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Abstract

Recently, a novel electroencephalogram-based brain-computer interface (EVE-BCI) using

the vibrotactile stimulus shows great potential for an alternative to other typical motor imag-

ery and visual-based ones. (i) Objective: in this review, crucial aspects of EVE-BCI are

extracted from the literature to summarize its key factors, investigate the synthetic evidence

of feasibility, and generate recommendations for further studies. (ii) Method: five major data-

bases were searched for relevant publications. Multiple key concepts of EVE-BCI, including

data collection, stimulation paradigm, vibrotactile control, EEG signal processing, and

reported performance, were derived from each eligible article. We then analyzed these con-

cepts to reach our objective. (iii) Results: (a) seventy-nine studies are eligible for inclusion;

(b) EEG data are mostly collected among healthy people with an embodiment of EEG cap in

EVE-BCI development; (c) P300 and Steady-State Somatosensory Evoked Potential are

the two most popular paradigms; (d) only locations of vibration are heavily explored by previ-

ous researchers, while other vibrating factors draw little interest. (e) temporal features of

EEG signal are usually extracted and used as the input to linear predictive models for EVE-

BCI setup; (f) subject-dependent and offline evaluations remain popular assessments of

EVE-BCI performance; (g) accuracies of EVE-BCI are significantly higher than chance lev-

els among different populations. (iv) Significance: we summarize trends and gaps in the cur-

rent EVE-BCI by identifying influential factors. A comprehensive overview of EVE-BCI can

be quickly gained by reading this review. We also provide recommendations for the EVE-

BCI design and formulate a checklist for a clear presentation of the research work. They are

useful references for researchers to develop a more sophisticated and practical EVE-BCI in

future studies.
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Introduction

Overview of brain-computer interface

Over the past decades, the brain-computer interface (BCI) or brain-machine interface (BMI)

has developed rapidly with the benefit of advances in brain science and information technol-

ogy [1]. BCI’s primary goal is to enable human and external world interactions by only using

brain signals without relying on the brain’s normal output pathways, including peripheral

nerves and muscles [2]. Many BCI systems have been proposed to offer feasible approaches to

interact with the environment for healthy people [1, 3, 4] and patients who partially or entirely

lose their motor functions [5–9]. BCI has a promising future for valuable applications with

more research focus and the latest innovation.

The BCI system is mostly constructed from consecutive processes, which normally include

signal acquisition, data processing, human intention classification, and user feedback provi-

sion. The brain activity recording is the basis of the whole series of processes and can be

achieved with either invasive or non-invasive techniques [10]. Although the invasive strategy

can supply a more precise reading on the brain, it needs surgery to embed the electrodes under

the scalp to acquire signals [11]. The side effects caused by surgery may conversely decrease

the accuracy of the data collection. On the other hand, the non-invasive BCI collects brain sig-

nals by placing sensors on or near the head [12]. Neither surgery nor any painful approaches

are needed to implant recording devices. It is much safer and easier to operate than the inva-

sive one [11]. The common non-invasive strategies contain various configurations like the

electroencephalogram (EEG) [13], functional magnetic resonance imaging (fMRI) [14],

magnetoencephalography (MEG) [15] and functional near-infrared spectroscopy (fNIRS)

[16].

Advantages of EEG and vibrotactile stimuli on BCI

EEG has become the most popular for BCI development among these brain monitoring fash-

ions due to the advantages of economic and portable characteristics [17]. It is an electrophysio-

logical recording approach that measures the brain’s electrical variation by electrodes

(electrical signal amplifiers) placed on the scalp [13]. Specifically, electrodes collect the aggre-

gation of voltage changes that can arrive at the scalp when pyramidal neurons produce cortex’s

excitatory postsynaptic potentials [18]. The data collection is more convenient and at a lower

cost than other non-invasive acquisition methods, especially fMRI [19]. Also, due to the tre-

mendous electronic propagation speed, the EEG approach can measure electrical changes with

milliseconds, which offers an excellent temporal resolution.

Among EEG-based BCIs, the motor imagery (MI) paradigm is one of the most common

options. It leads to an event-related desynchronization (ERD) which can be used to detect the

user’s intention. However, it has two major drawbacks highlighted by researchers. First,

motor/movement imagination is an active mental process. Several people may not be able to

execute this task. The other one is that ERD patterns of MI require a relatively long time (sev-

eral seconds) to appear, which limits the practical usage in real-time BCIs. A feasible strategy

to improve the information transfer rate (ITR) is to implement faster passive mental events.

Event-related potentials (EPRs), such as P300, N100, and N200, are popular choices. These

induced paradigms are mainly employed with the visual channel. The primary mechanism is

that the visual stimuli elicit distinct brain activity. The EEG signal corresponding to each activ-

ity is analyzed to recognize the user’s target [20]. Although the visual modality has benefits of

intuitiveness and easy control, the usage may be questionable in several cases. For example, the

long-time visual focus causes fatigue that affects BCI effectiveness [21]. Moreover, visual
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stimulation is not always appropriate for some users, such as patients in the latter stage of

amyotrophic lateral sclerosis (ALS), who completely loses visible fasciculations [20]. In this

regard, the tactile stimulus may be an interesting alternative. Tactile feedback that stimulates

the skin of the surface via direct contact can play the same role as the visual counterpart. The

tactile stimuli can be categorized according to the type of sensations: vibration, contact, pres-

sure, temperature, curvature, texture, softness/hardness, and friction [22]. Our review focuses

on the BCI using external vibrations, which is more common in the BCI community than

other tactile feelings [23]. The vibrotactile sensation performs several edges related to:

◆ easy and precise configuration, where the frequency and amplitude of the vibration can be

conveniently and easily customized thanks to the mature mechanical engineering;

◆ distinct pattern, where people can easily detect the difference between vibrating patterns.

For example, the difference between 20 and 35 Hz vibration is well-distinguished by

humans [24];

◆ widespread usage, although patients with paralysis or ALS may eventually lose motor and

visual ability, their somatosensory systems probably remain functioning.

◆ confidentiality, where vibration can be performed by tactors that are covered by clothes.

As a combination of EEG technique and vibrotactile evoked stimulus, EVE-BCI inherits

both their advantages. Its components are generally illustrated in Fig 1 (top). Analogous to

other evoked BCI systems, external vibrations are first applied to users to elicit distinct brain

waves that EEG techniques can capture. Then, the signals are processed by various techniques

for feature extraction. Finally, a classifier recognizes the user’s intention as an execution com-

mand to the outside world. A concrete example of EVE-BCI using the P300 paradigm is

Fig 1. Illustration of EVE-BCI. Overall structure (top) and an example of EVE-BCI using P300 paradigm (down).

https://doi.org/10.1371/journal.pone.0269001.g001
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shown in Fig 1 (bottom). Two vibrators are attached to the subject’s left and right index fin-

gers. The subject is asked to pay attention to either finger. Let’s assume that he/she focuses on

the vibration on the left (target). Left and right tactors keep vibrating in random designated

order (the right stimulator vibrates four times as many as the left one at the training phase; two

vibrators have the same vibration times at the evaluation phase). An EEG cap records the sub-

ject’s corresponding brain signals while tactors are vibrating. These signals contain distinct

patterns and can be converted into feature vectors by a signal processing method called com-

mon spatial pattern (CSP). The logistic regression algorithm predicts the user’s focus based on

mathematical calculations. It is noticed that there are many settings (e.g., locations of vibrator,

signal processing method, and predictive algorithm) in such a simple EVE-BCI. Other choices

may contribute to a better design. For example, we can apply the vibrators to wrists instead of

fingers. Interesting variables that may advance the performance of EVE-BCI are significant

parts of our review.

