the velocity of the four wheels is obtained and added to the four wheels of the
robot. The arrangement of Mecanum wheels of the Mecanum wheel mobile robot in this paper is
shown in Figure 22. The angle α between the roller axle and the hub axle is 45 °C

Figure 22. Schematic diagram of the Mecanum wheel robot.

The inverse kinematics equation [58,59] of the system is obtained by kinematics analysis,
assuming that there is no slip between the roll and the ground and that the platform moves in the
plane: 𝑉ఠ = 𝑱(𝛼) ൉ 𝑉ை

where, 𝑉ఠ = ሾ𝜔ଵ 𝜔ଶ 𝜔ଷ 𝜔ସሿ୘ are the speeds of the four wheels. 𝑉ை = ሾ𝑣௫ 𝑣௭ 𝜔ைሿ୘ are
the velocities of the robot body in the world coordinate system. 𝑱(𝛼) is the Jacobian matrix of the
inverse motion equation of the system:

𝑱(𝛼) = 1𝑟 ൉
⎣⎢⎢
⎢⎢⎢
⎢⎡1 1tan𝛼 െ 𝐿ଵtan𝛼 + 𝐿ଶtan𝛼1 െ 1tan𝛼 𝐿ଵtan𝛼 + 𝐿ଶtan𝛼1 െ 1tan𝛼 െ 𝐿ଵtan𝛼 + 𝐿ଶtan𝛼1 1tan𝛼 𝐿ଵtan𝛼 + 𝐿ଶtan𝛼 ⎦⎥⎥

⎥⎥⎥
⎥⎤ = 1𝑟 ൉ ൦1 1 െ(𝐿ଵ + 𝐿ଶ)1 െ1 𝐿ଵ + 𝐿ଶ1 െ1 െ(𝐿ଵ + 𝐿ଶ)1 1 𝐿ଵ + 𝐿ଶ

൪

The velocity equations of the four wheels are as follows:

L1

L2

X2

X3 X4

Z1

Z3

ω1

ω3

ω0

X

Z

Z4

Z2

ω4

ω2

X1

O

α

Figure 22. Schematic diagram of the Mecanum wheel robot.

The inverse kinematics equation [58,59] of the system is obtained by kinematics analysis, assuming
that there is no slip between the roll and the ground and that the platform moves in the plane:

Vω = J(α)·VO

where, Vω =
[
ω1 ω2 ω3 ω4

]T
are the speeds of the four wheels. VO =

[
vx vz ωO

]T
are the

velocities of the robot body in the world coordinate system. J(α) is the Jacobian matrix of the inverse
motion equation of the system:

J(α) =
1
r
·


1 1

tanα −
L1 tanα+L2

tanα
1 −

1
tanα

L1 tanα+L2
tanα

1 −
1

tanα −
L1 tanα+L2

tanα
1 1

tanα
L1 tanα+L2

tanα

 =
1
r
·


1 1 −(L1 + L2)

1 −1 L1 + L2

1 −1 −(L1 + L2)

1 1 L1 + L2


The velocity equations of the four wheels are as follows:

ω1 = 1
r

[
vx + vz − (L1 + L2)·ω0

]
ω2 = 1

r

[
vx − vz + (L1 + L2)·ω0

]
ω3 = 1

r

[
vx − vz − (L1 + L2)·ω0

]
ω4 = 1

r

[
vx + vz + (L1 + L2)·ω0

]
4.1.2. Introduction of the Structure of the Mecanum Wheel Mobile Robot

The Mecanum wheel mobile robot used in this paper is shown in Figure 23a. The Mecanum
wheel is a kind of intermediate supporting Mecanum wheel, and the roller consists of two symmetrical
half-rollers, as shown in Figure 23b. In Figure 22, the distance between the axes of the front and rear
wheels is 2L2 = 400 mm, and the distance between the center lines of the left and right wheels is
2L1 = 450 mm. The total length and width of the robot are about 550 and 500 mm, respectively.

Sensors 2019, 19, 2976 25 of 44

Sensors 2019, 19, x FOR PEER REVIEW 23 of 41

𝜔ଵ = 1𝑟 ሾ𝑣௫ + 𝑣௭ െ (𝐿ଵ + 𝐿ଶ) ൉ 𝜔଴ሿ𝜔ଶ = 1𝑟 ሾ𝑣௫ െ 𝑣௭ + (𝐿ଵ + 𝐿ଶ) ൉ 𝜔଴ሿ𝜔ଷ = 1𝑟 ሾ𝑣௫ െ 𝑣௭ െ (𝐿ଵ + 𝐿ଶ) ൉ 𝜔଴ሿ𝜔ସ = 1𝑟 ሾ𝑣௫ + 𝑣௭ + (𝐿ଵ + 𝐿ଶ) ൉ 𝜔଴ሿ
4.1.2. Introduction of the Structure of the Mecanum Wheel Mobile Robot

The Mecanum wheel mobile robot used in this paper is shown in Figure 23a. The Mecanum
wheel is a kind of intermediate supporting Mecanum wheel, and the roller consists of two
symmetrical half-rollers, as shown in Figure 23b. In Figure 22, the distance between the axes of
the front and rear wheels is 2L

(a) (b)

Figure 23. Pictures of the Mecanum wheel mobile robot used in this paper: (a) Mecanum wheel mobile
robot; (b) Mecanum wheel of the robot.

4.2. Establishment of the Virtual Prototype of the Robot

4.2.1. Model Import

The 3D model of the Mecanum wheel mobile robot was built in SolidWorks, and then the file
format of the 3D model was transformed into FBX format by Autodesk 3ds Max. Finally, the FBX
format model was imported into Unity. The robot models are shown in Figure 24.

(a) (b) (c)

Figure 24. Three-dimensional model of the robot imported from SolidWorks into Unity3D: (a) 3D
model built in SolidWorks; (b) 3D model in 3ds Max; (c) 3D model in Unity3D.

4.2.2. Grouping of Model Grids

Half-rollers

Roller

Hub

2D LiDAR

Mecanum wheel

Main body

Figure 23. Pictures of the Mecanum wheel mobile robot used in this paper: (a) Mecanum wheel mobile
robot; (b) Mecanum wheel of the robot.

4.2. Establishment of the Virtual Prototype of the Robot

4.2.1. Model Import

The 3D model of the Mecanum wheel mobile robot was built in SolidWorks, and then the file
format of the 3D model was transformed into FBX format by Autodesk 3ds Max. Finally, the FBX
format model was imported into Unity. The robot models are shown in Figure 24.

Sensors 2019, 19, x FOR PEER REVIEW 23 of 41

𝜔ଵ = 1𝑟 ሾ𝑣௫ + 𝑣௭ െ (𝐿ଵ + 𝐿ଶ) ൉ 𝜔଴ሿ𝜔ଶ = 1𝑟 ሾ𝑣௫ െ 𝑣௭ + (𝐿ଵ + 𝐿ଶ) ൉ 𝜔଴ሿ𝜔ଷ = 1𝑟 ሾ𝑣௫ െ 𝑣௭ െ (𝐿ଵ + 𝐿ଶ) ൉ 𝜔଴ሿ𝜔ସ = 1𝑟 ሾ𝑣௫ + 𝑣௭ + (𝐿ଵ + 𝐿ଶ) ൉ 𝜔଴ሿ

4.1.2. Introduction of the Structure of the Mecanum Wheel Mobile Robot

The Mecanum wheel mobile robot used in this paper is shown in Figure 23a. The Mecanum
wheel is a kind of intermediate supporting Mecanum wheel, and the roller consists of two
symmetrical half-rollers, as shown in Figure 23b. In Figure 22, the distance between the axes of the
front and rear wheels is 2L2 = 400 mm, and the distance between the center lines of the left and right
wheels is 2L1 = 450 mm. The total length and width of the robot are about 550 and 500 mm,
respectively.

(a) (b)

Figure 23. Pictures of the Mecanum wheel mobile robot used in this paper: (a) Mecanum wheel mobile
robot; (b) Mecanum wheel of the robot.

4.2. Establishment of the Virtual Prototype of the Robot

4.2.1. Model Import

The 3D model of the Mecanum wheel mobile robot was built in SolidWorks, and then the file
format of the 3D model was transformed into FBX format by Autodesk 3ds Max. Finally, the FBX
format model was imported into Unity. The robot models are shown in Figure 24.

(a) (b) (c)

Figure 24. Three-dimensional model of the robot imported from SolidWorks into Unity3D: (a) 3D
model built in SolidWorks; (b) 3D model in 3ds Max; (c) 3D model in Unity3D.

4.2.2. Grouping of Model Grids

Half-rollers

Roller

Hub

2D LiDAR

Mecanum wheel

Main body

Figure 24. Three-dimensional model of the robot imported from SolidWorks into Unity3D: (a) 3D
model built in SolidWorks; (b) 3D model in 3ds Max; (c) 3D model in Unity3D.

4.2.2. Grouping of Model Grids

When the robot model was imported into Unity, the grid of each component was arranged and
named in order, which was not conducive to the subsequent addition of constraints and programming,
so the imported model needed to be grouped and renamed. In order to facilitate the subsequent
addition of constraints and programming, the robot was divided into nine parts, including the main
body, four hubs, and small rollers on the four wheels. An empty gameobject named “robot” was
created, which was used to store the mobile robot. Nine sub-objects, named body, hub1, hub2, hub3,
hub4, wheel1, wheel2, wheel3 and wheel4, were established under the object “robot”. These nine
sub-objects corresponded to nine parts of the robot. The corresponding meshes of each part were
dragged to the corresponding sub-objects to realize the grouping of the meshes.

4.2.3. Adding the Collider

In the simulation, each roller on the Mecanum wheel was in contact with the collision bodies
such as the ground and obstacles. Therefore, it was necessary to use the Mesh Collider component in

Sensors 2019, 19, 2976 26 of 44

Unity to add the collision bodies of corresponding shapes to the roller with the Convex selected in the
parameter settings.

The model of small rollers was simplified by removing the hole and corner features in the model,
so as to reduce the number of vertices of the model and to avoid errors in establishing the mesh
collision body model. Figure 25a is the roller used in the Mecanum wheel. Figure 25b is a mesh model
of roller with 1651 vertices, and Figure 25c is a simplified mesh model of small rollers with 262 vertices.
The Box Collider in Unity was used to add collision bodies for the rollers and the hub, and the location
and size of Box Collider were set. The size was close to the actual size of the robot, but it did not need
to be particularly precise, as shown in Figure 26.

