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Abstract

We have developed a computational model of gas mixing and ventilation in the human lung

represented as a bifurcating network. We have simulated multiple-breath washout (MBW),

a clinical test for measuring ventilation heterogeneity (VH) in patients with obstructive

lung conditions. By applying airway constrictions inter-regionally, we have predicted the

response of MBW indices to obstructions and found that they detect a narrow range of

severe constrictions that reduce airway radius to 10%–30% of healthy values. These results

help to explain the success of the MBW test to distinguish obstructive lung conditions from

healthy controls. Further, we have used a perturbative approach to account for intra-regional

airway heterogeneity that avoids modelling each airway individually. We have found, for ran-

dom airway heterogeneity, that the variance in MBW indices is greater when indices are

already elevated due to constrictions. By quantifying this effect, we have shown that variabil-

ity in lung structure and mechanical properties alone can lead to clinically significant variabil-

ity in MBW indices (specifically the Lung Clearance Index—LCI, and the gradient of phase-

III slopes—Scond), but only in cases simulating obstructive lung conditions. This method is a

computationally efficient way to probe the lung’s sensitivity to structural changes, and to

quantify uncertainty in predictions due to random variations in lung mechanical and struc-

tural properties.

Introduction

The relationship between structure and function in the human lung is an important research

area in physiology and medicine. The structural changes associated with various obstructive

lung diseases, such as cystic fibrosis (CF) and asthma, can give rise to ventilation heterogeneity

(VH) where inhaled gas is unevenly distributed in the lung, leading to poorer gas mixing effi-

ciency [1, 2]. The severity of these conditions, in particular CF, is often quantified clinically

using Multiple Breath Washout (MBW) tests [3]. MBW uses an inert tracer gas to quantify

how effectively fresh air is turned over in the lung by measuring the tracer gas concentration
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and flow rate at the mouth. These data are used to compute clinically tested indices such as the

lung clearance index (LCI) and phase-III slopes [4], which are indicators of VH.

Modelling the results of MBW tests accurately is challenging. First, modelling gas flows in a

heterogeneous lung structure is a computationally expensive task. According to cast estimates

there are (on the order of) 104–105 conducting airways (those where no gas exchange occurs)

[5, 6], but on the order of 107 branches in total including the acinar ducts (in the alveolar

region of the lung). There have been numerous approaches to resolve this problem, such as

using a symmetric airway network with an effective diffusion coefficient to account for hetero-

geneous ventilation [7], compartmental models with asynchronous or asymmetric ventilation

[8–10], modelling a single heterogeneous acinus [11, 12], and replacing the acini with well

mixed units or symmetric models [13–17]. Second, many model parameters are difficult to

measure experimentally, and are variable between subjects, which increases the uncertainty in

model predictions. Quantifying this uncertainty is a key step to making more clinically rele-

vant model predictions.

In this paper, we first introduce a reduced model of lung structure that accounts for asym-

metry in the inter-lobar airways and inter-regional heterogeneity but assumes symmetrical

branching in the lower airways. We label this ‘model M’. In the baseline case, all airways in a

given generation of each lung region are assumed identical, so that each region can be repre-

sented by a single ‘mean-path’. To simulate the effects of obstructive lung disease we systemati-

cally apply constrictions to the lower airways in model M, which gives rise to inter-regional

VH. This model is only an approximation to the true lung mechanics, assuming linear visco-

elastic response of the alveoli and Poiseuille flow throughout.

Second, we outline a perturbative approach that extends ‘model M’ to include weak intra-

regional heterogeneity. This method estimates the effect of changes in mechanical or geometri-

cal properties of the airway tree within the symmetrically-branching regions. This uses the

first-order corrections to the model equations due to small differences in individual airway

geometry or acinar elastance away from model M. Each linear response represents the sensitiv-

ity of an output variable to an input parameter of a given airway or acinus, and so can be

superposed back onto model M in a various ways to understand how the model outcomes

depend on the geometry of certain bulk properties of the lung. We label this perturbative

method ‘model P’. Model P can be used to describe lung structures with heterogeneity that is

either deterministic (where the structural and mechanical properties are prescribed) or proba-

bilistic (with properties described by multivariate distributions) using the same simulations.

The probabilistic descriptions of lung structure allows us to directly estimate the variance of

model outputs due to the parameter distributions and thus quantify uncertainty. We have

applied this method to the particular case of MBW simulation in “Model P: Intra-regional

heterogeneity”.

The aim of this research is to quantify the sensitivity of MBW indices to structural heteroge-

neity for both healthy and diseased lung models. The perturbative method developed makes it

tractable to probe the geometry of all airways (including acinar ducts) efficiently and relate

them directly to MBW outcomes and the distribution of ventilation in the lung.

Methods

Model M: Ventilation and transport in symmetrically branching lobar

regions

We have modelled the effects of inter-regional heterogeneity in the lung using a coupled net-

work model of ventilation and gas transport in the airways and acinar ducts. To reduce model

complexity, we have initially assumed that the airway tree can be approximated as completely
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symmetric within seven lung regions (see Fig 1); we refer to this as model M. Each region cor-

responds to a lobe or lobar compartment resembling the regions in Horsfield and Cumming’s

lung model M [6]. We define the Strahler order of an airway by the maximum number of gen-

erations distal to it including acinar duct generations (counting from zero). Details of the

model and parameters used can be found in S1 File and are summarised in S1 Table.