Current challenges of EVE-BCI

Although EVE-BCI has such cutting edges mentioned in the previous subsection, it still has

some limitations. The EEG, in its nature, contains a few challenges that restrict its effective-

ness. First, EEG has a low Signal-to-Noise Ratio (SNR) since the brain waves are usually influ-

enced by the various origins of environmental, physiological, and event-related noise named

"artifact" [25, 26]. Second, EEG is a temporal dynamic signal; its characteristic changes across

time [27]. In this case, the BCI system generated/trained by the data in a specific period may

not adapt to the same user at a different time, raising a significant issue for the long-time EEG

device that might require frequent updates. At last, subject dependence is another issue of EEG

[28]. This phenomenon appears because of the psychological and physiological variations

between people, which results in the difference of voltage magnitude in EEG signals across

individuals that significantly affect the BCI system’s generality. This individual independence

is still a unique challenge in the EEG-based BCI area.

In addition to EEG restrictions, limitations in vibrotactile sensory should also be reminded.

The annoyance is one of the drawbacks in applying the vibration on BCI. As the brain event

requires to be evoked by constant vibrations during BCI usage, it is easy to result in both physi-

cally and mentally uncomfortable feelings. An individual may feel hard to stay focused on the

long-time vibration, which dramatically decreases BCI’s effectiveness. Another limitation is

the inter-subject variability of the vibration frequency. Individuals have various sensitivities on

the vibration frequency [24, 29]. For example, someone has the most potent perception on 33

Hz vibration, while another one feels 22 Hz being strongly precepted instead. Testing the opti-

mal vibration frequency for each person costs effort and time, and solutions are not always

practical.

Objectives of the review

Previous research efforts have been devoted to addressing the limitations of EVE-BCI. Sophis-

ticate pre-processing strategies [30, 31], feature extraction approaches [24, 32, 33], and sub-

ject-independent classifier [34] were proposed to eliminate the adverse effects of the EEG

signal. In the meantime, Shu, Yao [35] tested the difference in EEG patterns between the idle

and evoked state and aimed to develop an asynchronous paradigm by using vibrotactile stimu-

lus. An asynchronous BCI enables an individual to use BCI freely without any time slots. It can

effectively decrease the exposure of vibration time towards clients and increase the user experi-

ence. Also, previous studies tested various vibration characteristics to promote the BCI perfor-

mance. For instance, multiple positions of vibration such as waist [34, 36, 37], finger [3, 38–
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40], and wrist [35, 41] were applied to establish the EVE-BCI. Different values of stimulus

onset asynchrony (SOA), also called the total interval of on-time and off-time, were measured

in experiments for the optimum BCI system. A fast Fourier transform (FFT) algorithm was

applied to detect the human brain’s dominant frequency for vibration frequency screening [3,

42, 43]. The screening is used to recognize the individual most sensory frequency. Despite

numerous studies focused on EVE-BCI and prove its feasibility, they are presented in various

ways and have multiple levels of evidence. No summarization nor synthesis was made to con-

clude innovations concerning the EVE-BCI. In response to this gap, the present study system-

atically reviews previous publications about EVE-BCI and aims to offer a comprehensive

overview of the current system. This review covers the development trends and the state-of-art

in the EVE-BCI by summarizing enormous relevant published articles. We first introduce the

general information about the source of publications. The selected studies are then reviewed to

identify the following critical concepts for EVE-BCI: data collection, stimulation paradigm,

vibrotactile control, EEG signal processing, and reported performance. Lastly, we perform a

statistical analysis to explore the feasibility of EVE-BCI across different populations.

Materials and methods

The systematic review is carried out according to the Reporting Items for Systematic Review

and Meta-Analysis (PRISMA) 2020 checklist (see S1 Checklist). The protocol was registered in

International Prospective Register of Systematic Reviews (PROSPERO) in April 2021

(CRD42021226760).

Search strategy and selection

An in-depth search was carried out on Pubmed (Medline), Embase, IEEE Xplore, Web of Sci-

ence, and PsycINFO. The concept map and the searching terms used are shown in Table 1.

Pubmed and IEEE Xplore are indexed by MeSH terms, Embase by Emtree terms, and Psy-

cINFO by Thesaurus terms. Free text search was conducted on all five databases. The searching

queries specified for each database are displayed in S1 Appendix. They are formulated based

on combinations of three concepts: electroencephalography, brain-computer interface, and

vibration.

The studies selected in the review were based on the following criteria: (i) Studies were pub-

lished between 1st January 2000 to 5th April 2022; (ii) Studies were full-text published in

English; (iii) Studies were original research; (iv) Studies were only carried out with

Table 1. Concept map.

Concept MeSH Emtree Thesaurus Free text

Electroencephalography Electroencephalography Electroencephalography Electroencephalography electroencephalography, electroencephalographies, EEG,

eeg, brain electrical activity, electric encephalogram,

electro encephalogram, electroencephalogram, brain

wave, biofeedback, neurofeedback, neurobiofeedback

Brain-computer

interface

Brain-Computer

Interfaces

Noninvasive brain-

Computer interface

Nonea BCI, Brain-machine interface, Brain-machine interface,

direct neural interface, noninvasive brain-computer

interface, noninvasive brain computer interface

Vibration Vibration Vibration Vibration vibration, vibrational, vibrotactile, vibrations, vibrate,

vibrated, vibrates, vibrating, vibrator, vibrators, vibration

sense, tactual, sense of touch, touch stimulus, tactility,

tactile stimulation, tactile, touch, haptic

aNone: No indexed term for the concept

https://doi.org/10.1371/journal.pone.0269001.t001
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experiments related to humans; (v) Studies conducted one or more experiments with EEG

based non-invasive BCI with only evoked by vibrotactile stimuli.

The searching strategy returned 968 articles with two papers added to the list from the bibli-

ography review (a total of 970). Thirteen articles were first filtered out by the criteria of the

publication date and full text of English. The remaining 957 articles were duplicates and prop-

erly removed via an approach developed by Bramer, Giustini [44] and double-checked by

manual inspection. After the duplicate removal, by reading the title and abstract, 443 addi-

tional papers were excluded. Following that, potential eligible studies were assessed in full

length. We only included the paper with vibrotactile modality experimental design but

excluded the multimodal (even one of them is vibrotactile sensation) or imagery vibrotactile

ones. This resulted in a final list of 79 papers in our review. Details of the process are described

in the flowchart (Fig 2).