Sensors 2019, 19, x FOR PEER REVIEW 24 of 41

When the robot model was imported into Unity, the grid of each component was arranged and
named in order, which was not conducive to the subsequent addition of constraints and
programming, so the imported model needed to be grouped and renamed. In order to facilitate the
subsequent addition of constraints and programming, the robot was divided into nine parts,
including the main body, four hubs, and small rollers on the four wheels. An empty gameobject
named “robot” was created, which was used to store the mobile robot. Nine sub-objects, named body,
hub1, hub2, hub3, hub4, wheel1, wheel2, wheel3 and wheel4, were established under the object
“robot”. These nine sub-objects corresponded to nine parts of the robot. The corresponding meshes
of each part were dragged to the corresponding sub-objects to realize the grouping of the meshes.

4.2.3. Adding the Collider

In the simulation, each roller on the Mecanum wheel was in contact with the collision bodies
such as the ground and obstacles. Therefore, it was necessary to use the Mesh Collider component in
Unity to add the collision bodies of corresponding shapes to the roller with the Convex selected in
the parameter settings.

The model of small rollers was simplified by removing the hole and corner features in the model,
so as to reduce the number of vertices of the model and to avoid errors in establishing the mesh
collision body model. Figure 25a is the roller used in the Mecanum wheel. Figure 25b is a mesh model
of roller with 1651 vertices, and Figure 25c is a simplified mesh model of small rollers with 262
vertices. The Box Collider in Unity was used to add collision bodies for the rollers and the hub, and
the location and size of Box Collider were set. The size was close to the actual size of the robot, but it
did not need to be particularly precise, as shown in Figure 26.

(a) (b) (c)

Figure 25. Simplified model of the roller in Unity3D: (a) the picture of the roller; (b) mesh model of
the roller; (c) simplified mesh model of the roller.

Figure 26. Box Collider component.

4.2.4. Adding Joint Scripts

In the simulation environment, the robot was only able to move after adding constraints between
the various parts of the robot. There were revolute pairs between the hub and the main body and
between each roller and the hub of the wheel. The revolute joint script described above needed to be
added to these revolute joints. The corresponding parameters in the program settings are shown in
Figure 27.

Figure 25. Simplified model of the roller in Unity3D: (a) the picture of the roller; (b) mesh model of the
roller; (c) simplified mesh model of the roller.

Sensors 2019, 19, x FOR PEER REVIEW 24 of 41

When the robot model was imported into Unity, the grid of each component was arranged and
named in order, which was not conducive to the subsequent addition of constraints and
programming, so the imported model needed to be grouped and renamed. In order to facilitate the
subsequent addition of constraints and programming, the robot was divided into nine parts,
including the main body, four hubs, and small rollers on the four wheels. An empty gameobject
named “robot” was created, which was used to store the mobile robot. Nine sub-objects, named body,
hub1, hub2, hub3, hub4, wheel1, wheel2, wheel3 and wheel4, were established under the object
“robot”. These nine sub-objects corresponded to nine parts of the robot. The corresponding meshes
of each part were dragged to the corresponding sub-objects to realize the grouping of the meshes.

4.2.3. Adding the Collider

In the simulation, each roller on the Mecanum wheel was in contact with the collision bodies
such as the ground and obstacles. Therefore, it was necessary to use the Mesh Collider component in
Unity to add the collision bodies of corresponding shapes to the roller with the Convex selected in
the parameter settings.

The model of small rollers was simplified by removing the hole and corner features in the model,
so as to reduce the number of vertices of the model and to avoid errors in establishing the mesh
collision body model. Figure 25a is the roller used in the Mecanum wheel. Figure 25b is a mesh model
of roller with 1651 vertices, and Figure 25c is a simplified mesh model of small rollers with 262
vertices. The Box Collider in Unity was used to add collision bodies for the rollers and the hub, and
the location and size of Box Collider were set. The size was close to the actual size of the robot, but it
did not need to be particularly precise, as shown in Figure 26.

(a) (b) (c)

Figure 25. Simplified model of the roller in Unity3D: (a) the picture of the roller; (b) mesh model of
the roller; (c) simplified mesh model of the roller.

Figure 26. Box Collider component.

4.2.4. Adding Joint Scripts

In the simulation environment, the robot was only able to move after adding constraints between
the various parts of the robot. There were revolute pairs between the hub and the main body and
between each roller and the hub of the wheel. The revolute joint script described above needed to be
added to these revolute joints. The corresponding parameters in the program settings are shown in
Figure 27.

Figure 26. Box Collider component.

4.2.4. Adding Joint Scripts

In the simulation environment, the robot was only able to move after adding constraints between
the various parts of the robot. There were revolute pairs between the hub and the main body and
between each roller and the hub of the wheel. The revolute joint script described above needed to
be added to these revolute joints. The corresponding parameters in the program settings are shown
in Figure 27.
Sensors 2019, 19, x FOR PEER REVIEW 25 of 41

(a) (b)

Figure 27. The addition of revolute joint scripts: (a) the addition of script to the revolute joint between
the body and the hub; (b) the addition of script to the revolute joint between the hub and the roller.

4.2.5. Adding Rigid Body Components

Rigid body components were added to the main body, hub, and rollers of the object, and the
quality parameters of the rigid body were set according to the actual quality of the physical prototype,
as shown in Figure 28.

(a) (b) (c)

Figure 28. Rigid body components of the roller, hub, and main body: (a) rigid body component of the
main body; (b) rigid body component of the hub; (c) rigid body component of the roller.

4.2.6. Adding Navigation Algorithm Scripts

The navigation algorithm program was attached to the Unity object, and the variables of the
program were connected to the corresponding objects in the Unity environment. In Unity, an empty
object named A* was created to add a navigation algorithm program to the object. An empty object
named “end” was created in Unity, and the position of the object was the position of the target point
of the robot.

Firstly, the “Grid” program was added to the A* object, and the main body of the robot was
assigned to the “Robot” parameter. The “end” object was assigned to the End Point parameter, and
the value of the Node Radius was temporarily set to 2, as shown in Figure 29a. The smaller the Node
Radius value and the smaller the grid, the more accurate the navigation algorithm and the more
computational resources it consumes, so the selection needed to be appropriate. Then, the program
Findpath was added to the A* object, and the main body of the robot was assigned to the Robot
parameter, and the “end” object created earlier was assigned to the End Point parameter, as shown
in Figure 29b. Finally, the Navigation program was added to the A* object, the main body of the robot
was assigned to the Robot parameter, and the end object was assigned to the End Point parameter.
The value of the Barrier Distance was set according to the geometric size of the robot. The “speed”
parameter was used to set the moving speed of the robot, where the value of the tentative variable
was 0.2. The four hubs of the robot were assigned as “Wheel” parameters.

(a) (b)

Figure 27. The addition of revolute joint scripts: (a) the addition of script to the revolute joint between
the body and the hub; (b) the addition of script to the revolute joint between the hub and the roller.

Sensors 2019, 19, 2976 27 of 44

4.2.5. Adding Rigid Body Components

Rigid body components were added to the main body, hub, and rollers of the object, and the
quality parameters of the rigid body were set according to the actual quality of the physical prototype,
as shown in Figure 28.

Sensors 2019, 19, x FOR PEER REVIEW 25 of 41

(a) (b)

Figure 27. The addition of revolute joint scripts: (a) the addition of script to the revolute joint between
the body and the hub; (b) the addition of script to the revolute joint between the hub and the roller.

4.2.5. Adding Rigid Body Components

Rigid body components were added to the main body, hub, and rollers of the object, and the
quality parameters of the rigid body were set according to the actual quality of the physical prototype,
as shown in Figure 28.

(a) (b) (c)

Figure 28. Rigid body components of the roller, hub, and main body: (a) rigid body component of the
main body; (b) rigid body component of the hub; (c) rigid body component of the roller.

4.2.6. Adding Navigation Algorithm Scripts

The navigation algorithm program was attached to the Unity object, and the variables of the
program were connected to the corresponding objects in the Unity environment. In Unity, an empty
object named A* was created to add a navigation algorithm program to the object. An empty object
named “end” was created in Unity, and the position of the object was the position of the target point
of the robot.

Firstly, the “Grid” program was added to the A* object, and the main body of the robot was
assigned to the “Robot” parameter. The “end” object was assigned to the End Point parameter, and
the value of the Node Radius was temporarily set to 2, as shown in Figure 29a. The smaller the Node
Radius value and the smaller the grid, the more accurate the navigation algorithm and the more
computational resources it consumes, so the selection needed to be appropriate. Then, the program
Findpath was added to the A* object, and the main body of the robot was assigned to the Robot
parameter, and the “end” object created earlier was assigned to the End Point parameter, as shown
in Figure 29b. Finally, the Navigation program was added to the A* object, the main body of the robot
was assigned to the Robot parameter, and the end object was assigned to the End Point parameter.
The value of the Barrier Distance was set according to the geometric size of the robot. The “speed”
parameter was used to set the moving speed of the robot, where the value of the tentative variable
was 0.2. The four hubs of the robot were assigned as “Wheel” parameters.

(a) (b)

Figure 28. Rigid body components of the roller, hub, and main body: (a) rigid body component of the
main body; (b) rigid body component of the hub; (c) rigid body component of the roller.

4.2.6. Adding Navigation Algorithm Scripts

The navigation algorithm program was attached to the Unity object, and the variables of the
program were connected to the corresponding objects in the Unity environment. In Unity, an empty
object named A* was created to add a navigation algorithm program to the object. An empty object
named “end” was created in Unity, and the position of the object was the position of the target point of
the robot.

Firstly, the “Grid” program was added to the A* object, and the main body of the robot was
assigned to the “Robot” parameter. The “end” object was assigned to the End Point parameter, and the
value of the Node Radius was temporarily set to 2, as shown in Figure 29a. The smaller the Node
Radius value and the smaller the grid, the more accurate the navigation algorithm and the more
computational resources it consumes, so the selection needed to be appropriate. Then, the program
Findpath was added to the A* object, and the main body of the robot was assigned to the Robot
parameter, and the “end” object created earlier was assigned to the End Point parameter, as shown in
Figure 29b. Finally, the Navigation program was added to the A* object, the main body of the robot
was assigned to the Robot parameter, and the end object was assigned to the End Point parameter.
The value of the Barrier Distance was set according to the geometric size of the robot. The “speed”
parameter was used to set the moving speed of the robot, where the value of the tentative variable was
0.2. The four hubs of the robot were assigned as “Wheel” parameters.

Sensors 2019, 19, 2976 28 of 44

Sensors 2019, 19, x FOR PEER REVIEW 25 of 41

(a) (b)

Figure 27. The addition of revolute joint scripts: (a) the addition of script to the revolute joint between
the body and the hub; (b) the addition of script to the revolute joint between the hub and the roller.

4.2.5. Adding Rigid Body Components

Rigid body components were added to the main body, hub, and rollers of the object, and the
quality parameters of the rigid body were set according to the actual quality of the physical prototype,
as shown in Figure 28.

(a) (b) (c)

Figure 28. Rigid body components of the roller, hub, and main body: (a) rigid body component of the
main body; (b) rigid body component of the hub; (c) rigid body component of the roller.