Gas flow on the airway network is calculated using a coupled set of ordinary differential

equations (ODEs) that account for airway resistance (assuming Poiseuille flow), linear visco-

elasticity of the acinar units and a uniform applied pleural pressure (similar to [14, 15, 18]),

ðRcond þ RacinÞ
_VðtÞ þ KðVðtÞ � V�Þ ¼ ðPpl0 � PplðtÞÞ1: ð1Þ

The vector V contains all the lung unit volumes (represented as grey boxes in Fig 1). The ten-

sors Racin and K are diagonal and contain the resistance and elastance of the lung units respec-

tively. The full tensor Rcond is the airway resistance matrix, defined in S1 File §1.2 and the

scalar Ppl(t) is the constant pleural pressure. The vector V� corresponds to the resting volumes

of the lung units at zero flow where Ppl(t) = Ppl0. These ODEs are solved directly using the

Eigen [19] factorisation routine ‘PartialPivLU’ in C++, as outlined in detail in S1 File §1.2.

The concentration of inert gas on the network is then calculated using a one-dimensional

advection-diffusion equation (S1 File §1.3) that accounts for transport into the alveolar sacs

(similar to [11, 12, 20]). On a given edge ei, which can represent a single airway or numerous

identical airways in the same generation, the transport equation is

@

@t
SiðtÞciðx; tÞ½ � þ si

@

@x
uiðx; tÞciðx; tÞ½ � ¼ si

@

@x
Diðx; tÞ

@ciðx; tÞ
@x

� �

; ð2Þ

where si and Si are the inner and outer total airway cross-sections in ei. For conducting airways

si = Si, and in the acinar ducts within the lung units Si − si accounts for the (time-dependent)

volume of the acinar sacs lining the ducts. The variable ci is the inert gas concentration at dis-

tance x along airway i at time t. This is essentially the ‘trumpet’ representation of [21] and is

outlined in more detail in S1 File §1.4. The effective diffusion constant Di(x, t) is given by

Fig 1. Network diagram of model M used to simulate MBW. Each lobar region (right-upper, RU; right-middle, RM; right-lower minor, RLmin,

right-lower major, RLmaj; left-upper, LU; left-lower minor, LLmin; left-lower major, LLmaj) is assumed to be a symmetrically branching tree (left) which

can be modelled as a single path (right). Each black line represents an edge of the network, while each red dot is a vertex. The grey boxes indicate the

parenchymal volume fed by each terminal airway or set of airways.

https://doi.org/10.1371/journal.pone.0208049.g001
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Taylor-like dispersion described in [22] in the conducting airways,

Diðx; tÞ ¼ D0 þ Cuiðx; tÞdi; ð3Þ

where di is the airway diameter, ui is the velocity of airflow, D0 is the molecular diffusivity, and

the constant C is defined as C = 1.08 for inspiration and C = 0.37 for expiration. In the acinar

ducts, pure molecular diffusion is modelled but with a modified airway cross-section, as

described in [12],

Diðx; tÞ ¼ D0 1þ �
SiðtÞ
si
� 1

� �� �

; ð4Þ

where ϕ is a phenomenological parameter that sets the fraction of alveolar sac cross-section

that is involved in diffusion. However, this relation by no means captures the full complexities

of gas mixing dynamics in the pulmonary acinus (e.g. [23–25]). The resulting transport partial

differential equations (PDEs) are discretised using a finite volume method (detailed in S1 File

§2), and solved iteratively using the Eigen [19] ‘BiCGSTAB’ routine.

Model M: Simulation of MBW and application of constrictions

To simulate MBW in model M the concentration is initialised to c = 1 everywhere in the lung.

Then a regular sinusoidal breathing cycle is simulated with c = 0 at the mouth on inhalation,

and a diffusive-flux-free @xc = 0 boundary condition on exhalation. Parameter values for tidal

volume (VT), functional residual capacity (FRC), airway dead-space volume (VD) and lung

elasticity (Klung) are chosen to be representative of a healthy adult male (see S1 Table). We

assume throughout that SF6 is the inert gas used, although we check that the results remain

similar for N2. This model does not simulate the effects of gas exchange nor resident gas stored

in the tissue, so the only relevant difference between the gases is their molecular diffusivity.