Data extraction

For research articles finally included in the review, we extracted the following data systemati-

cally from each study: (1) sources of studies (including the publication type, publication time,

and first author’s location); (2) data collection (i.e., target subject and EEG acquisition); (3)

stimulation paradigm; (4) vibrotactile control (i.e., frequency and intensity of vibrations, SOA,

location of the vibration, and the number of vibrations); (5) EEG signal processing (i.e., pre-

processing, feature engineering, and classification); (6) reported performance (i.e., perfor-

mance metrics and evaluation setting).

Fig 2. Flowchart of the selection process.

https://doi.org/10.1371/journal.pone.0269001.g002
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Statistical analysis

The EVE-BCI is drawing attention from the BCI research community. However, compared to

the visual-based and motor imagery BCI, its feasibility is not clear. Hence, one of our review’s

primary aims is to figure out the overall performance of EVE-BCIs on prediction to the user’s

intention.

To investigate the EVE-BCI feasibility, non-parametric statistical tests were operated to

compare the accuracy obtained from publications to the corresponding chance levels. To

make the analyses more meaningful, we only included a specific subset of articles:

◆We selected the study that reports the exact number of the accuracy in its texts or tables.

Studies that have ambiguous classification accuracies shown on figures without exact num-

bers were excluded.

◆ Several studies contained both offline and online evaluations. The online evaluation perfor-

mance with the highest corrected accuracy [45] is used as the representative for this study

since the online evaluation is more realistic than the offline one.

◆ If the study only contains either multiple offline or online evaluations, the one returned the

highest corrected accuracy was used.

Three Wilcoxon signed-rank tests [46] were performed to see the difference between accu-

racies and chance levels of EVE-BCI across healthy subjects, patients, and the overall popula-

tion. For the overall population analysis, the performances of EVE-BCI for healthy subjects

and patients are both considered. Several studies may contain different EVE-BCI experiments

for healthy subjects and patients, respectively. They were counted two times (one for healthy

and the other for patients) in the statistical test for the overall population.

Results

Sources of studies

Our search approach returned 37 journal articles, 39 conference/workshop papers, and 3 book

chapters eligible for our inclusion criteria [1, 3, 4, 8, 9, 24, 30–43, 47–105]. These papers were

published from 2006 to 2021. Although our search filter includes papers since 2000, no papers

were found on this topic before 2006. To the best of our knowledge, the EVE-BCI has not been

investigated until Muller developed the first steady-state somatosensory evoked potential

(SSSEP) BCI in 2006. Since then, research interests in this field have increased progressively

(Fig 3). The most significant number (N = 12) of relevant articles was published in 2018. We

also identified these studies’ geographical distribution (Fig 4) by looking at the first author’s

affiliation location. Countries in wealthy regions, including North America, western Europe,

and eastern Asia, made the most contributions to this field. We also found that the greatest

number of publications were from China (both N = 15).

Data collection

Target subject. EVE-BCIs have been applied to various types of subjects. The BCI system

is one of the most promising and popular techniques to assist communication and movement

for disabled people. Surprisingly, only around one-fifth of EVE-BCI studies were carried out

for patients. These patients suffered from multiple levels of motor functioning loses caused by

different diseases including the unresponsive wakefulness syndrome (UWS) [8, 79], disorder

of consciousness (DOC) [9, 49, 61, 63, 70], amyotrophic lateral sclerosis (ALS) [54, 57, 87, 89,

103], locked-in syndrome (LIS) [58, 63, 70, 78], stroke [94], and minimally conscious state
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(MCS) [86]. On the other hand, most studies (83.54% of cases) alternatively focused on healthy

subjects covering adults of all ages, including young people, the middle-aged, and elders. A few

studies (5.06%), however, did not report the characteristics of subjects. It is noted that the sum

of the above percentage is over 100% because several papers concurrently investigate two or

over two types of subjects. A few of them compared the performance of EVE-BCI between

healthy controls and patients but returned a contradictory result. A study indicated no differ-

ence in the effectiveness of EVE-BCI between these two groups [54], while other two publica-

tions [58, 78] point out that EVE-BCI worked better among healthy people. The number of

papers regarding various kinds of participants is shown in Table 2.

Fig 3. Publication year of articles.

https://doi.org/10.1371/journal.pone.0269001.g003

Fig 4. Geographical distribution of articles.

https://doi.org/10.1371/journal.pone.0269001.g004
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Studies also differed in terms of the number of subjects, which determines the reliability of

the result. Given subjects recruited in the study are representatives of the population, a larger

sample size offers a more reliable outcome with greater precision and estimated power. More

than half of the studies were in the range of 2 to 10 (N = 43, 54.43%). Around 30.14% (N = 23)

of the articles instead recruited a larger pool of participants, e.g., 11 to 20. Studies involving the

above 20 participants contributed 7.59% of cases. The largest sample size among selected

papers was 52, with forty DOC patients and twelve healthy people [49]. Only a tiny proportion

represented the finding of a case study involving a single subject only, accounting for 5.06% of

cases. Nevertheless, three papers (3.80%) did not describe the number of subjects enrolled in

their experiments.

EEG acquisition. Most EEG acquisition devices used in reviewed publications were in the

form of a cap, which assists in the electrode placement on the scalp. It ensures that electrodes

are positioned accurately and have enough contact with the head. The cap style was used in all

our included articles. It is the most popular style to arrange electrodes in BCI development

[106]. It is relatively comfortable to wear for a short period and sufficient for most experimen-

tal BCI designs [106, 107]. However, to fix the electrode precisely, the cap is usually very tight,

so it often causes headaches with long-term usage [106]. In response to this gap, Blum, Emkes

[64] alternatively applied a device called fEEGrid made of pre-attached adhesive foam stickers

fitted on the forehead in their EVE-BCI experiments. The electrode grids were affixed directly

on the skin without squeeze pressures from the cap. It was regarded to be more comfortable

and designated for long-term EEG collection. However, the classification performance of

EVE-BCI based on the data collected from fEEGrid (AUC = 0.66) was worse than that from

EEG cap (AUC = 0.86), although Blum, Emkes [64] did not report a significant difference.

The spatial densities of EEG devices used in reviewed studies are comparably consistent.

No publications have been discovered to use a high-density EEG device (128 channels or

over). Seventy-five out of 79 published EVE-BCIs were developed from EEG signals recorded

from 64 or fewer channels. The remaining four [82, 83, 93, 99] did not report their EEG equip-

ment’s spatial density. Although EEG devices’ spatial characteristics were harmonious, chan-

nels eventually selected for the actual analysis show significant variations (Fig 5). The number

of selected channels was often arbitrarily defined in publications. It was not easy to summarize

the exact reasons for their choices. Researchers may be limited by the EEG device available to

Table 2. Type of targeted subject in EVE-BCI.