4.2.6. Adding Navigation Algorithm Scripts

The navigation algorithm program was attached to the Unity object, and the variables of the
program were connected to the corresponding objects in the Unity environment. In Unity, an empty
object named A* was created to add a navigation algorithm program to the object. An empty object
named “end” was created in Unity, and the position of the object was the position of the target point
of the robot.

Firstly, the “Grid” program was added to the A* object, and the main body of the robot was
assigned to the “Robot” parameter. The “end” object was assigned to the End Point parameter, and
the value of the Node Radius was temporarily set to 2, as shown in Figure 29a. The smaller the Node
Radius value and the smaller the grid, the more accurate the navigation algorithm and the more
computational resources it consumes, so the selection needed to be appropriate. Then, the program
Findpath was added to the A* object, and the main body of the robot was assigned to the Robot
parameter, and the “end” object created earlier was assigned to the End Point parameter, as shown
in Figure 29b. Finally, the Navigation program was added to the A* object, the main body of the robot
was assigned to the Robot parameter, and the end object was assigned to the End Point parameter.
The value of the Barrier Distance was set according to the geometric size of the robot. The “speed”
parameter was used to set the moving speed of the robot, where the value of the tentative variable
was 0.2. The four hubs of the robot were assigned as “Wheel” parameters.

(a) (b) Sensors 2019, 19, x FOR PEER REVIEW 26 of 41

(c) (d) (e)

Figure 29. The addition of navigation algorithms: (a) the addition of grid script; (b) the addition of
Findpath script; (c) the addition of LiDAR 3D script; (d) the addition of output sensor script; (e) the
addition of navigation script.

Next, the LiDAR parameter of the program was assigned. A sub-object named LiDAR under
body was created, and its position was adjusted to the position of the robot’s LiDAR. A LiDAR 3D
program was added to the LiDAR object and corresponding parameters were set, as shown in Figure
29c. We were able to click the button behind LiDAR parameter in Navigation program and select the
LiDAR object to assign parameters. The PosSensor parameter of the program was assigned. The
Output Sensor was added to the body object, the Output Value was set as a Position Vector, and the
value of the Output Mode was set as none, as shown in Figure 29d. Then, the parameters of the
PosSensor of the Navigation program were selected as the body. Finally, the parameters Robot Size
1 and Robot Size 2 were set. Their values represented the size of the robot centered on the LiDAR
object, as shown in Figure 29e.

4.3. Movement Simulation of the Robot on the Different Ground Types in Unity3D

When a robot moves on uneven ground, it may slip and the angle of navigation will change,
which will affect the movement of the robot and change the route of the robot. Therefore, the
movement of the robot should be corrected by turning to adjust the direction of the robot. In this
study, the movement of the robot on different ground types was simulated by using the terrain
platform of the obstacle simulation, as shown in Figure 9c. The starting point and target point were
set on the center line of the simulated terrain. The robot moved along the center line, passing through
a cylindrical convex platform, slope step, undulating terrain, and scattered gravel pavement in turn,
as shown in Figure 30a–d, respectively. The height trace of the robot when passing through obstacle
terrain simulation is shown in Figure 31. This shows the change in the Z coordinate of the robot center
during its movement. The curve in Figure 31 reflects the effect of the obstacle on the center height of
the robot’s main body. Figure 32 shows the moving trajectory of the robot on the XOZ horizontal
plane during the simulation. During the simulation process, the position of the robot was roughly in
the vicinity of the centerline of the terrain. However, when the robot passed the obstacle, the moving
route of the robot showed different degrees of deviation. The robot corrected itself and returned to
the vicinity of the center line. Finally, the robot reached the target point.

(a) (b)

Figure 29. The addition of navigation algorithms: (a) the addition of grid script; (b) the addition of
Findpath script; (c) the addition of LiDAR 3D script; (d) the addition of output sensor script; (e) the
addition of navigation script.

Next, the LiDAR parameter of the program was assigned. A sub-object named LiDAR under body
was created, and its position was adjusted to the position of the robot’s LiDAR. A LiDAR 3D program
was added to the LiDAR object and corresponding parameters were set, as shown in Figure 29c.
We were able to click the button behind LiDAR parameter in Navigation program and select the LiDAR
object to assign parameters. The PosSensor parameter of the program was assigned. The Output
Sensor was added to the body object, the Output Value was set as a Position Vector, and the value of
the Output Mode was set as none, as shown in Figure 29d. Then, the parameters of the PosSensor of
the Navigation program were selected as the body. Finally, the parameters Robot Size 1 and Robot
Size 2 were set. Their values represented the size of the robot centered on the LiDAR object, as shown
in Figure 29e.

4.3. Movement Simulation of the Robot on the Different Ground Types in Unity3D

When a robot moves on uneven ground, it may slip and the angle of navigation will change,
which will affect the movement of the robot and change the route of the robot. Therefore, the movement
of the robot should be corrected by turning to adjust the direction of the robot. In this study,
the movement of the robot on different ground types was simulated by using the terrain platform of the
obstacle simulation, as shown in Figure 9c. The starting point and target point were set on the center
line of the simulated terrain. The robot moved along the center line, passing through a cylindrical
convex platform, slope step, undulating terrain, and scattered gravel pavement in turn, as shown
in Figure 30a–d, respectively. The height trace of the robot when passing through obstacle terrain
simulation is shown in Figure 31. This shows the change in the Z coordinate of the robot center during
its movement. The curve in Figure 31 reflects the effect of the obstacle on the center height of the
robot’s main body. Figure 32 shows the moving trajectory of the robot on the XOZ horizontal plane
during the simulation. During the simulation process, the position of the robot was roughly in the
vicinity of the centerline of the terrain. However, when the robot passed the obstacle, the moving
route of the robot showed different degrees of deviation. The robot corrected itself and returned to the
vicinity of the center line. Finally, the robot reached the target point.

Sensors 2019, 19, 2976 29 of 44

Sensors 2019, 19, x FOR PEER REVIEW 26 of 41

(c) (d) (e)

Figure 29. The addition of navigation algorithms: (a) the addition of grid script; (b) the addition of
Findpath script; (c) the addition of LiDAR 3D script; (d) the addition of output sensor script; (e) the
addition of navigation script.

Next, the LiDAR parameter of the program was assigned. A sub-object named LiDAR under
body was created, and its position was adjusted to the position of the robot’s LiDAR. A LiDAR 3D
program was added to the LiDAR object and corresponding parameters were set, as shown in Figure
29c. We were able to click the button behind LiDAR parameter in Navigation program and select the
LiDAR object to assign parameters. The PosSensor parameter of the program was assigned. The
Output Sensor was added to the body object, the Output Value was set as a Position Vector, and the
value of the Output Mode was set as none, as shown in Figure 29d. Then, the parameters of the
PosSensor of the Navigation program were selected as the body. Finally, the parameters Robot Size
1 and Robot Size 2 were set. Their values represented the size of the robot centered on the LiDAR
object, as shown in Figure 29e.

4.3. Movement Simulation of the Robot on the Different Ground Types in Unity3D

When a robot moves on uneven ground, it may slip and the angle of navigation will change,
which will affect the movement of the robot and change the route of the robot. Therefore, the
movement of the robot should be corrected by turning to adjust the direction of the robot. In this
study, the movement of the robot on different ground types was simulated by using the terrain
platform of the obstacle simulation, as shown in Figure 9c. The starting point and target point were
set on the center line of the simulated terrain. The robot moved along the center line, passing through
a cylindrical convex platform, slope step, undulating terrain, and scattered gravel pavement in turn,
as shown in Figure 30a–d, respectively. The height trace of the robot when passing through obstacle
terrain simulation is shown in Figure 31. This shows the change in the Z coordinate of the robot center
during its movement. The curve in Figure 31 reflects the effect of the obstacle on the center height of
the robot’s main body. Figure 32 shows the moving trajectory of the robot on the XOZ horizontal
plane during the simulation. During the simulation process, the position of the robot was roughly in
the vicinity of the centerline of the terrain. However, when the robot passed the obstacle, the moving
route of the robot showed different degrees of deviation. The robot corrected itself and returned to
the vicinity of the center line. Finally, the robot reached the target point.

(a) (b) Sensors 2019, 19, x FOR PEER REVIEW 27 of 41

(c) (d)

Figure 30. Simulation of the robot passing through the terrain with obstacles presented in Figure 9c:
(a) passing through round convex obstacles; (b) passing through slope steps; (c) passing through
undulating ground; (d) passing through scattered gravel pavement.

Figure 31. The height trace of the robot while passing through the obstacle terrain simulation.

Figure 32. The moving trajectory of the robot on the XOZ horizontal plane in simulation.

In this simulation, the robot did not need to perform obstacle avoidance operations for obstacles
on terrain that the robot could overcome. These barrier terrains affected the smoothness of the robot's
motion, causing the robot to slip to a certain extent, thus deviating from the planned path, as shown
in Figure 32. The simulation results truly reflected the influence of rough and inclined terrain on the
motion of the robot in the real scene. In the real process of robot navigation, the influence of terrain
cannot be ignored. For example, when the robot moved on the stochastic ground shown in Figure
10a, the uneven terrain will have a certain impact on the robot motion. So, the robot needs perform
real-time azimuth adjustment and correct its motion route, which will cause its motion route to have
small fluctuations. In this simulation, the influence of uneven terrain on the motion path of the robot
was quite obvious, and the robot adjusted its motion in time without affecting the overall trajectory.

4.4. Navigation Simulation of the Robot in Unity3D

4.4.1. Navigation Simulation on Stochastic Ground

1000 2000 3000 4000 5000 6000 7000 8000 9000
200

250

300

350

Z/mm

Y
/ m

m

Round convex obstacles Slope steps Undulating ground Scattered gravel pavement

1000 2000 3000 4000 5000 6000 7000 8000 9000
100

50

0

-100

Z/mm

X/
m

m

-50

Figure 30. Simulation of the robot passing through the terrain with obstacles presented in Figure 9c:
(a) passing through round convex obstacles; (b) passing through slope steps; (c) passing through
undulating ground; (d) passing through scattered gravel pavement.

Sensors 2019, 19, x FOR PEER REVIEW 27 of 41

(c) (d)

Figure 30. Simulation of the robot passing through the terrain with obstacles presented in Figure 9c:
(a) passing through round convex obstacles; (b) passing through slope steps; (c) passing through
undulating ground; (d) passing through scattered gravel pavement.

Figure 31. The height trace of the robot while passing through the obstacle terrain simulation.

Figure 32. The moving trajectory of the robot on the XOZ horizontal plane in simulation.