The MBW test measures FRC from the total inert gas exhaled over the test [4], which we

label as Vapprox
FRC . The lung clearance index (LCI) value is the number of lung turnovers (exhaled

volume in units of Vapprox
FRC ) required to reduce the concentration (measured at the mouth at

end of exhalation) to 2.5% of its initial value. In this paper we interpolate this number of lung

turnovers to measure small changes in LCI that are below the resolution of clinical LCI mea-

surements (see S1 File §3). LCI is a widely tested clinical measure of VH [26, 27], with healthy

values generally in the range 6–8 and larger values indicating increased heterogeneity. Phase-

III indices measure VH through the slope of inert gas concentration versus volume for individ-

ual exhalations, and their interpretation is informed by numerical modelling [28–30]. The nor-

malised phase-III slope is defined as the gradient of a linear fit to the final part of the exhaled

concentration versus volume curve under tidal breathing, divided by the mean concentration

of this phase. In this paper we focus on Scond, the linear gradient of the normalised phase III

slopes taken over several breaths, measured according to the clinical guidelines for MBW in

[4] (see S1 File §3 for further details).

To measure VH in the model directly, we calculate the fractional ventilation (FV) of the

lung acini, which is the ratio of inert gas volume in each acinus between successive breaths at

end-tidal volume, defined explicitly for this model in equation (58) in S1 File. Hyperpolarised

helium MRI imaging [31] is a state-of-the-art technique that can be used to measure the FV

distribution in the lung [32]. Heterogeneity in FV correlates strongly with increased LCI, but

the MRI images can also identify ventilation defects not picked up by MBW indices, as well as

provide important information about the spatial distribution of FV [3]. The network model

presented here cannot predict the spatial distribution of FV that would be measured in MRI,

but does simulate the probability distribution of FV in the lung.
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In section Model M: Inter-regional heterogeneity we apply constrictions to model M by

changing the airway cross section ai on given branches of the network. We select airways in

two ways, first we apply identical constrictions to all of the airways in a given generation

range in one region (the RM lobe), which we call the ‘localised’ case. Three generation

ranges are compared: distal, the final four generations of conducting airways (Strahler

Order 8-11 in our notation); central, the next four generations up (12-15); and proximal,

the next four generations up again (16-19). Since all airways in each generation of the lung

region remain identical, the model M can still be represented by the network in Fig 1

(right). Second, we uniformly randomly choose 10% of the individual airways from the full

tree (Fig 1, left) in a given generation (proximal—19, central—15, and distal—11). Constric-

tions are then applied to these airways and the three generations of airways descended from

them (so that the overall change in resistance and the proportion of lung volume affected

is the same as in the localised case). We label this the ‘randomly distributed’ case. In this

case, not all lung regions remain completely symmetric, so the reduction of symmetric

regions sketched in Fig 1 results in the more complex networks shown in S2 Video. All other

results following section Model M: Inter-regional heterogeneity refer to localised constric-

tions only.

Model P: Perturbative method and application to structural heterogeneity

Building on model M, we use perturbation theory to calculate the changes in gas concentration

due to small variations of the properties of a single airway or acinus in a symmetrically-branch-

ing lung region. Simulation variables, such as LCI, are complicated non-linear functions of the

input parameters. Here, we restrict our attention to variations in airway cross-section and

length, and acinus elastance, parametrised by the dimensionless �
ðaÞ
i , �

ðlÞ
i , �ðKÞ

a
<< 1 respectively,

where i is the airway index and α the acinus index. LCI, for example, is then reconstructed by

superposition of the linear responses,

LCIP ¼ LCIM þ
X

i

@LCIM

@ai
�
ðaÞ
i ai þ

@LCIM

@li
�
ðlÞ
i li

� �

þ
X

a

@LCIM

@Ka

�ðKÞ
a
Ka; ð5Þ

where the M and P superscripts refer to variables in model M and P respectively, and the sum

is taken over all perturbed airways or acini in the model. We define the linear sensitivity of var-

iable g to parameter f as

dgðf Þ � f
@g
@f
; ð6Þ

enabling the comparison of sensitivities with respect to different parameters. Many of the lin-

ear sensitivities in (5) are degenerate due to the symmetric nature of the regions in model M,

and so reconstructing the whole solution requires simulating only the linear response to one

perturbation for each generation of each region (see Fig 2), and thus the system size grows lin-

early with the number of generations included, rather than exponentially. This is outlined in

more detail in S1 File §1.5.

In “Model P: Intra-regional heterogeneity”, we use the linear sensitivities computed for

model P to calculate the variance of MBW indices due to intra-regional heterogeneity. These

sensitivities are computed for realisations of model M covering a range of constriction severity.

In the simple case where the perturbations are modelled as variables in a multivariate Gauss-

ian, the variance in model outputs can be approximated as a sum of the covariance of inputs

Modelling structural determinants of ventilation heterogeneity
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weighted by their respective linear sensitivities

varðgÞ �
X

i

X

i0

X

p

X

p0
cov �

ðpÞ
i ; �

ðp0Þ
i0

� �
dgðpiÞdgðp

0

i0
Þ
: ð7Þ

In Eq (7), the sums are taken over all perturbed airways labelled by the indices i and i0, where p
and p0 refer to the corresponding perturbation (a or l; we disregard perturbations to K as we

find that airway geometry dominates the variance on the MBW outcomes). The variable g can

refer to any property in the model, and explicit examples are given in S1 File §3. This gives a

computationally efficient method to relate weak intra-regional heterogeneity to variance of

model outputs that relies only on each constricted case being simulated once.