Subject type Paper number

Healthy 66

Unresponsive wakefulness syndrome (UWS) 2

Disorder of consciousness (DOC) 6

Amyotrophic Lateral Sclerosis (ALS) 5

Locked-in syndrome (LIS) 4

Stroke 1

Minimally conscious state (MCS). 1

n/aa 4

Two-typeb 8

Three-typec 1

a “n/a” refers to the paper that did not report the type of subject.
b “Two-type” refers to the paper that recruited two types of subjects.
c “Three-type” refers to the paper that recruited three types of subjects.

https://doi.org/10.1371/journal.pone.0269001.t002
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themselves. Articles in the review suggest that the most frequently used number of channels

ranged from 3 to 8. Among these channels, C3, Cz and C4 draw significant interest from

researchers. They cover the primary sensorimotor cortex sensitive to somatosensory stimula-

tion and record corresponding neural responses. The first EVE-BCI was developed using EEG

data collected in this region. Since then, over 92% (73 out of 79) of studies used the data from

C3, Cz and C4 in their BCI experiments. The rest, only a tiny portion, either only used data

from other channels or did not report any relevant details. The patterns of brain events were

also visualized in reviewed articles. Twenty-eight reviewed articles selected specific channels,

instead of all, for the visualization. More than 85% of these publications chose at least either

one of the C3, Cz and C4 channels to present the patterns. Those results suggest the intensive

interest of the primary sensorimotor cortex region in the EVE-BCI development.

Stimulation paradigm

The present review focuses on the BCI utilizing the brain signal elicited by the external vibrotac-

tile stimulus. One of the most frequent paradigms employed was event-related potential (ERP).

The BCIs using EPRs can be performed without prior training and do not present the “BCI illiter-

acy” issue. It is a proposed aspect wherein users fail to obtain a certain level of performance in

using a BCI during a standard training process [108]. Another major strength of ERP deployment

is its reproducibility. The ERP can be evoked stably across different people and different periods

[109]. P300 was the most commonly used ERP and performed in 46 out of 79 among our

reviewed studies. To our best knowledge, the first ERP-based EVE-BCI using the P300 paradigm

was established by Aloise, Lasorsa [74] in 2007. Their study compared three modalities (e.g.,

visual, audio, and vibrotactile stimulus) for P300-based BCI. Although the vibrotactile-based one

had the worst performance, it still achieved an average of 68% accuracy, significantly higher than

the chance level (12.5%). This finding proved the feasibility of the vibrotactile-based P300 para-

digm. Other ERP paradigms (Table 3) including N100 [60], N200 [54, 60] and error-related

potential [48, 53, 62] were also performed in the EVE-BCI. However, only one, two, and three

studies investigated them, respectively. In [60], Thurlings et al. compared the performance of

EVE-BCI using different ERP paradigms. No significant difference in performance was found

when using the features of N100, N200, P300, or a combination of them.

Another popular vibrotactile paradigm in BCIs was SSSEP. It composes a resonant steady-

state component of brain signals elicited by successive vibration within 17–35 Hz frequency

Fig 5. Number of channels used in EVE-BCI development.

https://doi.org/10.1371/journal.pone.0269001.g005
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[83]. As stated by Muller [85], who proposed the first SSSEP-based BCI (to our best knowledge),

the advantage of this approach was the independence from the visual modality channel [85]. It

works as an effective alternative to visual-based P300 or steady-state visual evoked potential

(SSVEP) for those with visual impairments. In Muller et al.’s study, two vibrotactile stimuli with

different frequencies were applied on both index fingers (frequency of right finger minus fre-

quency of left finger = 5 Hz). The user was asked to focus on one vibration at each time. By ana-

lysing the corresponding brain wave elicited by each vibration, the BCI system classified the

user’s attention on the left or right. More than one-third (n = 29, 36.71% of cases) of our reviewed

EVE-BCIs depended on the SSSEP. In addition to SSSEP in a low-frequency range of 17 to 35

Hz, Chen, Fu [3] proposed a novel paradigm called vibrotactile induced Sensory-Motor Rhythms

(VT-SMR). The usual Sensory-Motor Rhythm (SMR) refers to the oscillatory event in the

somatosensory and motor areas of the brain. It usually appears when performing a motor execu-

tion or motor imagery. Chen, Fu [3] tested whether the SMR could also be induced by vibrotac-

tile stimulation without any actual or imagery motor tasks. More specifically, VT-SMR is

regarded as an oscillatory idle of synchronized electric brain events aroused by constant vibrotac-

tile stimuli. Unlike the SSSEP, where the vibration frequency is the frequency of interest in EEG,

the vibration frequency deployed in VT-SMR was not limited to the effective bandwidth of EEG.

Thus, the frequency band of EEG analysed in their study could exceed the vibration frequency.

Instead of exhibiting only one popular paradigm, either P300 ERP or SSSEP, two reviewed

studies [30, 31] used two paradigms simultaneously. They both introduced a hybrid BCI,

which utilized vibrotactile stimulus to evoke both SSSEP and transient ERP (i.e., P300) at the

same time. However, they demonstrated opposite findings. Pokorny, Breitwieser [31] did not

report a significant difference in the BCI classification when using the combined features com-

pared to using features of a single paradigm. Alternatively, in [30], the hybrid classifier had a

significantly higher classification accuracy than either SSSEP-based or P300-based one.

Vibrotactile control

The vibrotactile control plays a significant role in the EVE-BCI establishment. The review

summarizes the vibration design in the following four aspects: frequency and intensity of

vibrations, SOA, location of vibrations, and number of vibrations.

Frequency and intensity of vibrations. As stated in the Introduction section, the proper

detection for individual sensitivity to the vibration frequency remains a significant challenge

Table 3. Types of event-related potential in EVE-BCI.

Paradigm Description

P300 The P300 is a positive deflection in voltage of EEG signal with a latency of 300ms after an

unexpected stimulus. It is often elicited by the oddball paradigm and occurs on the parietal

lobe.

N100 The N100 refers to an immense, negative-going evoked potential that occurs around 100

milliseconds after presenting a stimulus. It can be detected by electroencephalography and

distributed mainly at the fronto-central region of the scalp.

N200 The N200 is also an event-related potential measured by EEG. It is a negative-going brain

wave that peaks at approximately 200ms after a stimulus’s onset and is recognized at the

scalp’s anterior region.

Error-related

potential

The error-related potential is elicited by the perception of an error and measured through

EEG. It consists of two components: error-related negativity (Ne) and error positivity (Pe).

The Ne is a negative potential peaking at 50-100ms post-stimulus. The Pe is a positive

potential following the occurrence of Ne. The Pe can be additionally categorized into a

frontocentral and a centroparietal component. The frontocentral one arises immediately after

the Ne, and the centroparietal one is at peaking around 200–400ms after the error.

https://doi.org/10.1371/journal.pone.0269001.t003
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in EVE-BCI. A precise detection can theoretically enhance the performance of the BCI [31,

40]. However, in our reviewed articles, only around 18% of cases implement vibration fre-

quency screening for individuals before the formal EEG collection. All these cases are in the

SSSEP paradigm where brain signals’ oscillations resonate with the vibration frequency, so

observing the individual most robust perception of vibration is a vital step and necessary to be

executed. Two screening approaches were used. (1) Task-based method [24, 31, 85]: vibrations

in a specific range of frequencies (e.g., 13-35Hz) were subsequently applied to subjects with an

increment of 2 Hz. During the vibration, participants were required to solve a mathematical

equation and ignore the vibration. The EEG collected in the task period was transformed

through FFT into frequency-domain data. The frequency with the highest amplitude was con-

sidered to evoke the most distinct EEG pattern and be the resonance-like (optimal) frequency.