In this simulation, the robot did not need to perform obstacle avoidance operations for obstacles
on terrain that the robot could overcome. These barrier terrains affected the smoothness of the robot's
motion, causing the robot to slip to a certain extent, thus deviating from the planned path, as shown
in Figure 32. The simulation results truly reflected the influence of rough and inclined terrain on the
motion of the robot in the real scene. In the real process of robot navigation, the influence of terrain
cannot be ignored. For example, when the robot moved on the stochastic ground shown in Figure
10a, the uneven terrain will have a certain impact on the robot motion. So, the robot needs perform
real-time azimuth adjustment and correct its motion route, which will cause its motion route to have
small fluctuations. In this simulation, the influence of uneven terrain on the motion path of the robot
was quite obvious, and the robot adjusted its motion in time without affecting the overall trajectory.

4.4. Navigation Simulation of the Robot in Unity3D

4.4.1. Navigation Simulation on Stochastic Ground

1000 2000 3000 4000 5000 6000 7000 8000 9000
200

250

300

350

Z/mm

Y
/ m

m

Round convex obstacles Slope steps Undulating ground Scattered gravel pavement

1000 2000 3000 4000 5000 6000 7000 8000 9000
100

50

0

-100

Z/mm

X/
m

m

-50

Figure 31. The height trace of the robot while passing through the obstacle terrain simulation.

Sensors 2019, 19, x FOR PEER REVIEW 27 of 41

(c) (d)

Figure 30. Simulation of the robot passing through the terrain with obstacles presented in Figure 9c:
(a) passing through round convex obstacles; (b) passing through slope steps; (c) passing through
undulating ground; (d) passing through scattered gravel pavement.

Figure 31. The height trace of the robot while passing through the obstacle terrain simulation.

Figure 32. The moving trajectory of the robot on the XOZ horizontal plane in simulation.

In this simulation, the robot did not need to perform obstacle avoidance operations for obstacles
on terrain that the robot could overcome. These barrier terrains affected the smoothness of the robot's
motion, causing the robot to slip to a certain extent, thus deviating from the planned path, as shown
in Figure 32. The simulation results truly reflected the influence of rough and inclined terrain on the
motion of the robot in the real scene. In the real process of robot navigation, the influence of terrain
cannot be ignored. For example, when the robot moved on the stochastic ground shown in Figure
10a, the uneven terrain will have a certain impact on the robot motion. So, the robot needs perform
real-time azimuth adjustment and correct its motion route, which will cause its motion route to have
small fluctuations. In this simulation, the influence of uneven terrain on the motion path of the robot
was quite obvious, and the robot adjusted its motion in time without affecting the overall trajectory.

4.4. Navigation Simulation of the Robot in Unity3D

4.4.1. Navigation Simulation on Stochastic Ground

1000 2000 3000 4000 5000 6000 7000 8000 9000
200

250

300

350

Z/mm

Y
/ m

m

Round convex obstacles Slope steps Undulating ground Scattered gravel pavement

1000 2000 3000 4000 5000 6000 7000 8000 9000
100

50

0

-100

Z/mm

X/
m

m

-50

Figure 32. The moving trajectory of the robot on the XOZ horizontal plane in simulation.

In this simulation, the robot did not need to perform obstacle avoidance operations for obstacles
on terrain that the robot could overcome. These barrier terrains affected the smoothness of the robot's
motion, causing the robot to slip to a certain extent, thus deviating from the planned path, as shown

Sensors 2019, 19, 2976 30 of 44

in Figure 32. The simulation results truly reflected the influence of rough and inclined terrain on the
motion of the robot in the real scene. In the real process of robot navigation, the influence of terrain
cannot be ignored. For example, when the robot moved on the stochastic ground shown in Figure 10a,
the uneven terrain will have a certain impact on the robot motion. So, the robot needs perform real-time
azimuth adjustment and correct its motion route, which will cause its motion route to have small
fluctuations. In this simulation, the influence of uneven terrain on the motion path of the robot was
quite obvious, and the robot adjusted its motion in time without affecting the overall trajectory.

4.4. Navigation Simulation of the Robot in Unity3D

4.4.1. Navigation Simulation on Stochastic Ground

In this simulation, the stochastic ground with a pit and a mound shown in Figure 10a was used.
There were many small folds on the stochastic ground. Since the Mecanum wheel mobile robot has
a poor obstacle-crossing ability when moving laterally, when it moves on uneven stochastic ground,
it should avoid lateral movement. So, it was planned that the robot would turn in place at the inflection
point of the planned path and continue to move after turning in the direction corresponding to the
planned path in the simulation.

The robot prototype was located at the starting point on the stochastic ground, as shown in
Figure 33a. Figure 33b–f shows the navigation simulation process of the robot, where the robot detected
the ground surface while constantly moving. The red area was the position of the pit and mound
detected by the robot. As the robot moved forward and continued to detect, more and more terrain
information was detected by LiDAR, the position of the obstacle was constantly updated, and the
red area is expanding. The path calculated and planned by the algorithm is constantly changing.
In Figure 33b, the black curve is the initial planned path planned by the algorithm. The robot rounded
the mound from one side of the mound and passes through the gap between the mound and the pit
and finally reached the target point. The movement trajectory of the robot was recorded and displayed
on the screen in the course of motion, as shown in Figure 33f. The changing planned path and the final
trajectory of the robot also were recorded in a TXT format file using OutputSensor added to the robot
prototype. According to the recorded file, the curve of the planned path and final trajectory of the
robot in the horizontal plane were drawn in Figure 34.

Sensors 2019, 19, 2976 31 of 44

Sensors 2019, 19, x FOR PEER REVIEW 28 of 41

In this simulation, the stochastic ground with a pit and a mound shown in Figure 10a was used.
There were many small folds on the stochastic ground. Since the Mecanum wheel mobile robot has a
poor obstacle-crossing ability when moving laterally, when it moves on uneven stochastic ground, it
should avoid lateral movement. So, it was planned that the robot would turn in place at the inflection
point of the planned path and continue to move after turning in the direction corresponding to the
planned path in the simulation.

The robot prototype was located at the starting point on the stochastic ground, as shown in
Figure 33a. Figure 33b–f shows the navigation simulation process of the robot, where the robot
detected the ground surface while constantly moving. The red area was the position of the pit and
mound detected by the robot. As the robot moved forward and continued to detect, more and more
terrain information was detected by LiDAR, the position of the obstacle was constantly updated, and
the red area is expanding. The path calculated and planned by the algorithm is constantly changing.
In Figure 33b, the black curve is the initial planned path planned by the algorithm. The robot rounded
the mound from one side of the mound and passes through the gap between the mound and the pit
and finally reached the target point. The movement trajectory of the robot was recorded and
displayed on the screen in the course of motion, as shown in Figure 33f. The changing planned path
and the final trajectory of the robot also were recorded in a TXT format file using OutputSensor added
to the robot prototype. According to the recorded file, the curve of the planned path and final
trajectory of the robot in the horizontal plane were drawn in Figure 34.

Figure 33. Navigation simulation of the robot on stochastic ground with a pit and a mound: (a) the
simulated stochastic ground and robot model; (b–f) navigation simulation process of the robot.

(a) (b)

The pit
(e) (f)

Initial planned path

Movement trajectory
The mound

A B

(c) (d)

Figure 33. Navigation simulation of the robot on stochastic ground with a pit and a mound: (a) the
simulated stochastic ground and robot model; (b–f) navigation simulation process of the robot.Sensors 2019, 19, x FOR PEER REVIEW 29 of 41

Figure 34. The planned path and final trajectory of the robot in the navigation simulation.

The planned path in the Figure 34 is the path that was constantly revised according to the
information of the obstacle terrain as the robot moved and detected. The trajectory of the robot is
basically consistent with the planned path curve. In the straight and flat area, the trajectory of the
robot coincides with the planned path very well, as shown in section C in Figure 34, but there are still
some deviations, such as in segments A, B, and D in Figure 34.

During the navigation simulation, the robot slides on inclined ground near the pit (A area) and
the mound (B area) shown in Figure 33f, so the trajectory of the robot deviates from the planned path.
The D part of the trajectory is inconsistent with the planned path, because the inertia causes the robot
to move forward at the planned steering position without a timely turn. In general, the path planning
of the robot is reasonable, and its trajectory is basically consistent with the planned path, which
reflects the credibility of the robot motion simulation. The deviation of the robot's movement
trajectory from the planned path reflects that this simulation platform can realistically simulate the
influence of the inclined and rough ground on the robot motion. Compared with some simulation
platforms, this is one of the advantages of this simulation platform, which can reflect the real
interaction between robot and environment. The simulation results can provide predictions for robot
motion in real environment and prevent dangerous situations in the process of motion.

4.4.2. Obstacle Avoidance Navigation Simulation of the Robot in a Static Environment

In this navigation algorithm simulation, the plane ground with three obstacle objects shown in
Figure 9c, which is a static environment, was used. Since the simulation ground was flat, the robot
was able to move along the planned path in two motion modes. The first motion mode was the same
as the one that is used in the former navigation simulation. The robot adjusted the direction in situ at
the inflection point of the path and then moved forward. In the second motion mode, the robot moved
along the planned path while keeping its attitude unchanged.

The process of robot detection in the first mode is shown in Figure 35a–c, and the process in the
second mode is shown in Figures 35d–f. The robot passes through the gap between obstacle 1 and
obstacle 2 and the gap between obstacle 2 and obstacle 3 successively and finally reaches the target
point. The black area is the position of the obstacle objects detected by the LiDAR on the robot. The
curve of the planned path and the final trajectory of the robot in the horizontal plane in the two-
motion mode are drawn in Figure 36a,c, respectively. For a clearer understanding of the planned path
and the position of the robot trajectory relative to the terrain in the first motion mode, the curve in
Figure 36a was combined with Figure 35c, as shown in Figure 36b. The combination picture of the
curve in Figure 36c in the second motion mode with Figure 35f is shown in Figure 36d.

Planned path
Final trajectory

0

1000

2000

3000

4000

100 2000 300 400
X / mm

Z
/ m

m

A

B

D

C

Figure 34. The planned path and final trajectory of the robot in the navigation simulation.

Sensors 2019, 19, 2976 32 of 44

The planned path in the Figure 34 is the path that was constantly revised according to the
information of the obstacle terrain as the robot moved and detected. The trajectory of the robot is
basically consistent with the planned path curve. In the straight and flat area, the trajectory of the robot
coincides with the planned path very well, as shown in section C in Figure 34, but there are still some
deviations, such as in segments A, B, and D in Figure 34.

During the navigation simulation, the robot slides on inclined ground near the pit (A area) and
the mound (B area) shown in Figure 33f, so the trajectory of the robot deviates from the planned path.
The D part of the trajectory is inconsistent with the planned path, because the inertia causes the robot
to move forward at the planned steering position without a timely turn. In general, the path planning
of the robot is reasonable, and its trajectory is basically consistent with the planned path, which reflects
the credibility of the robot motion simulation. The deviation of the robot's movement trajectory from
the planned path reflects that this simulation platform can realistically simulate the influence of the
inclined and rough ground on the robot motion. Compared with some simulation platforms, this is
one of the advantages of this simulation platform, which can reflect the real interaction between robot
and environment. The simulation results can provide predictions for robot motion in real environment
and prevent dangerous situations in the process of motion.