Fig 2. Top: Sketch of the airway network within a symmetric lobar region, the heterogeneous colouring of the edges

represent small changes in geometry away from complete symmetry of model M. This weak heterogeneity can be

reconstructed using the sensitivities computed from a single perturbation to each perturbed property in each

generation added to the initial model M solution. Bottom: The airway networks used to compute the linear sensitivities

corresponding to each generation as labelled, where the blue dashed edge is the perturbed airway.

https://doi.org/10.1371/journal.pone.0208049.g002
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To construct the multi-variate Gaussian airway distributions, we assume that the coeffi-

cients of variation of the airway areas and lengths, σa and σl respectively, are independent of

generation. First, we model perturbations to be independently normally distributed

cov �
ðpÞ
i ; �

ðp0Þ
i0

� �
¼ s2

pdi;i0dp;p0 ; ð8Þ

where δx,y is the Kronecker delta function. Second, we assume that the perturbations are nor-

mally distributed around the perturbation to their parent branch, and that area and length per-

turbations in the same branch are correlated with coefficient ρal such that

ϵi ¼ N ðϵim ;ΣÞ;

ϵi ¼
�
ðaÞ
i

�
ðlÞ
i

0

B
@

1

C
A;Σ ¼

s2
a ralsasl

ralsasl s2
l

0

@

1

A;

ð9Þ

where im is the index of the parent branch to airway i. This case results in what we term ‘struc-

turally correlated’ heterogeneity within each symmetrically-branching lung region. This

means that airways and acini that are closely related on the tree have more closely correlated

fluctuations in airway geometry (see Fig 3). This is similar to the random structure generated

used for particle deposition calculations in [33], whereby airway sizes are generated according

to the size of the parent airway.

Finally, we use these results to compute the probability density of any acinus in the model

having a given FV value (averaged over the whole MBW test). In the limit of a large number of

acini, the distribution of FV values in any given lung model realisation will tend towards this

distribution. For further details of the airway heterogeneity models used and the method of

reconstructing the FV distributions see S1 File §3.

Model validation

Validation studies to test the accuracy and precision of the numerical simulations can be

found accompanying the source code at [34]. In these we have tested that the code is suitably

Fig 3. Sketch of randomly distributed airway sizes, shading (from dark to light) indicates airway size relative to

generational average. In the independent case, variations in branch size are uncorrelated. In the correlated case larger

than average airways are likely to beget airways that are also larger than average, resulting in an increased uncertainty

in the size of the most distal airways. For simplicity, all airways in this sketch have fixed aspect ratio (the case ρal = 1).

When ρal = 0, airway length and area are independent.

https://doi.org/10.1371/journal.pone.0208049.g003
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converged for the choice of model time-step and space-step, and that inert gas volume is con-

served. We also tested that the perturbative model converges exactly to the mean-path model

in the limit of small perturbations.

We have validated the predictions of model M by comparing the outcome to predictions

of inter-regional heterogeneity in a simple analytical two-component model in S1 File §5. To

validate model P, we ran Monte Carlo simulations on a version of model M with some intra-

regional heterogeneity and compared the measured variance in LCI to that predicted by model

P (these results are presented in S1 Fig).

Results

Model M

The healthy baseline case of model M (no airways constricted) assumes that all regions have

the same airway sizes and mechanical properties. This results in a homogeneous distribution

of gas, with the only asymmetry originating from the arrangement of the proximal airways

supplying the lobar regions, and the number of generations within each region. In this case

the simulations show little regional difference in FV and each lobe contributes proportionately

to the washout. The baseline values of the MBW indices (using SF6 as the tracer gas) were

LCI = 5.16, Scond = 1.92 × 10−4L−1 and VðapproxÞFRC ¼ 3:00L (to 3 s.f.). Using N2, the LCI reduced

slightly to 5.04, due to better gas mixing and a more proximal diffusion front (note that the

effects of gas exchange are not included in this model).

Model M: Inter-regional heterogeneity. Fig 4 (solid lines) shows the effect of constricting

airways in the right-middle (RM) lobe of model M at three different depths. Each case simu-

lates localised bronchoconstriction, with all airways in a given generation range (proximal,

central or distal) reduced in cross-section by the same fraction, approximating the pathophysi-

ology of asthma or CF. A marked response in all three MBW indices is evident for radius con-

strictions above circa 70%. The responses of LCI and Scond to airway constrictions are strongly

correlated, peaking at approximately 80% constriction of the radius before dropping back to

baseline values (Fig 4(a) and 4(b)).

Simulated LCI and Scond are effectively independent of constriction depth and drop off at

larger constrictions, where the constricted region becomes essentially unventilated and thus

undetectable at the mouth. This is shown in Fig 4(e) by the reduction in measured FRC vol-

ume of approximately 10% (295 ml) of the lung volume. This compares well to the simplified

analytical prediction of VH in a two-component model (S1 File §5).