(2) Response-time-based method [97]: vibrations in various frequencies were also performed

on subjects. Instead of addressing the equation, they needed to press the button as quick as

possible once they felt the vibration. The frequency that led to the largest response time varia-

tion was regarded as the individual optimal one. The remaining studies either did not describe

relevant details or solely applied the fixed frequency to all subjects. Several of them [30, 32, 40,

41, 52, 56, 59, 65] were even in the SSSEP design. No initial frequency screening was found in

ERP-based EVE-BCIs. Among these studies, the selection of vibration frequency was usually

in an arbitrary way without clear rationalities. The applied vibration usually fell at 20 to 40 Hz

or above 150 Hz. It was also worth emphasizing that no investigation into the effect of vibra-

tion frequency (independent variable) on the performance of the EVE-BCI was found among

returned publications.

In addition to the frequency, the intensity of vibrators is also explored in this review. Only

around 16% (n = 13) of articles reported their choices of intensity ranging from 0.6–4.0 G.

They normally stated that participants have explicit feelings about the vibration, but no special

or sophisticated designs were applied. Furthermore, most reviewed publications do not pres-

ent any details about the vibrotactile intensity.

Stimulus onset asynchrony (SOA). Analogous to the vibration frequency, only few publi-

cations (two cases) [57, 91] explored how the SOA affected the performance of EVE-BCI. In

[91], vibrations were applied to multiple positions around the waist. Oddball context [110] was

used to evoke P300 ERPs. The optimal on-time and off-time were found at around 188ms and

63-188ms, respectively, to reach the highest bitrate (bits/min). This setting was similar to that

in many visual P300-based BCIs. Additionally, Kaufmann, Holz [57] proposed a case study to

investigate a tactile BCI communication system with different SOAs. The offline classification

achieves superior accuracy in the condition of short on-time (200ms) and long off-time

(1000ms). In other publications, the SOA was usually pre-defined and fixed in the EVE-BCI

experiments. The ERP paradigms, including P300, N100, N200, and error-related potential,

tended to have shorter SOAs. The stimulus on-times and off-times respectively range from 100

to 600ms and from 0 to 1400ms across different articles. These short-time designs are because

ERPs are elicited by transient stimulus (sudden feeling). On the contract, other paradigms

(SSSEP and vibrotactile evoked SMR) require a relatively long-time perception [83, 94]. The

mechanism behind these paradigms is to detect the resonant oscillation of the brain signals

generated by the vibration, so a longer SOA can result in a more obvious resonant activity pat-

tern that benefits classification performance. The on-time and off-time (e.g., 2–11.5s and

2–9.5s) were operated in the second level rather than the millisecond one.

The experiments typically contain many repetitive trials in data collection and evaluation

for the BCI system. If SOA were always the same, a subject can usually get used to it and pre-

dict when the stimulus will occur. This phenomenon can significantly degrade the reliability of

data. An intelligent skill was performed to prevent the SOA adaption. More than 20% (N = 16)
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of papers used an off-time randomly selected from an interval, such as 4.5–6.5s [35, 72], to

increase prediction difficulty. No paper was found to apply the random on-time stimulus to

decrease the adaptive effect.

Location of the vibration. Unlike the vibration frequency or the SOA, the location of

vibration draws a lot of interest from researchers in the EVE-BCI area. Many locations

throughout the body including fingers [30, 31, 50, 95], wrist [8, 9], back [37, 48, 58], foot [43,

61], ankle [1, 63], shoulder [76, 88], waist [37, 60, 62], arm [34, 57], leg [34, 88], cheek [1], neck

[66, 86], chest [73], elbow [76, 92], hand palms [89], scapula [96] and knee [103] were explored

in publications. More than 1/3 (N = 30) of articles carried out the experiments with tactors

attached in multiple parts of the body such as the wrist-back [78, 79, 87], finger-toe [24, 42],

arm-waist-leg [34, 88]. Multiple-finger attachment or multiple positions on the waist, etc.,

were not considered as the multiple-part attachment. Other studies only performed tactors on

a single part of the body, except one [71] did not report its vibrating position. The most popu-

lar spots for the tactor were fingers that account for 30 cases. They were estimated as the most

delicate area of sensation [31, 95, 111], where the thumb and index fingers were used in most

cases. Following fingers, wrists (N = 25), and waist (N = 14) were also common attempts due

to their advantages of both sensitivity and confidentiality (under clothes). Other positions

mentioned above, however, respectively constituted less than 5 cases and were not common

ones for EVE-BCI development.

Number of vibrations. The determination of the vibration number is also an essential

component of vibrotactile control. It presented a significant dissimilarity among studies

(Table 4). The two-vibration design was built in nearly half of returned studies. Studies with a

great number of vibrations (e.g., 6 and 8) were all in the design of the P300 paradigm, where

the ERP was evoked by the deviant stimulus among many standard stimuli. Additionally, it is

critical to understand that the number of the vibration is not necessarily the same as the num-

ber of targets (classes). For example, in a P300 based EVE-BCI developed by [87], eight vibra-

tions on different positions were applied. Seven of them were standard vibrations, while only

one was deviant. The subject was asked to focus on the deviant vibration and ignore the rest.

The EVE-BCI correspondingly makes the binary classification (2 classes). In this condition,

the number of stimuli was larger than the number of targets. This phenomenon always

occurred in the ERP-based design. On the contract, the number of stimuli was smaller than

the number of targets in several SSSEP designs. For instance, Yao, Chen [72] proposed an

EVE-BCI with vibrations on both wrists. In different experimental trials, the subject needed to

either concentrate on neither, left, right, or both wrists, resulting in a four-class BCI system

that only contained two vibrations. These two scenarios (either larger or smaller) were com-

mon in our review studies accounting for 32 cases. The number of vibrations and the number

of targets were consistent in the rest of the 47 articles.

EEG signal processing

The core goal of the EVE-BCI system is to detect users’ intentions through analyzing EEG sig-

nals. The analysis framework usually comprises pre-processing, feature engineering, and

Table 4. Number of vibrations.

Vibration number 1 2 3 4 5 6 7 8 n/aa

Paper number 2 38 22 8 8 11 1 4 1

a “n/a” refers to the paper that did not report the number of vibrations.

https://doi.org/10.1371/journal.pone.0269001.t004
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classification in BCI development. Hence, our review investigates these three steps and sum-

marizes implementations from previous publications.

Pre-processing. As EEG has low SNR, pre-processing is usually a preferable step before

extracting patterns from EEG. Pre-processing aims to reduce the noise but keep useful infor-

mation as much as possible. Many pre-processing techniques (Table 5), including bandpass fil-

tering, artifact removal, baseline correction, down-sampling, detrend, logarithm transform,

and spatially whiten, were applied in articles returned from the database. We did not find any

standard pipelines for the implementation of these techniques. Different combinations were

operated in various studies. For example, in [63], no pre-processing was applied to EEG data.

Similarly, Nam, Cichocki [32] only used a 0.5 to 40 Hz bandpass filter as the whole pre-pro-

cessing step. On the contract, a relatively complex pipeline was performed in Annen, Mertel

[49]’s study. The 0.01–30 Hz bandpass filter was firstly applied, followed by an artifact and out-

lier removal where trials were rejected if any data points exceeded the threshold of ±100μV.