4.4.2. Obstacle Avoidance Navigation Simulation of the Robot in a Static Environment

In this navigation algorithm simulation, the plane ground with three obstacle objects shown in
Figure 9c, which is a static environment, was used. Since the simulation ground was flat, the robot was
able to move along the planned path in two motion modes. The first motion mode was the same as the
one that is used in the former navigation simulation. The robot adjusted the direction in situ at the
inflection point of the path and then moved forward. In the second motion mode, the robot moved
along the planned path while keeping its attitude unchanged.

The process of robot detection in the first mode is shown in Figure 35a–c, and the process in the
second mode is shown in Figure 35d–f. The robot passes through the gap between obstacle 1 and
obstacle 2 and the gap between obstacle 2 and obstacle 3 successively and finally reaches the target
point. The black area is the position of the obstacle objects detected by the LiDAR on the robot.
The curve of the planned path and the final trajectory of the robot in the horizontal plane in the
two-motion mode are drawn in Figure 36a,c, respectively. For a clearer understanding of the planned
path and the position of the robot trajectory relative to the terrain in the first motion mode, the curve in
Figure 36a was combined with Figure 35c, as shown in Figure 36b. The combination picture of the
curve in Figure 36c in the second motion mode with Figure 35f is shown in Figure 36d.

Sensors 2019, 19, 2976 33 of 44

Sensors 2019, 19, x FOR PEER REVIEW 30 of 41

(a) (b) (c)

(d) (e) (f)

Figure 35. Robot simulation processes on obstacle avoidance ground: (a–c) simulation process in the
first motion mode; (d–f) simulation process in the second motion mode.

Figure 35. Robot simulation processes on obstacle avoidance ground: (a–c) simulation process in the
first motion mode; (d–f) simulation process in the second motion mode.Sensors 2019, 19, x FOR PEER REVIEW 31 of 41

Figure 36. The curves of the planned path and final trajectory of the robot in the horizontal plane in
the two motion mode: (a) simulation results in the first motion mode; (b) combination of the
simulation result curves and detected terrain; (c) simulation results in the second motion mode; (d)
combination of the simulation results curves and detected terrain.

Figure 35 shows that the simulation process of the robot matches the obstacle layout in the
environment. From Figure 36a,b, it can be seen that the trajectory of the robot was in good agreement
with the planned path when the first motion mode was used to simulate the navigation. From Figure
36c,d, it can be seen that when the second motion mode was used to navigate, there was a certain
deviation between the robot’s trajectory and the planned path at the turning of the robot, and the
overall consistency was good.

4.4.3. Obstacle Avoidance Navigation Simulation of the Robot in a Dynamic Environment

In the practical application of robots, robots usually work in dynamic environments, in which
new obstacles may appear, or existing obstacles may change their positions. For example, service
robots working in public places may need to adjust their moving routes at any time to avoid collisions
with the crowd, and although the environment of factory-inspecting robots is generally static, the
entry of personnel or equipment will affect the movement route of the robot. Therefore, the path
planning and navigation of robots in dynamic environments is also a focus of current research. A
variety of obstacle avoidance algorithms have been simulated, tested, and practiced for different

Planned path
Final trajectory

0

1000

2000

3000

4000

1000 2000 3000 4000
X / mm

Z
/ m

m

(c) (d)

Planned path
Final trajectory

0

1000

2000

3000

4000

1000 2000 3000 4000
X / mm

Z
/ m

m

0

1000

2000

3000

4000

1000 2000 3000 4000
X / mm

Z
/ m

m

(a)

Planned path
Final trajectory

0

1000

2000

3000

4000

1000 2000 3000 4000
X / mm

Z
/ m

m

(b)

Planned path
Final trajectory

Figure 36. The curves of the planned path and final trajectory of the robot in the horizontal plane in the
two motion mode: (a) simulation results in the first motion mode; (b) combination of the simulation
result curves and detected terrain; (c) simulation results in the second motion mode; (d) combination of
the simulation results curves and detected terrain.

Sensors 2019, 19, 2976 34 of 44

Figure 35 shows that the simulation process of the robot matches the obstacle layout in the
environment. From Figure 36a,b, it can be seen that the trajectory of the robot was in good
agreement with the planned path when the first motion mode was used to simulate the navigation.
From Figure 36c,d, it can be seen that when the second motion mode was used to navigate, there was
a certain deviation between the robot’s trajectory and the planned path at the turning of the robot,
and the overall consistency was good.

4.4.3. Obstacle Avoidance Navigation Simulation of the Robot in a Dynamic Environment

In the practical application of robots, robots usually work in dynamic environments, in which new
obstacles may appear, or existing obstacles may change their positions. For example, service robots
working in public places may need to adjust their moving routes at any time to avoid collisions with
the crowd, and although the environment of factory-inspecting robots is generally static, the entry
of personnel or equipment will affect the movement route of the robot. Therefore, the path planning
and navigation of robots in dynamic environments is also a focus of current research. A variety
of obstacle avoidance algorithms have been simulated, tested, and practiced for different dynamic
environments [60–63]. A common concern in real-time planning is the presence of dead-ends in the
state space, i.e., the areas surrounded by obstacles [64]. For example, coal mine rescue robots often
encounter dead ends in the search and rescue process. It is important for the navigation algorithm to
enable the robot to move out of the dead-ends [65].

In order to simulate a dynamic environment and dead-end form obstacles, this section describes
the simulation of an environment consisting of a flat ground, four static obstacles (SO), and three
dynamic obstacles (DO), as shown in Figure 37a. In this simulation environment, the four static
obstacles SO1, SO2, SO3, and SO4 remain stationary relative to the ground, and the three dynamic
obstacles DO1, DO2, and DO3 appear sequentially at intervals. The static obstacles SO2 and SO3 and
the dynamic obstacles DO1 and DO2 form a dead-end.

Sensors 2019, 19, 2976 35 of 44

Sensors 2019, 19, x FOR PEER REVIEW 32 of 41

dynamic environments [60-63]. A common concern in real-time planning is the presence of dead-
ends in the state space, i.e., the areas surrounded by obstacles [64]. For example, coal mine rescue
robots often encounter dead ends in the search and rescue process. It is important for the navigation
algorithm to enable the robot to move out of the dead-ends [65].

In order to simulate a dynamic environment and dead-end form obstacles, this section describes
the simulation of an environment consisting of a flat ground, four static obstacles (SO), and three
dynamic obstacles (DO), as shown in Figure 37a. In this simulation environment, the four static
obstacles SO1, SO2, SO3, and SO4 remain stationary relative to the ground, and the three dynamic
obstacles DO1, DO2, and DO3 appear sequentially at intervals. The static obstacles SO2 and SO3 and
the dynamic obstacles DO1 and DO2 form a dead-end.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

SO3 SO1 SO2 Starting point

SO4

DODO
DO

Target point

Dead-end

Planned path Planned path

DO

Planned path

DO

Planned path

DODO
Planned path

DO

Planned path

DO

Final trajectory

Figure 37. Navigation simulation of the robot in the dynamic environment: (a) a dynamic environment
consisting of a flat ground, static obstacles (SO), and dynamic obstacles (DO); (b) path planning for
the environment with static obstacles; (c–d) path planning after dynamic obstacle DO1 was added;
(e–g) path planning after dynamic obstacles DO1 and DO2 were added; (h) the moment when dynamic
obstacle DO3 was added; (i–k) path planning after dynamic obstacle DO3 was added; (l) robot arrives
at the target point.

Obstacle avoidance navigation based on improved A* algorithm was simulated in the dynamic
environment shown in Figure 37a. In Figure 37b, the robot starts from the starting point, at which
time the dynamic obstacles have not been added to the environment, and the first moving path P1

Sensors 2019, 19, 2976 36 of 44

is planned. After the dynamic obstacle DO1 is added, the simulated LiDAR scans to DO1, and the
re-planned path P2 is obtained, as shown in Figure 37c. However, the dynamic obstacle DO1 is not
completely detected at this time, so there is a superposition of path P2 and obstacle DO1. As the DO1
detection information increases, the path is corrected, and modified path P3 that can bypass DO1
is planned, as shown in Figure 37d. When the dynamic obstacle DO2 is added, the static obstacles
SO2 and SO3 form a dead-end with the dynamic obstacles DO1 and DO2, and path P3 is blocked.
Then, preliminary path P4, which can guide the robot to move out of the dead end, is planned, as shown
in Figure 37e. At this time, path P4 passes through static obstacle SO1 and is modified to path P5
quickly as the robot moves and explores, as shown in Figure 37f. Although DO3 is added but not
detected, path P5 has not changed, as shown in Figure 37h. When DO3 is detected, the new path P6 is
planned (Figure 37i), and the robot arrives at the target point along path P6, as shown in Figure 37i–l.
In order to facilitate the observation, only the laser lines that have detected obstacles were displayed
during the simulation.

This simulation shows that the algorithm simulator can implement dynamic planning of the path
in dynamic environments and carry out obstacle avoidance navigation simulation. It also verifies that
when the robot encounters a dead-end, the robot can re-plan the path that guides it to move out of
the dead-end.

Figure 38 shows the planned path and final trajectory of the robot in the navigation simulation
in the dynamic environment shown in Figure 37. The planned path shown in Figure 38 is the path
that is constantly revised as the robot navigates. According to the curves in Figure 38, when the robot
makes a large steering angle, the deviation of the robot’s motion trajectory from the planned path is
large. There are two large deviation segments of the robot trajectory curve relative to the planned path,
segments A and B, as shown in Figure 38. The main reason for this is that there is no real setting of the
parameters between the robot’s moving mechanism and the ground. The greater inertia caused the
robot to move forward at the planned steering position without a timely turn. The parameters between
the robot’s moving mechanism and the ground should be corrected based on the measured data.Sensors 2019, 19, x FOR PEER REVIEW 34 of 41

Figure 38. The planned path and final trajectory of the robot in the navigation simulation in the
dynamic environment shown in Figure 37.

5. Comparison between the Simulation Result and Test Result in the Physical Environment

In order to evaluate the simulation effect of the simulation platform for robot navigation, judge
its feasibility, and evaluate the navigation simulation accuracy, it was necessary to build a navigation
accuracy measurement experiment system for the robot in a physical environment. The experimental
scheme was as follows [66] : First, using the physical prototype of the robot shown in Figure 23 as the
test prototype, the improved A* algorithm was adopted to realize the navigation control of the
physical prototype in the created navigation environment. Then, the environment information was
tested, and the trajectory of the robot was captured by the Optitrack optical motion capture system
of the Natural Company [67]. Finally, the real trajectory of the robot was compared with the trajectory
obtained by navigation simulation.