It is a simplification to assume that constrictions or blockages would be localised to a single

lobe. However, randomly distributed constrictions applied to families of airways at each depth

that feed the same fraction (10%) of the lung volume, result in a very similar response due to

the homogeneity of the baseline case (see Fig 4(b), 4(d) and 4(f)). The response is weaker than

the localised case for a more distal heterogeneous distribution of constrictions, and drops off

more gradually at>80% radius constriction.

To summarise, we have found that MBW indices detect a restricted range of severe airway

constrictions, which our results predict to be most sensitive when airways are between 10%–

30% of their original radius.

Model P

Model P consists of simulating the linear difference in all model variables due to individual

perturbations to airway geometry or acinar elastance. These linear sensitivities are then
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combined to predict how sensitive the outcomes of model M are to weak intra-regional hetero-

geneity and changes in global model parameters.

Model P: Intra-regional heterogeneity. Fig 5 shows the predicted standard deviation in

MBW indices due to a random distribution of airway geometries and acinar elastances in

model P. Two types of random heterogeneity are presented: first where changes to airway

geometry are independently normally distributed within the lung regions; and second where

they are structurally correlated (see Fig 3). In general, the standard deviations of LCI and Scond

increased when perturbations were correlated with their parent branch. Note that the mean

value of LCI and Scond, for varying constriction magnitude in the RM lobe, are unchanged

from the predictions of model M, since model P only incorporates linear responses. Nonethe-

less, the approximation of variance remains good for σa, σl< 0.25 (see S1 Fig).

Fig 4. Relationship between constriction strength (% radius reduction) and MBW indices simulated using model M. (a)-(b) LCI, (c)-(d) Scond and

(e)-(f) measured FRC volume Vapprox
FRC with constrictions applied to airways feeding 10% of the lung acinar volume. Three different depths were tested,

corresponding to Strahler order 19-16 (proximal, black squares), 15-12 (central, red circles), and 11-8 (distal, blue diamonds), where all branches

constricted were taken to be directly descended from the most proximal in all cases. (a), (c) and (e) show simulations where constrictions were all

localised within the right-middle lobe, whereas (b), (d), and (f) show realisations where the positions of the constrictions were uniformly randomly

distributed throughout the lung. Example animations of localised and random constrictions are shown in S1 and S2 Videos respectively.

https://doi.org/10.1371/journal.pone.0208049.g004
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The standard deviations of LCI and Scond due to airway heterogeneity are orders of magni-

tude larger when the indices are already elevated by constrictions in the RM lobe. There is a

small drop in LCI variance at *80% radius constrictions, corresponding to the stationary

point of the LCI curve in Fig 4(a) and 4(b). This means that the uncertainty shows similar

behaviour to the magnitude of the gradient of the curve in Fig 4(a) and 4(b).

Fig 5 also shows different responses depending on constriction depth. Independently dis-

tributed airway heterogeneity has less effect on the standard deviations of the indices when

constrictions are more distal. However, when parent-daughter airway sizes are correlated, the

effect on LCI and Scond standard deviations is similar regardless of constriction depth. This

implies that this type of structural heterogeneity, whereby uncertainty in airway size grows

with each generation, enhances the contribution of the smaller airways to the overall

uncertainty.

Finally, Fig 5 includes the structurally correlated case where airways retain a fixed length-

to-diameter ratio to linear order (ρal = 1). In this case, LCI and Scond variances do not increase

as much at severe constriction strengths as the ρal = 0 case.

To conclude, when the MBW indices are elevated due to severe airway constrictions, they

are more sensitive to heterogeneity in airway size. This results in an increase in the variances

of MBW indices when airway geometries are randomly distributed.

Model P: Fractional ventilation distributions. Fig 6 shows the distribution of acinar FV

values at different constriction strengths, and for different distributions of airway heterogene-

ity. As FV in the RM lobe decreases (and LCI increases) the distribution of FV in this lobe also

Fig 5. Standard deviation in (a)-(b) LCI and (c)-(d) Scond vs. constriction strength (for constrictions confined to RM lobe) predicted using model

P. Results are shown for independent normally distributed perturbations (black squares) and structurally correlated perturbations (see S1 File §4.2)

with ρal = 0 (diameter and length uncorrelated, red circles) and ρal = 1 (fixed diameter-length ratio, blue diamonds). (a) and (c) show the results for

Strahler orders 19-16 (proximal) and (b) and (d) for Strahler orders 11-8 (distal, dotted line, diamonds). Constrictions were applied to all airways in the

RM lobe within these generation ranges as in Fig 4. In all cases σa = 0.2 and σl = 0.1. Note the logarithmic scale on the vertical axes.

https://doi.org/10.1371/journal.pone.0208049.g005

Modelling structural determinants of ventilation heterogeneity

PLOS ONE | https://doi.org/10.1371/journal.pone.0208049 November 29, 2018 10 / 19

https://doi.org/10.1371/journal.pone.0208049.g005
https://doi.org/10.1371/journal.pone.0208049


broadens (Fig 6(b) and 6(c)), before narrowing again at very large constrictions (Fig 6(d)).