Then, data were further baseline corrected and down-sampled using a sliding-window average

approach. Although different studies had their own choice of techniques, most research real-

ized the importance of the pre-processing step. Only six studies neither used any pre-process-

ing methods nor showed the relevant information.

The bandpass filter was the favourite strategy in the pre-processing stage. It is one of the

most common signal processing methods and can be automatically done in many EEG han-

dling software. It effectively eliminates the data out of the interesting bandwidth. The 0.1–30

Hz bandpass filtering drew the greatest attention in EVE-BCI [4, 34, 55, 58, 78, 87, 96]. Fol-

lowed by the bandpass filter, down-sampling was the second prior option, which may be due

to the high sample rate of EEG collection devices. The factoring [78, 92], window average [60],

and window sum [50] were popular ways to reduce samples of the high dimension EEG data

in articles. The artifact removal was also frequently operated. It was used to take away certain

kinds of noise, including ocular and muscular artifacts. The removal of artifacts is a key factor

achieve high EEG decoding performance [112]. Generally, both automatic and manual ways

were used. One of the automatic strategies was to define thresholds, such as ±70μV [66, 89],

±90μV [30], or ±100μV [39, 61, 70], for artifact detection. The EEG trials which contained

data points out of the threshold were regarded as bad ones and abandoned. Additionally, inde-

pendent component analysis (ICA) running by computer was also used to divide ocular com-

ponents from original EEG signals [40, 59]. Nevertheless, manual inspection was considered a

more reliable way to remove artifacts [56, 81]. It is time-consuming and heavily relies on the

knowledge of the human expert. Lehne, Ihme [62] used a hybrid method to overcome this

issue. They successively operated ICA and visual inspection. Major flawed trials were first

rejected by ICA and subsequently by experts. This method achieved a good performance of

artifact removal and considerably reduced the human workload.

Table 5. Types of pre-processing strategies in EVE-BCI.

Pre-processing strategy Paper number

Bandpass filtering 68

Down-sampling 37

Artifact removal 27

Baseline correction 17

Logarithm transform 4

Detrend 4

Spatial whitening 1

https://doi.org/10.1371/journal.pone.0269001.t005
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Feature engineering. In the EEG processing framework, feature engineering is a compel-

ling stage for dealing with high-dimension data. It starts from a long sequence of EEG data

and derives informative and non-redundant patterns. It can significantly reduce dimensional-

ity, save computational time, and avoid the overfitting issue. Features in the development of

the EVE-BCI were usually handcrafted ones extracted using mathematical approaches.

EEG features comprise spatiality, frequency, and temporal. EEG signals’ spatiality is most

frequently determined by variants of CSP method [41]. It separates multi-channel EEG signals

into subcomponents that have maximum distance invariance between two classes [113]. This

strategy enhances the spatial dissimilarity between the target and non-target EEG signals. In

addition to the standard CSP, two modified CSP algorithms, including filter bank common

spatial filtering (FBCSP) [33] and sub-band common spatial filtering (SBCSP) [40], were also

used. They both apply multiple bandpass filters before the CSP operation, distinguishing the

spatial difference in each specific band. For frequency features, the fast Fourier transform was

popularly adopted. For instance, in [24, 43, 90], it converted the time-domain into frequency-

domain representations. Frequencies with the largest amplitudes and amplitudes were

extracted as features for the classifier. Furthermore, the frequency-domain information

regarding the power spectral density (PSD) was also used as a feature in [56, 65]. The average

band power accumulated by the PSD in the frequency band of 16 to 31 Hz was assigned to the

left-right finger SSSEP pattern recognition [56]. On the other hand, raw EEG data itself is the

temporal-domain representation. After down-sampling in the pre-processing step, many

reviewed articles used them directly as the feature input for the classification. The principal

component analysis (PCA) was the technique found to extract further temporal information

that contained the highest factor loading [59, 64, 67]. The distribution of features used in pub-

lications is shown in Fig 6.

Most EVE-BCI systems (N = 68, 86.08%) only employed a single type of feature (i.e., spati-

ality, frequency, or temporal). Others (N = 11, 13.92%) preferred to use a combination of two

features. For instance, Nam, Koo [82] used CSP features and the largest amplitude in the

Fig 6. Types of features used in EVE-BCI development.

https://doi.org/10.1371/journal.pone.0269001.g006
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frequency domain as the input for the classification. Yet, no combination of using all three

types of the feature was found in existing EVE-BCIs.

Classification. In general, EVE-BCI in reviewed articles focused on classifying the user’s

intention using distinct patterns of certain brain events. Classification is a procedure of estab-

lishing a model that can make accurate predictions to unlabelled/unseen samples in a set of

categories [114, 115]. Current research efforts in EVE-BCI heavily rely on traditional classifica-

tion algorithms (Fig 7). It is worth knowing that Discriminant Analysis (DA) remains the pre-

ferred method, where the Linear Discriminant Analysis (LDA) is the most popular form in

our reviewed publications. The LDA is based on Fisher’s linear discriminant, which mathe-

matically discovers a linear combination of features that maximally divide the data into two or

more classes [116]. It generates linear boundaries and is regarded as a simple approach.

Despite its simplicity, LDA often brought out robust and acceptable classification results for

previous EVE-BCIs. Depending on various parameter settings, other deformed DAs such as

Bayesian Linear Discriminant Analysis (BLDA) [1, 4, 36, 75], Shrinkage LDA [30, 31, 38, 55,

86], Regularized Discriminant Analysis (RDA)) [24, 33, 42, 43, 51, 62, 99], and step-wise Lin-

ear Discriminant Analysis (SWLDA) [74, 88, 91, 92, 98] were also used. In terms of popularity,

followed by the DA, another robust supervised learning model, linear Support Vector Machine

(linear SVM), was also implemented in [32, 33, 73, 82, 84, 89, 95]. The SVM mechanism is also

simple: the algorithm generates a line or a hyperplane that has the largest distance to the sup-

port vectors (data points) in different categories [117]. It statistically figures out the ‘best’ mar-

gin to separate classes, which reduces the misclassification error on the prediction. It generally

has a comparable performance with DA in practice.

In addition to the linear separation function, probability-based methods (Logistic Regres-

sion (LR) [118] and Gaussian mixture model (GMM) [119]) were also implemented in our

reviewed articles. They both estimate the probability of data points that belong to a particular

category. The LR is used to deal with binary classification, where the outcome variable only

has two levels, and the probability distribution is pre-defined by the sigmoid function [120].