The navigation test system of the robot prototype using the Optitrack optical motion capture
system is shown in Figure 39. Three Optitrack Prime 13 cameras, high-speed motion capture cameras,
were arranged on each side of the test area. The cameras used a Gigabit Ethernet GigE/PoE interface
to connect to data and the power supply. All cameras were connected to a Gigabit network Hub with
Ethernet cables. An installed workstation with Optical motion capture software named Motive was
connected to the hub with a cable. The Motive software was used for the recording, presentation,
playback, and remote data services of the position data. The Hand Rigid Bodies Marker Set was fixed
on the robot prototype to test the space coordinates of the robot, and the markers were affixed on the
obstacles to locate the obstacles in the test environment, as shown in Figures 39 and 40.

Planned path
Final trajectory

0

1000

2000

3000

4000

1000 2000 3000 4000
X / mm

Z
/ m

m

B
A

Figure 38. The planned path and final trajectory of the robot in the navigation simulation in the
dynamic environment shown in Figure 37.

5. Comparison between the Simulation Result and Test Result in the Physical Environment

In order to evaluate the simulation effect of the simulation platform for robot navigation, judge its
feasibility, and evaluate the navigation simulation accuracy, it was necessary to build a navigation

Sensors 2019, 19, 2976 37 of 44

accuracy measurement experiment system for the robot in a physical environment. The experimental
scheme was as follows [66] : First, using the physical prototype of the robot shown in Figure 23 as
the test prototype, the improved A* algorithm was adopted to realize the navigation control of the
physical prototype in the created navigation environment. Then, the environment information was
tested, and the trajectory of the robot was captured by the Optitrack optical motion capture system of
the Natural Company [67]. Finally, the real trajectory of the robot was compared with the trajectory
obtained by navigation simulation.

The navigation test system of the robot prototype using the Optitrack optical motion capture
system is shown in Figure 39. Three Optitrack Prime 13 cameras, high-speed motion capture cameras,
were arranged on each side of the test area. The cameras used a Gigabit Ethernet GigE/PoE interface to
connect to data and the power supply. All cameras were connected to a Gigabit network Hub with
Ethernet cables. An installed workstation with Optical motion capture software named Motive was
connected to the hub with a cable. The Motive software was used for the recording, presentation,
playback, and remote data services of the position data. The Hand Rigid Bodies Marker Set was fixed
on the robot prototype to test the space coordinates of the robot, and the markers were affixed on the
obstacles to locate the obstacles in the test environment, as shown in Figures 39 and 40.

Sensors 2019, 19, x FOR PEER REVIEW 35 of 41

Figure 39. Navigation test system of the robot prototype using the Optitrack optical motion capture
system.

Figure 40. Navigation test of the robot prototype in the physical environment: (a) the robot navigates
from the starting point; (b) the robot moves through the undulating terrain; (c) the robot reaches the
target point.

In the physical environment shown in Figure 40, a piece of scattered debris was laid on the
ground and covered with paper to form an undulating terrain area, and three cubic obstacles were
placed. The navigation test process of the robot prototype is shown in Figure 40. The 3D coordinates
of the robot were captured and recorded by the Optitrack optical motion capture system, and the 3D
test trajectory was obtained. The simulation environment shown in Figure 41a was created according
to the physical environment shown in Figure 40. The navigation simulation of the robot in the
simulation environment was carried out. The trajectory of the robot virtual prototype in the
navigation simulation was recorded in real time in the virtual environment, as shown in Figure 41b–
f. The test trajectory and simulation trajectory of the robot are shown in Figure 42. A 2D LiDAR was
employed on the physical robot prototype in the physical environment navigation, and a simulated
3D LiDAR was used on the robot virtual prototype in the navigation simulation. Since the ground in
the test environment was generally flat and the obstacles were structured cubes, the detection
difference between 2D and 3D LiDARs was neglected.

Markers Obstacle 3 Ground Robot prototype

3 Motion capture cameras
(Optitrack Prime 13 cameras)

Workstation with Optical motion
capture software installed

Ethernet Cable

Hand Rigid Bodies Marker Set

Hub

3 Motion capture cameras

Obstacle 2

Obstacle 1

Obstacle 1

Obstacle 2 Obstacle 3

Undulating ground area

Robot

Markers

Hand Rigid Bodies Marker Set

Figure 39. Navigation test system of the robot prototype using the Optitrack optical motion
capture system.

Sensors 2019, 19, 2976 38 of 44

Sensors 2019, 19, x FOR PEER REVIEW 35 of 41

Figure 39. Navigation test system of the robot prototype using the Optitrack optical motion capture
system.

Figure 40. Navigation test of the robot prototype in the physical environment: (a) the robot navigates
from the starting point; (b) the robot moves through the undulating terrain; (c) the robot reaches the
target point.

In the physical environment shown in Figure 40, a piece of scattered debris was laid on the
ground and covered with paper to form an undulating terrain area, and three cubic obstacles were
placed. The navigation test process of the robot prototype is shown in Figure 40. The 3D coordinates
of the robot were captured and recorded by the Optitrack optical motion capture system, and the 3D
test trajectory was obtained. The simulation environment shown in Figure 41a was created according
to the physical environment shown in Figure 40. The navigation simulation of the robot in the
simulation environment was carried out. The trajectory of the robot virtual prototype in the
navigation simulation was recorded in real time in the virtual environment, as shown in Figure 41b–
f. The test trajectory and simulation trajectory of the robot are shown in Figure 42. A 2D LiDAR was
employed on the physical robot prototype in the physical environment navigation, and a simulated
3D LiDAR was used on the robot virtual prototype in the navigation simulation. Since the ground in
the test environment was generally flat and the obstacles were structured cubes, the detection
difference between 2D and 3D LiDARs was neglected.

Markers Obstacle 3 Ground Robot prototype

3 Motion capture cameras
(Optitrack Prime 13 cameras)

Workstation with Optical motion
capture software installed

Ethernet Cable

Hand Rigid Bodies Marker Set

Hub

3 Motion capture cameras

Obstacle 2

Obstacle 1

Obstacle 1

Obstacle 2 Obstacle 3

Undulating ground area

Robot

Markers

Hand Rigid Bodies Marker Set

Figure 40. Navigation test of the robot prototype in the physical environment: (a) the robot navigates
from the starting point; (b) the robot moves through the undulating terrain; (c) the robot reaches the
target point.

In the physical environment shown in Figure 40, a piece of scattered debris was laid on the ground
and covered with paper to form an undulating terrain area, and three cubic obstacles were placed.
The navigation test process of the robot prototype is shown in Figure 40. The 3D coordinates of the
robot were captured and recorded by the Optitrack optical motion capture system, and the 3D test
trajectory was obtained. The simulation environment shown in Figure 41a was created according to
the physical environment shown in Figure 40. The navigation simulation of the robot in the simulation
environment was carried out. The trajectory of the robot virtual prototype in the navigation simulation
was recorded in real time in the virtual environment, as shown in Figure 41b–f. The test trajectory and
simulation trajectory of the robot are shown in Figure 42. A 2D LiDAR was employed on the physical
robot prototype in the physical environment navigation, and a simulated 3D LiDAR was used on the
robot virtual prototype in the navigation simulation. Since the ground in the test environment was
generally flat and the obstacles were structured cubes, the detection difference between 2D and 3D
LiDARs was neglected.

Sensors 2019, 19, 2976 39 of 44

Sensors 2019, 19, x FOR PEER REVIEW 36 of 41

Figure 41. Navigation simulation of the robot in the environment created according to the physical
environment in Figure 40: (a) the environment created according to the physical environment in
Figure 40; (b–f) navigation simulation process of the robot.

Figure 42. The test trajectory in the physical environment and final simulation trajectory.

From Figure 42, it can be seen that the test trajectory curve coincides with the simulation
trajectory curve substantially. The two curves coincide well in the straight-line section, but the
simulation trajectory deviates from the curvature of the measured trajectory as the robot turns. The
main reason for the non-coincidence of bending trajectory is the deviation between the physical

(a) (b)

(c) (d)

(e) (f)

Target point

Starting point

Obstacle 3

Plane ground area

Undulating ground area Obstacle 1

Obstacle 2

Laser Planned path

Movement trajectory

Movement trajectory

Test trajectory
Final simulation trajectory

Obstacle 3 Obstacle 2

Obstacle 1

0

1000

2000

3000

4000

1000 2000 3000 4000
X / mm

Z
/ m

m

Figure 41. Navigation simulation of the robot in the environment created according to the physical
environment in Figure 40: (a) the environment created according to the physical environment in
Figure 40; (b–f) navigation simulation process of the robot.

Sensors 2019, 19, x FOR PEER REVIEW 36 of 41

Figure 41. Navigation simulation of the robot in the environment created according to the physical
environment in Figure 40: (a) the environment created according to the physical environment in
Figure 40; (b–f) navigation simulation process of the robot.

Figure 42. The test trajectory in the physical environment and final simulation trajectory.

From Figure 42, it can be seen that the test trajectory curve coincides with the simulation
trajectory curve substantially. The two curves coincide well in the straight-line section, but the
simulation trajectory deviates from the curvature of the measured trajectory as the robot turns. The
main reason for the non-coincidence of bending trajectory is the deviation between the physical

(a) (b)

(c) (d)

(e) (f)

Target point

Starting point

Obstacle 3

Plane ground area

Undulating ground area Obstacle 1

Obstacle 2

Laser Planned path

Movement trajectory

Movement trajectory

Test trajectory
Final simulation trajectory

Obstacle 3 Obstacle 2

Obstacle 1

0

1000

2000

3000

4000

1000 2000 3000 4000
X / mm

Z
/ m

m

Figure 42. The test trajectory in the physical environment and final simulation trajectory.

From Figure 42, it can be seen that the test trajectory curve coincides with the simulation trajectory
curve substantially. The two curves coincide well in the straight-line section, but the simulation
trajectory deviates from the curvature of the measured trajectory as the robot turns. The main reason

Sensors 2019, 19, 2976 40 of 44

for the non-coincidence of bending trajectory is the deviation between the physical parameters in
the simulation system, such as the friction coefficient and the elastic force, and the actual parameters.
In this virtual simulation environment, the inertia of the prototype makes the robot deviate from the
planned curve. The physical parameters can be revised according to the actual data of the moving
mechanism and ground mechanics. We did not conduct an in-depth study on this. In general the test
of robot navigation motion basically verifies the simulation of robot navigation, and the simulation
results of the navigation algorithm simulation platform are shown to be credible, and the simulation
accuracy is acceptable.