This shows that the local FV is most sensitive to airway heterogeneity in the same constriction

strength range as the MBW indices. When area and length perturbations are correlated (ρal =

1) the FV distribution is narrower in the constricted lobe (RM), where airway resistance domi-

nates, and broader in the other regions, where airway dead-space volume is the dominant fac-

tor. This clearly demonstrates a link between the width of the FV distribution and the resulting

model uncertainty in MBW indices due to airway heterogeneity.

A key finding is that the unconstricted mean-paths are relatively unaffected, and remain

fairly insensitive to airway heterogeneity within those paths. Nonetheless, there is a small drop

in FV in the right-lower lobe, which can be explained by a pendelluft effect where gas from the

Fig 6. Whole lung FV distributions for (a) 0% (b) 71.5% (c) 81.5%, and (d) 91.5% constrictions to the radius of the airways in the central airways

of the RM lobe (central, Strahler orders 15-12) from model P. Results for independent random perturbations (solid black lines) and structurally

correlated random perturbations with ρal = 0 (dashed red lines) and ρal = 1 (fixed diameter-length ratio, dotted blue lines). σa = 0.2 and σl = 0.1 was used

in all cases. In (b), (c) and (d) the peaks are labelled by their corresponding region(s) as denoted in Fig 1. For visibility, the y-axis range does not extend

to include all of the peaks.

https://doi.org/10.1371/journal.pone.0208049.g006
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right-middle lobe is re-inspired into the right-lower lobe due to the asynchronous nature of

the ventilation (see S1 Video).

In summary, the FV distributions show that severe airway constrictions result in a much

broader distribution of gas turnover in the affected lung region (assuming some randomness

in airway geometry). Aside from the noted pendelluft affects, the distribution of FV in the

unaffected lobes remained largely unchanged, highlighting the parallel nature of the airway

network structure.

Model P: Further insights from linear sensitivity analysis. The linear sensitivities com-

puted for model P give an insight into how MBW indices depend on airway properties at dif-

ferent depths. Examples of LCI and Scond sensitivity vs. airway generation are shown and

discussed in the supplementary figures. S2 Fig compares the sensitivities using N2 and SF6

tracer gas in the model in the absence of constrictions. It demonstrates that, for the advection-

dominated conducting airways the two responses are identical, whereas in the diffusion-domi-

nated acinar ducts, the responses are markedly different due to the difference in molecular dif-

fusivity. S3 Fig shows the linear sensitivity of LCI to airway perturbations when the airways of

the RM lobe are already constricted. In this case, the LCI response is completely dominated by

the geometry of those airways that are already narrowed and so have high resistance, and the

response is markedly larger than the baseline case in S2(a) and S2(b) Fig.

In Fig 7 these local sensitivities are combined to predict the sensitivity of LCI to changes

in three global model parameters. In the absence of constrictions, LCI is weakly sensitive to

airway dead-space and completely insensitive to airway length-diameter ratio and acinar ela-

stance. When constriction magnitude is elevated (to 70–90% of the radius) LCI becomes

most strongly sensitivity to length-diameter ratio, and also much more dependent on

Fig 7. Linear sensitivity (computed for model P) of LCI and to changes in three global model parameters vs. baseline constriction magnitude (of

central airways in RM lobe). In the notation of Eq (6) the plot shows dLCILDcond (length-diameter ratio, black solid line), dLCIVD (airway dead-space,

red dash-dotted line), and dLCIKlung (lung elastance, blue dotted line). Each point corresponds to a single simulation of model M with localised

constrictions (where the baseline LCI values are given by Fig 4(a)).

https://doi.org/10.1371/journal.pone.0208049.g007
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elastance, while the dependence on total dead-space remains weak. Generally, a very similar

response is predicted for Scond, except that it is not sensitive to VD for mild constrictions (not

shown).

Thus, by looking in more detail at the sensitivities computed in model P, we can gain

insights into how the MBW indices depend on different sets of airways and global model

parameters.

Model P: Computational efficiency. It is difficult to compute the reduction in simula-

tion time that this method represents as the equivalent non-perturbative calculation involves

simulating transport repetitively on all *107 branches, which remains impractical. Nonethe-

less this is achieved by model P in approximately 5.5 hours on a single processor. If we

reduce the calculation to only resolving heterogeneity in the conducting airways (40, 960

terminal branches) then the equivalent non-perturbative calculation takes approximately

12 hours for a single realisation whereas model P takes 0.6 hours under the same conditions

(on average). This represents a significant improvement when one considers the number

of realisations of the non-perturbative approach required to effectively estimate outcome

variance via Monte-Carlo sampling or similar (which only requires a single realisation of

model P).

Discussion

In this paper we have introduced a simple lung model (model M) to account for VH due to

structural changes in the airway tree. Our results show that Scond and LCI respond in a highly

correlated manner to bronchoconstriction, whether this is localised to a single lobe or distrib-

uted across the lung (Fig 4). The response is notably non-linear, showing a high sensitivity to

large-magnitude constrictions (*80% reduction in radius) before returning to baseline values

at even larger constrictions. This suggests a mechanism to explain the robustness of MBW

indices in differentiating subjects with obstructive lung conditions (where airway inflamma-

tion and blockage is a typical feature) from healthy volunteers (where such narrow airways are

unlikely to be present in large numbers).