On the other hand, GMM is workable for multi-label classification. The observation in an

overall population estimates its probability distribution and make the label prediction. They

both gained considerable attention from the EVE-BCI community. Moreover, the simple

threshold method was used in the SSSEP-based EVE-BCI. It is the simplest classification

Fig 7. Types of classifiers used in EVE-BCI development. “n/a” refers to the paper did not report the types of

classifiers.

https://doi.org/10.1371/journal.pone.0269001.g007
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method where pre-defined boundaries are built without any learning from the data. For

instance, Han, Liu [65] proposed an approach where the dominant frequency was first

extracted from the raw EEG signal using a modified FFT technique. After the extraction, the

prediction was made by comparing its dominant frequency to 17, 21, and 25 Hz. The simple

design is the significant advantage of this technique. However, it requires sophisticated pre-

processing and feature extraction beforehand. Opposite to the simple threshold method, a

deep learning (DL) approach has a far more complicated model architecture but is usually

accompanied by plain pre-processing and feature generation. Thanks to the prosperity of arti-

ficial intelligence, deep learning has been a successful model in BCI field. Nevertheless, in the

specific EVE-BCI sector that we reviewed, only two publications [34, 104] utilized a DL strat-

egy. The two-dimensional EEG input (number of samples × number of channels) was fed into

DL layers for learning and prediction.

Reported performance

Performance metrics. The EVE-BCI is technically an EEG pattern recognition system.

To be expected, most studies included performances obtained from confusion matrices, such

as accuracy, true-positive rate (TPR), false-positive rate (FPR), the area under the ROC curve

(AUC), and kappa value (Fig 8). In the P300 diagram, as the ratio of non-target and target was

usually high (above 3:1), the kappa value and area under the ROC curve (AUC) that are more

robust to the imbalanced dataset were preferable [33, 67]. In addition to maintaining good

classification accuracy, classification speeding is an essential consideration for the BCI system.

Thus, Information Transfer Rate (ITR) [1], which caters to both classification accuracy and

speed, was also a popular measure for EVE-BCI. It is defined as the amount of information

transferred per unit of time and is usually calculated in bit/mins. However, two collected publi-

cations [43, 99] do not use any measures as mentioned earlier. They probably were published

by one research group in different stages of the same project. The project was about an auto-

matic wheelchair based on the EVE-BCI system. The performance of the wheelchair was tested

by going through multiple routes with obstacles. The successful rate and completion time

determines the performance of the wheelchair.

Evaluation setting. The evaluation setting has a crucial influence on the BCI perfor-

mance. As EEG signals often vary between individuals, subject-dependent and subject-inde-

pendent classification have performance discrepancies. The subject-dependent classification is

trained and tested by data from a single person. The evaluation in this way usually has a better

Fig 8. Performance metrics reported in EVE-BCI development. “n/a” refers to the paper did not report the types of

performance metrics.

https://doi.org/10.1371/journal.pone.0269001.g008
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outcome because fewer data variabilities are required to be dealt with by the model. However,

the result only shows how the model performs towards the specific subject. In other words, the

model may not be generalizable when applied to other people. In the subject-independent set-

ting, the model is trained and used on the data from multiple subjects. It leads to a more eco-

logical scenario and is suitable for real-world application, although it requires better pattern

recognition for the data with more considerable variability. Under this circumstance, the per-

formance of the model may be relatively lower than that of the preceding one, but the result is

far more objective and deliver a better estimation in the overall population. Only two reviewed

articles [34, 104] carried out the subject-independent classification. DL approaches were evalu-

ated in a cross-subject validation way in these two studies. For instance, the classifier was

trained with the data from subjects 1 to 9 but tested from subject 10. This process was recur-

sively repeated ten times, with data from each subject being used as the testing set once. Alter-

natively, the remaining papers either solely implemented the subject-independent setting or

did not report whether they operated the subject-dependent or subject-independent

classification.

Online and offline evaluation is another critical factor in BCI performance. Offline assess-

ment is executed with the data already available. It is usually executed after the data collection

to make use of the whole dataset [121]. Hence, it ignores the global timeline, and no feedback

is provided to the user during the data collection. The goals of offline evaluation are to estimate

the performance of the model on all the data presented in the database and figure out the best

possible settings of the model up to the knowledge at the time of evaluation. It was a common

method to assess the EVE-BCI, which accounts for around 80% of cases (N = 63) of our

reviewed papers. Alternatively, an online evaluation is used with the non-existent data at a

given time. It is designated to provide instant feedback to the user. The model evaluated online

usually inherits the best setting obtained from the offline evaluation. The online assessment

produces a more “realistic” performance of the EVE-BCI, as all conditions such as artifact

occurrence and user distractions should be considered. Thirty-three studies carried out the

online evaluation. Among 19 of those, offline evaluations were also performed.

Feasibility of EVE-BCI

Results in Wilcoxon signed-rank tests (Fig 9) showed that accuracies produced by EVE-BCI

systems were significantly higher than chance levels among different groups including healthy

subjects (754.9% vs. 31.03%, N = 51, Z = -6.21, p< 0.001), patients (64.44% vs. 19.92%,

Fig 9. Comparison between accuracies and chance levels of EVE-BCI across multiple populations.

https://doi.org/10.1371/journal.pone.0269001.g009
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N = 15, Z = -3.41, p< 0.001), and the overall population (72.28% vs. 28.50% N = 66, Z = -7.06,

p< 0.001). The feasibility of EVE-BCI was presented in all these population categories and,

more importantly, for patients who need it most. The accuracy in each study was higher than

its corresponding chance level. Four EVE-BCI systems achieved 100% accuracy. Three of these

systems were found in healthy subjects and one in the patient group. However, they were all

based on the offline evaluation setting. Reporting results were produced in the feature and

hyperparameter optimization step. No online evaluation (real-world setting) was found to

achieve the perfect accuracy.

Discussion

According to our review, the research interest has increased significantly since the first

EVE-BCI was proposed in 2006. It is a fascinating alternative for the motor imagery and

visual-based BCI system. It cannot only avoid the BCI’ illiteracy’ issue but also be suitable

for those who entirely lose the motor ability of eyeball movement. However, in terms of pop-

ularity, EVE-BCI is far behind the motor imagery and visual-based ones due to the uncer-

tainty of its feasibility. The present review summarizes vital trends in EVE-BCI development

and provides synthetic evidence on its practicability. In this section, essential elements

mentioned in the result are discussed. We also deliver recommendations on the further

direction of EVE-BCI and perform a checklist for a clear EVE-BCI presentation in further

publications.

Data collection

We explored two factors, including the target subject and EEG acquisition, in the data collec-

tion of EVE-BCI development. We found that patient subjects were recruited in approximately

20% of reviewed publications. By being trained and tested with these data, EVE-BCIs exhibited

a good performance in practical applications. Nevertheless, only healthy subjects were

included in the remaining 80% of articles. An emphasis that, EVE-BCI aims to provide an

external communication channel for patients with motor ability impairment, is made in sev-

eral of these studies [4, 33, 51]. However, neither training nor evaluation of their EVE-BCIs

was implemented using patients’ data. The external validity of their experiments is question-

able. The accessibility may be the main reason for data collection from healthy subjects. As

many studies were conducted in universities, researchers could conveniently access college

students. Furthermore, several papers returned from our searching strategies were published

in conference proceedings. Experiments in these articles were sometimes regarded as pilot

studies by several researchers. They only preliminarily tested the feasibility of EVE-BCI using

data from those who were most accessible [42, 43, 99]. Under such circumstances, EVE-BCI

systems were usually built upon healthy subjects’ data. However, the primary focus of BCI is to

offer assistance for the disabled. Further studies should focus more on patient recruitment

instead. This will address the existing gap and develop a reliable EVE-BCI in practice.