6. Conclusions

In this work, after comparing the existing robot simulation platforms or simulators, a simulation
platform based on the secondary development of Unity3D was proposed. The virtual prototype of
a Mecanum wheel robot and the static and dynamic simulation environments were created, and the A*
algorithm was improved for path planning and navigation in unknown 3D environments. A series
of navigation simulations of the virtual robot prototype with A* algorithm in different environments
were carried out. Using the robot prototype and physical environments, the accuracy of navigation
simulation was tested in a navigation measurement system. The simulation results and test results
were compared and analyzed. The following conclusions can be drawn from the present study:

(1) Using the simulation platform developed on Unity3D, accurate path planning and navigation
simulation in static and dynamic environments can be carried out. In the simulation, the planned
paths and motion of the robot were corrected in real time according to the obstacles information
detected and the changes of environments.

(2) The improved A* algorithm presented in this paper was validated in three-dimensional unknown
environments, which can enable the robot achieve accurate path planning in complex static
and dynamic environments, such as the environments with rough terrain, dynamic obstacles
and dead-ends.

(3) Taking advantage of the physics engine of Unity3D, the real motion state of the robot and the
influence of the ground and terrain on the robot motion can be simulated more realistically in this
simulation platform. When the robot passed through rough and inclined terrain, the trajectory of
the robot would deviate from the planned path because of the influence of the terrain, which was
consistent with the robot motion in physical environments.

(4) Compared with professional simulators such as Gazebo, this method requires scripts to be
written for kinematic joints, sensors, the working environments, and so on, which is relatively
cumbersome, but once these scripts have been completed, they can be used to simulate different
robot prototypes and navigation algorithms. By taking advantage of Unity3D, we can obtain
simulation environments which are rich in sensory and physical complexity, and support dynamic
multi-agent interactions and good human-computer interaction, which are not well implemented
by other current simulators.

This paper presented a method of creating a simulation platform for robot navigation based on
Unity3D, and the feasibility and reliability of the platform were demonstrated by simulations and
experiments. However, the simulation platform is not perfect. We will further improve the simulation
accuracy, human–computer interaction, and the authenticity of the 3D scene. In addition, in order
to further verify the simulation platform, we will simulate and test more navigation and obstacle
surmounting algorithms and more types of mobile robots, such as tracked and humanoid robots.
Based on this study, we are conducting relevant improvements research in a planned manner.

Author Contributions: Methodology, Y.L. and S.D.; Software, Y.L., M.D.; Validation, L.Z. and Y.S.; Data curation,
Y.L. and S.D.; Writing—original draft preparation, Y.L., S.D. and M.D.; Writing—review and editing, Y.S. and L.Z.

Sensors 2019, 19, 2976 41 of 44

Funding: This work was financially supported by the National Natural Science Foundation of China (No. 51675518),
Six Talent Peaks Project in Jiangsu Province (No. JXQC-008), China Scholarship Council (No. 201706425041),
and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Acknowledgments: We would like to thank Yong Wang for providing experiment instruments which were funded
by Research Projects of General Administration of Quality Supervision, Inspection and Quarantine (2017QK002).
We would like to thank Yangyang Dai, Xucong Yan, and Feng Tian for helping with the experiments, and Zhen
Wei for helping with the simulation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sariff, N.; Buniyamin, N. An overview of autonomous mobile robot path planning algorithms. In Proceedings of the
2006 4th Student Conference on Research and Development, Shah Alam, Malaysia, 27–28 June 2006; pp. 183–188.

2. Zhang, H.; Lin, W.; Chen, A. Path planning for the mobile robot: A review. Symmetry 2018, 10, 450. [CrossRef]
3. Roldán, J.; Garcia-Aunon, P.; Garzón, M.; de León, J.; del Cerro, J.; Barrientos, A. Heterogeneous multi-robot

system for mapping environmental variables of greenhouses. Sensors 2016, 16, 1018. [CrossRef]
4. Almasri, M.M.; Elleithy, K.M.; Alajlan, A.M. Development of efficient obstacle avoidance and line following

mobile robot with the integration of fuzzy logic system in static and dynamic environments. In Proceedings of
the 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), New York, NY, USA,
29 April 2016; pp. 1–6.

5. Alves, P.; Costelha, H.; Neves, C. Localization and navigation of a mobile robot in an office-like environment.
In Proceedings of the 2013 13th International Conference on Autonomous Robot Systems, Lisbon, Portugal,
24 April 2013; pp. 1–6.

6. Adouane, L.; Benzerrouk, A.; Martinet, P. Mobile robot navigation in cluttered environment using
reactive elliptic trajectories. In Proceedings of the 18th IFAC World Congress, Milano, Italy,
28 August–2 September 2011; pp. 13801–13806.

7. Balakirsky, S.; Carpin, S.; Dimitoglou, G.; Balaguer, B. From simulation to real robots with predictable
results: Methods and examples. In Performance Evaluation and Benchmarking of Intelligent Systems; Springer:
Boston, MA, USA, 2009; pp. 113–137.

8. Hachour, O. Path planning of Autonomous Mobile robot. Int. J. Syst. Appl. Eng. Dev. 2008, 2, 178–190.
9. Terzimehic, T.; Silajdzic, S.; Vajnberger, V.; Velagic, J.; Osmic, N. Path finding simulator for mobile robot

navigation. In Proceedings of the 2011 XXIII International Symposium on Information, Communication and
Automation Technologies, Sarajevo, Bosnia and Herzegovina, 27–29 October 2011.

10. Chen, J.; Han, D. The control of tendon-driven dexterous hands with joint simulation. Sensors 2014, 14, 1723–1739.
[CrossRef]

11. Wang, Y.; Gai, Y.; Wu, F. A robot kinematics simulation system based on OpenGL. In Proceedings of the
2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM), Qingdao, China,
17–19 September 2011; pp. 158–161.

12. Ma, Y.; Dong, T.; Lan, X.; Liu, L. Research of industrial robot simulation based on OpenGL. Int. J. Adv.
Comput. Technol. 2012, 4, 248–255.

13. Urrea, C.; Coltters, J.P. Design and implementation of a graphic 3D simulator for the study of control
techniques applied to cooperative robots. Int. J. Control. Syst. 2015, 13, 1476–1485. [CrossRef]

14. Craighead, J.; Murphy, R.; Burke, J.; Goldiez, B. A survey of commercial & open source unmanned vehicle
simulators. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma,
Italy, 10–14 April 2007; pp. 852–857.

15. Noori, F.M.; Portugal, D.; Rocha, R.P.; Couceiro, M.S. On 3D simulators for multi-robot systems in ROS:
MORSE or Gazebo? In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR), Shanghai, China, 11–13 October 2017; pp. 19–24.

16. Olaru, A.D.; Olaru, S.A.; Mihai, N.F.; Smidova, N.M. Animation in robotics with LabVIEW instrumentation.
Int. J. Modeling Optim. 2019, 9, 34–40. [CrossRef]

17. Ivaldi, S.; Peters, J.; Padois, V.; Nori, F. Tools for simulating humanoid robot dynamics: A survey based on
user feedback. In Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid,
Spain, 18–20 November 2014; pp. 842–849.

http://dx.doi.org/10.3390/sym10100450
http://dx.doi.org/10.3390/s16071018
http://dx.doi.org/10.3390/s140101723
http://dx.doi.org/10.1007/s12555-014-0278-y
http://dx.doi.org/10.7763/IJMO.2019.V9.680

Sensors 2019, 19, 2976 42 of 44

18. Carpin, S.; Lewis, M.; Wang, J.; Balakirsky, S.; Scrapper, C. USARSim: A robot simulator for research and
education. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma,
Italy, 10–14 April 2007; pp. 1400–1405.

19. Gal, I.-A.; Vladareanu, L.; Ciupitu, L.; Munteanu, M.S.; Barbu, V.; Florea, G. Comparative analysis of tools
for NAO robot dynamics simulation within the VIPRO platform. Acta Electrotech. 2016, 57, 181–186.

20. Michel, O. Cyberbotics Ltd. Webots™: Professional mobile robot simulation. Int. J. Adv. Robot. Syst. 2004, 1, 5.
[CrossRef]

21. Webots. Available online: http://www.cyberbotics.com/products/webots/ (accessed on 10 June 2019).
22. Jackson, J. Microsoft robotics studio: A technical introduction. IEEE Robot. Autom. Mag. 2007, 14, 82–87.

[CrossRef]
23. Microsoft Robotics Studio. Available online: http://msdn.microsoft.com/robotics (accessed on 10 June 2019).
24. Gazebo. Available online: http://gazebosim.org/ (accessed on 10 June 2019).
25. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator.

In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Sendai, Japan, 28 September–2 October 2004; pp. 2149–2154.

26. Guerra, W.; Tal, E.; Murali, V.; Ryou, G.; Karaman, S. FlightGoggles: Photorealistic sensor simulation for
perception-driven robotics using photogrammetry and virtual reality. arXiv 2019, arXiv:1905.11377.

27. Joo, S.H.; Manzoor, S.; Rocha, Y.G.; Lee, H.U.; Kuc, T.Y. A realtime autonomous robot navigation framework
for human like high-level interaction and task planning in global dynamic environment. arXiv 2019,
arXiv:1905.12942.

28. V-Rep. Available online: http://www.coppeliarobotics.com/ (accessed on 10 June 2019).
29. Sanchez-Lopez, J.L.; Wang, M.; Olivares-Mendez, M.A.; Molina, M.; Voos, H. A real-time 3d path planning

solution for collision-free navigation of multirotor aerial robots in dynamic environments. J. Intell. Robot. Syst.
2019, 93, 33–53. [CrossRef]

30. Rani, P.; Chauhan, N.R. Coal mine rescue robot simulation using V-rep and python. In Advances in
Interdisciplinary Engineering; Springer: Singapore, 2019; pp. 733–739.

31. Cardona, G.A.; Calderon, J.M. Robot swarm navigation and victim detection using rendezvous consensus in
search and rescue operations. Appl. Sci. 2019, 9, 1702. [CrossRef]

32. Echeverria, G.; Lassabe, N.; Degroote, A.; Lemaignan, S. Modular open robots simulation engine: Morse.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China,
9–13 May 2011; pp. 46–51.

33. Simbad 3d Robot Simulator. Available online: http://simbad.sourceforge.net/ (accessed on 10 June 2019).
34. Sallab, A.E.; Sobh, I.; Zahran, M.; Essam, N. LiDAR sensor modeling and data augmentation with GANs for

autonomous driving. In Proceedings of the 36th International Conference on Machine Learning (ICML 2019),
Long Beach, CA, USA, 10–15 June 2019.

35. Sadeghi, F.; Toshev, A.; Jang, E.; Levine, S. Sim2Real viewpoint invariant visual servoing by recurrent control.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake
City, UT, USA, 18–22 June 2018; pp. 4691–4699.