The sharp response in simulated MBW indices is due to the inverse-fourth-power depen-

dence of airway resistance (approximated here by Poiseuille flow) to changes in airway radius

and has also been observed in studies using image-based models with non-linear pressure-

drop relations [13, 17]. Using a simple two-component model, we show in S1 File §5 that the

ratio rDA=Klungt (where rDA is the baseline resistance of the lower airways) is crucial to deter-

mining the constriction strength required to observe an increase in LCI. Literature values pre-

dict that the lung elastance greatly outweighs the resistance contribution in healthy lungs, and

so we see an increase here only for very severe constrictions.

Model P expands on model M by using perturbation theory to approximate the response

of the MBW outcomes to intra-regional heterogeneity. Using this, we found that the uncer-

tainty in predictions due to weak heterogeneity in the structure is greatly amplified when LCI

and Scond are elevated due to constrictions (for constrictions confined to a single lobe, see Fig

5). This response is dominated by the increased sensitivity to the geometry of those con-

stricted airways in particular. When airway heterogeneity is independently distributed, the

variance is greater when there are few proximal constrictions rather than numerous distal

constrictions, due to the random contributions averaging out. This uncertainty is amplified

further by including structural correlations that account for the inherited nature of airway

sizes. We found that the distal airways contribute equally to the variance of MBW indices in

this case, because more proximal fluctuations from the mean were propagated down the air-

way tree.
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More broadly, these results suggest that elevated MBW indices induced by airway constric-

tions are more variable in general, which is observed experimentally in CF and asthma patients

through the increased sensitivity of LCI to posture [35, 36], as well increased inter-patient vari-

ability [37]. Such variability can also be affected by disease severity, as well as randomness in

the mechanical and structural properties of the lung considered here.

Furthermore, we have used model P to compute probability distributions of acinar FV val-

ues (Fig 6). The predicted FV distributions are generally narrower than measured experimen-

tally [32]. This is in part due to the simplified lung structure and the assumption of weak

heterogeneity. Furthermore, acini sizes are also variable which directly affects their FV values,

while gravitational effects also play a role [14]. However, the response we observe is indicative

of the effects of heterogeneity in airway structure alone, and demonstrate the relationship

between variation in structure and the distribution of FV within a lung. We saw that, generally,

the FV distribution is much broader in the constricted lung region, which is consistent with

the increased variance in MBW indices predicted (Fig 5). These calculations also showed that

the unconstricted regions are relatively unaffected by the presence of the blockage, due to the

parallel nature of the lung structure.

The LCI values predicted by model M are low compared to those measured experimentally

[37], but similar to those simulated in more detailed airway tree models [17, 38]. The phase-III

slopes that we predict are practically zero in the absence of constrictions, whereas in a healthy

lung, asymmetry in both the airways and acinar ducts contributes to positive slopes [38]. Even

in the presence of severe VH, the modelled Sacin remains small, which is due to the complete

symmetry in the acinar structure. This means that mixing efficiency in the model alveolar

zone is better than is likely in reality, meaning that more inert-gas can be turned over each

breath, which also lowers simulated LCI values.

Model P addresses the effect of intra-regional airway heterogeneity, which is not present in

model M, and is valid only for small deviations of properties from the mean. As a result it

misses non-linear behaviour, which can become dominant at increasing perturbation magni-

tude. Additionally, the number of trees one has to simulate to compute all of the linear sensi-

tivities increases with the number of symmetrically-branching regions in model M (see Fig 2).

Thus there is a balance to be struck between the resolution of model M (i.e. how many sym-

metrically-branching lung regions are used) being sufficient to simulate realistic VH and

computational efficiency.

Other assumptions made in model M are likely to affect predicted MBW outcomes.

Most significantly, we have neglected the effects of gravity and posture on inter-regional var-

iation, as well as mechanical coupling of the lung units, which are both predicted to affect FV

and MBW indices in simulations [14, 39–41] and experiments [36, 42, 43]. The lack of

mechanical coupling means that the predicted asynchrony between lung regions may be

exaggerated compared to reality, which could indicate why the range of predicted Scond

values is notably wider than the increase measured between healthy volunteers and CF

patients [44]. Furthermore, air flow has been modelled by the Poiseuille relation in all air-

ways, meaning that the effects of inertia [45] and turbulent flow are neglected. Thus the air-

way resistance is underestimated, especially in the larger airways, meaning that LCI may

become elevated at lower constriction magnitude; however we would not expect this to be a

strong effect because as flow rate through the constricted airways falls, their resistance reverts

back to Poiseuille. Finally, we have not included the effects of gas exchange on inert gas

transport, as it is thought to be negligible (except in the case where nitrogen is used as the

MBW tracer gas [46]). The limitations imposed by these assumptions are discussed in more

detail in S1 File.
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Conclusion

We have developed a simple, computationally efficient model of gas ventilation and transport

in the lung (model M). This has been used to model the relationship between airway constric-

tions, inter-regional VH, and MBW indices.