36. Megalingam, R.K.; Teja, C.R.; Sreekanth, S.; Raj, A. ROS based autonomous indoor navigation simulation
using SLAM algorithm. Int. J. Pure Appl. Math. 2018, 118, 199–205.

37. Sokolov, M.; Lavrenov, R.; Gabdullin, A.; Afanasyev, I.; Magid, E. 3D modelling and simulation of a crawler
robot in ROS/Gazebo. In Proceedings of the 4th International Conference on Control, Mechatronics and
Automation, Barcelona, Spain, 7–11 December 2016; pp. 61–65.

38. Richards, D.; Patten, T.; Fitch, R.; Ball, D.; Sukkarieh, S. User interface and coverage planner for agricultural
robotics. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA), Canberra,
Australia, 2–4 December 2015.

39. Bleier, M.; Almeida, C.; Ferreira, A.; Pereira, R.; Matias, B.; Almeida, J.; Pidgeon, J.; van der Lucht, J.;
Schilling, K.; Martins, A. 3D Underwater Mine Modelling in the ¡VAMOS! Project. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2019, XLII–2/W10, 39–44. [CrossRef]

40. Billy, A.; Pouteau, S.; Desbarats, P.; Chaumette, S.; Domenger, J.-P. Adaptive SLAM with synthetic
stereo dataset generation for real-time dense 3D reconstruction. In Proceedings of the VISIGRAPP 2019:
14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications, Prague, Czech, 25–27 February 2019.

http://dx.doi.org/10.5772/5618
http://www.cyberbotics.com/products/webots/
http://dx.doi.org/10.1109/M-RA.2007.905745
http://msdn.microsoft.com/robotics
http://gazebosim.org/
http://www.coppeliarobotics.com/
http://dx.doi.org/10.1007/s10846-018-0809-5
http://dx.doi.org/10.3390/app9081702
http://simbad.sourceforge.net/
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W10-39-2019

Sensors 2019, 19, 2976 43 of 44

41. Hernandez-Belmonte, U.H.; Ayala-Ramirez, V.; Sanchez-Yanez, R.E.; Km, C.S.-V.; Blanco, P. A mobile robot
simulator using a game development engine. In Proceedings of the 2011 Robotics Summer Meeting, Xalapa,
Veracruz, Mexico, 27–28 June 2011; pp. 27–28.

42. Andaluz, V.H.; Chicaiza, F.A.; Gallardo, C.; Quevedo, W.X.; Varela, J.; Sánchez, J.S.; Arteaga, O. Unity3D-MatLab
simulator in real time for robotics applications. In Proceedings of the International Conference on Augmented Reality,
Virtual Reality and Computer Graphics, Otranto, Italy, 15–18 June 2016; pp. 246–263.

43. Sita, E.; Horváth, C.M.; Thomessen, T.; Korondi, P.; Pipe, A.G. Ros-unity3d based system for monitoring of
an industrial robotic process. In Proceedings of the 2017 IEEE/SICE International Symposium on System
Integration (SII), Taipei, Taiwan, China, 11–14 December 2017; pp. 1047–1052.

44. Hu, Y.; Meng, W. ROSUnitySim: Development and experimentation of a real-time simulator for
multi-unmanned aerial vehicle local planning. Simulation 2016, 92, 931–944. [CrossRef]

45. Kim, K.H.; Sin, S.; Lee, W. Exploring 3D shortest distance using A* algorithm in Unity3D. Techart J. Arts
Imaging Sci. 2015, 2, 1–5. [CrossRef]

46. Juliani, A.; Berges, V.; Vckay, E.; Gao, Y.; Henry, H.; Mattar, M.; Lange, D. Unity: A general platform for
intelligent agents. arXiv 2018, arXiv:1809.02627.

47. Gordon, D.; Kembhavi, A.; Rastegari, M.; Redmon, J.; Fox, D.; Farhadi, A. Iqa: Visual question answering
in interactive environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2018), Salt Lake City, UT, USA, 18–22 June 2018; pp. 4089–4098.

48. Eric, K.; Roozbeh, M.; Winson, H.; Eli, V.; Luca, W.; Alvaro, H.; Daniel, G.; Yuke, Z.; Abhinav, G.; Ali, F.
Ai2-thor: An interactive 3D environment for visual AI. arXiv 2017, arXiv:1712.05474v3.

49. Robotics Simulator. Available online: https://en.wikipedia.org/wiki/Robotics_simulator (accessed on 10 June 2019).
50. Hosseininejad, S.; Dadkhah, C. Mobile robot path planning in dynamic environment based on cuckoo

optimization algorithm. Int. J. Adv. Robot. Syst. 2019, 16. [CrossRef]
51. Aouf, A.; Boussaid, L.; Sakly, A. Same fuzzy logic controller for two-wheeled mobile robot navigation in

strange environments. J. Robot. 2019, 2019, 1–11. [CrossRef]
52. Kumar, P.B.; Sahu, C.; Parhi, D.R.; Pandey, K.K.; Chhotray, A. Static and dynamic path planning of humanoids

using an advanced regression controller. Sci. Iran. 2019, 26, 375–393. [CrossRef]
53. Zhang, H.; Li, M.; Yang, L. Safe path planning of mobile robot based on improved A* algorithm in complex

terrains. Algorithms 2018, 11, 44. [CrossRef]
54. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path planning with modified

a star algorithm for a mobile robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]
55. Le, A.; Prabakaran, V.; Sivanantham, V.; Mohan, R. Modified a-star algorithm for efficient coverage path

planning in tetris inspired self-reconfigurable robot with integrated laser sensor. Sensors 2018, 18, 2585.
[CrossRef] [PubMed]

56. Liu, C.; Mao, Q.; Chu, X.; Xie, S. An improved A-star algorithm considering water current, traffic separation
and berthing for vessel path planning. Appl. Sci. 2019, 9, 1057. [CrossRef]

57. Leigh, R.; Louis, S.J.; Miles, C. Using a genetic algorithm to explore A*-like pathfinding algorithms.
In Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Games, Honolulu, HI, USA,
1–5 April 2007; pp. 72–79.

58. Li, Y.; Dai, S.; Zheng, Y.; Tian, F.; Yan, X. Modeling and kinematics simulation of a Mecanum wheel platform
in RecurDyn. J. Robot. 2018, 2018. [CrossRef]

59. Tătar, M.O.; Popovici, C.; Mândru, D.; Ardelean, I.; Pleşa, A. Design and development of an autonomous
omni-directional mobile robot with Mecanum wheels. In Proceedings of the 2014 IEEE International
Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22–24 May 2014; pp. 1–6.

60. Mandava, R.K.; Mrudul, K.; Vundavilli, P.R. Dynamic motion planning algorithm for a biped robot using
fast marching method hybridized with regression search. Acta Polytech. Hung. 2019, 16, 189–208.

61. Kamil, F.; Hong, T.S.; Khaksar, W.; Zulkifli, N.; Ahmad, S.A. An ANFIS-based optimized Fuzzy-multilayer decision
approach for a mobile robotic system in ever-changing environment. Int. J. Control. Syst. 2019, 17, 253–266. [CrossRef]

62. Hesse, F.; Martius, G.; Der, R.; Herrmann, J.M. A sensor-based learning algorithm for the self-organization of
robot behavior. Algorithms 2009, 2, 398–409. [CrossRef]

63. Lee, D.; Myung, H. Solution to the SLAM problem in low dynamic environments using a pose graph and an
RGB-D sensor. Sensors 2014, 14, 12467–12496. [CrossRef] [PubMed]

http://dx.doi.org/10.1177/0037549716666683
http://dx.doi.org/10.15323/techart.2015.08.2.3.1
https://en.wikipedia.org/wiki/Robotics_simulator
http://dx.doi.org/10.1177/1729881419839575
http://dx.doi.org/10.1155/2019/2465219
http://dx.doi.org/10.24200/sci.2018.5064.1071
http://dx.doi.org/10.3390/a11040044
http://dx.doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/10.3390/s18082585
http://www.ncbi.nlm.nih.gov/pubmed/30087274
http://dx.doi.org/10.3390/app9061057
http://dx.doi.org/10.1155/2018/9373580
http://dx.doi.org/10.1007/s12555-017-0068-4
http://dx.doi.org/10.3390/a2010398
http://dx.doi.org/10.3390/s140712467
http://www.ncbi.nlm.nih.gov/pubmed/25019633

Sensors 2019, 19, 2976 44 of 44

64. Cserna, B.; Doyle, W.J.; Ramsdell, J.S.; Ruml, W. Avoiding dead ends in real-time heuristic search.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018; pp. 1306–1313.

65. Kang, X.; Yue, Y.; Li, D.; Maple, C. Genetic algorithm based solution to dead-end problems in robot navigation.
Int. J. Comput. Appl. Technol. 2011, 41, 177–184. [CrossRef]

66. Giernacki, W. Iterative learning method for in-flight auto-tuning of UAV controllers based on basic sensory
information. Appl. Sci. 2019, 9, 648. [CrossRef]

67. Optitrack. Available online: https://www.optitrack.com/ (accessed on 10 June 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1504/IJCAT.2011.042693
http://dx.doi.org/10.3390/app9040648
https://www.optitrack.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Simulation Platform Based on Unity3D
	Elements of the Simulation Platform
	Parametric Virtual Kinematic Joints
	Virtual Sensors
	Two-Dimensional LiDAR
	Three-Dimensional LiDAR

	Construction of Virtual Simulation Environment
	Stochastic Ground Simulation
	Simulation of Parameterized Obstacles
	Virtual Environments for Navigation Simulation of the Robot

	Improved A* Algorithm
	Introduction of the A* Algorithm
	Improvement of the A* Algorithm for Navigation in an Unknown Environment
	Improvement of the A* Algorithm for Navigation in 3D Space
	Programming Implementation of the Improved A* Algorithm
	Creation of Nodes
	Creation of Grids
	Planning Path
	Environment Exploration and Topographic Reconstruction

	Simulation Based on Unity3D
	Introduction of the Mecanum Wheel Mobile Robot
	Kinematics Model of the Mecanum Wheel Mobile Robot
	Introduction of the Structure of the Mecanum Wheel Mobile Robot

	Establishment of the Virtual Prototype of the Robot
	Model Import
	Grouping of Model Grids
	Adding the Collider
	Adding Joint Scripts
	Adding Rigid Body Components
	Adding Navigation Algorithm Scripts

	Movement Simulation of the Robot on the Different Ground Types in Unity3D
	Navigation Simulation of the Robot in Unity3D
	Navigation Simulation on Stochastic Ground
	Obstacle Avoidance Navigation Simulation of the Robot in a Static Environment
	Obstacle Avoidance Navigation Simulation of the Robot in a Dynamic Environment

	Comparison between the Simulation Result and Test Result in the Physical Environment
	Conclusions
	References