We extended model M by using perturbation theory to measure model sensitivity to airway

geometries and acinar elastance. These give an quantitative insight into how the MBW indices

depend on the airway properties at different depths and in different lung regions. The linear

sensitivities to perturbations form the basis of model P, which accounts for the effect of weak

intra-regional heterogeneity. This method has the benefit of being computationally efficient

(rather than simulating all airways in the model explicitly) and capable of estimating the vari-

ance in model variables using a single simulation (rather than requiring numerous samples).

In future, this approach will be further developed to quantify uncertainty in more realistic

lung models that are directly informed by imaging data. The principles outlined here will

enable a systematic approach that quantifies uncertainty due to both the intrinsic complexity

of lung structure and the additional effects of obstructive lung disease or gravity.

Supporting information

S1 Table. List of parameters and values used in simulations [5, 6, 12, 47–53].

(PDF)

S2 Table. List of symbols model variables and symbols used in equations.

(PDF)

S1 Fig. Comparison of model P prediction of LCI variance with Monte Carlo (non-pertur-

bative) simulations. In both cases airway perturbations are assumed independently normally

distributed with same coefficient of variation in area and length (σa = σl) and variance in elas-

ticity is not considered σK = 0. Perturbations are only drawn for airways down to and including

Strahler order 14, with the remaining generations assumed to be perfectly symmetric (as in

model M). For the Monte Carlo prediction, the normal distribution of perturbations is trun-

cated to prevent unphysical behaviour and preserve symmetry such that � 1 < �
ðaÞ
i ; �

ðaÞ
i < 1.

Error bars indicate mean ± one s.d. of model outputs and red lines show the prediction of

mean ± one s.d. from model P. Crosses mark the results of individual realisations in the Monte

Carlo algorithm. The results are shown for the case when perturbations are applied to (a) the

healthy model M, and (b) model M with severe constrictions in the proximal airways of the

RM lobe. Good agreement for the predicted variance is observed in both cases up to σa = σl =

0.25, however in the constricted case heterogeneity tends to result in a lower mean LCI, which

is not captured by model P.

(TIF)

S2 Fig. Linear fractional change in LCI (computed for model P) due to a single perturba-

tion in area ((a) and (c)) and length ((b) and (d)) scaled by number of branches in that gen-

eration Nb. The airway generation is plotted in terms of its Strahler order (i.e. its generation

counting up from zero at the bottom of the tree). The vertical dashed line indicate the terminal

bronchiole separating the acinar (Strahler orders 0-8) and conducting (>9) generations.

(a)-(b) Healthy lung model (no constrictions) using SF6 (molecular diffusivity 0.105cm2 s-1).

(c)-(d) Healthy lung model using N2 (molecular diffusivity 0.225cm2 s-1). Coloured symbols

distinguish perturbations in the seven lobar regions. The LCI sensitivities in the conducting

region (right of the vertical dashed line) are approximately identical for area and length pertur-

bations in both cases, as this is a response to the increase in dead-space volume. For SF6 the
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sensitivities in the acinar region (left of the vertical dashed line) are inverted for length and

area perturbations, most notably around the diffusion front (approximately Strahler order 4).

Thus LCI is sensitive to geometry changes that affect diffusion in the acinus when using the

less diffusive SF6, but not N2.

(TIF)

S3 Fig. Linear sensitivities (computed for model P) to geometry perturbations in a simu-

lations with (a)-(b) 74% and (c)-(d) 81.5% constrictions in radius to the RM lobe. Scaled

sensitivities (as in S2 Fig) w.r.t. area (filled markers) and length (open markers) of the airways

are shown for the RM lobe only for fractional LCI change and absolute change in Scond.

Results were plotted for different depths of constriction: proximal (Strahler orders 16-19,

black squares), central (Strahler orders 12-15, red circles) and distal (Strahler orders 8-11,

blue diamonds). The sensitivities are scaled by the number of airways in the corresponding

Strahler order of the RM lobe. The scaled sensitivities are much larger in the constricted air-

ways, as the response is most sensitive to their resistance (note the difference in scale to S2

Fig). Since airway resistance scales as length/area2, the area sensitivities are approximately a

factor −2 of the length sensitivities. The sign of the sensitivities changes between the two

constriction strengths because they lie either side of the maximum values of LCI and Scond in

Fig 4(a) and 4(b).

(TIF)

S1 Video. Inert gas concentration on model M lung network for various constriction

strengths to the central airways of the RM lobe (% reduction in radius as shown). Vertical

direction is the distance from the mouth, while horizontal distances have no physical meaning

and are set for visibility. Time scale 1:4 (each second of video corresponds to 4 seconds of

washout).

(MP4)

S2 Video. Inert gas concentration on model M lung network with randomly distributed

constrictions of various magnitudes in the central airways (% reduction in radius as

shown). Vertical direction is the distance from the mouth, while horizontal distances have no

physical meaning and are set for visibility. Time scale 1:4 (each second of video corresponds to

4 seconds of washout).

(MP4)

S1 File. Supplementary text containing further details of the methodology.

(PDF)
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