The essential characteristics of EEG acquisition, including acquisition form and channel

number, were also reviewed. In line with expectations, most EVE-BCIs were developed by

using cap-style devices. This type of device is mature and provides a stable EEG signal obtain-

ment. However, it is worth pointing out that a unique acquisition form named fEEGrid [64]

where EEG electrodes pre-attached adhesive foam stickers on the forehead. It overcomes phys-

ical pain caused by the squeeze pressure of the EEG cap during a long-time EEG collection.

Hence, its analogy and itself are more suitable for long-term EEG collection scenarios, such as

wheelchair and conversation speller, in contrast with the traditional cap form.
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Stimulation paradigm

P300 and SSSEP were the two most popular paradigms and accounted for predominant cases

in our reviewed articles. Researchers could conveniently set up these two paradigms, and more

importantly, the evoked brain activities were evident [74, 85]. In addition to using either a sin-

gle P300 or SSSEP, Breitwieser, Pokorny [30] proposed a novel way to build the EVE-BCI by

combining both two, where transient vibrating stimuli (for P300) were added in a constant

vibration (for SSSEP). This innovative approach offered more discriminative features and

increased the model’s performance.

We also found that no asynchronous design, where the user can manage the BCI freely

without any clues or time strains, was returned among articles reviewed in the present

work. Current asynchronous BCIs are usually based on motor imagery or Steady-state

visually evoked potential (SSVEP) [122]. However, they suffer respectively from issues of

BCI “illiteracy” and visual impairment, as mentioned above. Several reviewed studies fig-

ured out the distinct difference in brain activities between the idle state and the concentra-

tion on persistent vibrations (SSSEP) [35, 72], which indicated that SSSEP also had great

potential in acting as a brain switch [122]. This virtual switch imitates a physical switch’s

function to control the on (control) and off (non-control) state of the BCI system. It con-

tinuously detects the user’s intention to turn on a control state from a non-control state or

turn off a control state to a non-control state. The switch mechanism offers the user a way

to use the BCI whenever they want and close it if they do not need it. The SSSEP applica-

tion to brain-swift can be explored in further studies to investigate the feasibility of a more

practical EVE-BCI, i.e., an asynchronous one.

Vibrotactile control

Researchers in most reviewed publications did not report reasons for their choice of SOA. It

seems that they solely followed their preference. As the SOA is a significant factor that influ-

ences vibration, it is crucial to justify the option in the study. The non-report of reasons for

their choice of SOA maybe because only two reviewed articles [57, 91] surveyed how the SOA

affected the performance of EVE-BCI. It is hard for them to explain the reason for their choices

by using the proceeding evidence. We also found that the random off-time was applied to

reduce the EEG collection’s adaptive effect. For instance, as shown in the result, He and Con-

treras-Vidal [50] set the off-time as a random period between 2 to 5 seconds. The off-time is

usually treated as a small resting interval when the participant’s brain may be in an idle state.

Therefore, randomizing the off-time may not have a crucial influence on decreasing the adap-

tive effect. The randomization in stimulus on-time may be an exciting alternative. The partici-

pant usually needs to execute specific experimental tasks and is in a highly focused status

during this period. A random change can be more evidently recognized for breaking down the

adaptive reaction.

The location of vibration was the factor most investigated by previous researchers.

Non-implanted vibrations were nearly employed on every part of the human body. It was

assumed that an individual had a stronger perception of the difference between multiple

vibrations with an increase in the distance between them [123, 124]. Such a perception

may benefit the effectiveness of EVE-BCI. Several research groups did favour the long-dis-

tance design with arranging tactors in different limbs. In contrast, it was also noted that

tactors were densely attached in a specific area such as fingers, wrists, or the waist in many

of our reviewed articles. This finding conveys that the distance may not be the priority in

tactor position arrangement. Alternatively, the primary consideration may be the sensitiv-

ity of vibration. The places selected for tactor placement were usually fingers, wrists, and
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waist. These positions are sensitive to the vibrotactile stimulus [125–127]. In line with

short-distance vibration preference in EVE-BCI development, previous researchers may

believe that the sensitivity has a more considerable impact on the BCI performance than

the distance between tactors.

EEG signal processing

The result shows that the pre-processing step was a popular choice for EVE-BCI development.

It was operated in over 90% of cases in our reviewed publications. As the EEG is a low SNR sig-

nal, it is hard to deploy an advanced feature extraction and accurate prediction without pre-

processing. The trade-off between effectiveness and automation may be the prior consider-

ation to the option of pre-processing techniques. Most approaches used in our reviewed arti-

cles depended on mathematical computations and were automatically performed in the

software [55, 60]. These methods can not only save human resources but also avoid subjective

judgments. However, several artifacts caused by muscular movements cannot be removed. In

response to this gap, manual artifact removal strategies were conducted after the automatic

operations [47, 56]. Overall, the pre-processing stage was encouraged in the EVE-BCI

development.

Various classification models were constructed for EVE-BCIs. These models can be cat-

egorized into the simple threshold, simple linear/probability, and DL approaches in terms

of the model complexity. The most popular model in our reviewed publications was the

simple linear one. It had an overall good performance across different populations. For

instance, Guger, Spataro [58] proposed an EVE-BCI system depending on LDA that

achieved both 80% accuracy for healthy subjects and ALS patients against a chance level of

12.5%. Despite the excellent performance of current models, two types of other algorithms

(i.e., non-linear machine learning and deep learning models) that have been successfully

applied in EEG analysis are also worthwhile exploring further. For example, in addition to

performing linear classification, SVMs can efficiently perform non-linear discrimination

using the kernel trick, implicitly mapping their inputs into high-dimensional feature

spaces [128]. Furthermore, two systematic reviews summarized the intensive efforts in

deep learning that have been made for EEG pattern recognition [129, 130]. In the

EVE-BCI sector, only convolutional neural networks (one type of deep learning model)

were used in two reviewed articles and achieved excellent performance [34, 104]. Other

architectures, including recurrent neural networks (RNN), famous for dealing with time-

series data, can also be tried. One of the advantages of DL method is to waive complex fea-

ture extractions [131]. The raw data can be directly fed into the model, where patterns can

be learned without handcraft feature engineering. The second advantage of deep learning

is its outstanding performance. It has been proven to achieve a state-of-the-art outcome in

many fields, including computer vision [132], natural language [133], and even motor

imagery BCI [129, 130]. It probably can also lead to big progress in our EVE-BCI area.

Reported performance

For the evaluation setting, only offline and subject-dependent assessments were performed in

many reviewed articles. These papers were usually used to exchange ideas at conferences and

published in the proceedings. An initial evaluation in such a simple way was usually sufficient

for this usage. However, both online and subject-independent evaluations should be involved

to bring a comprehensive evaluation of the EVE-BCI. Online evaluation deals with more data

variabilities, such as the artifact occurrence and subjects being distracted, that appear in the

real world. Subject-independent assessment is defined as training and testing by the data from
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multiple subjects. Hence, it can indicate the external validity and generalizability of EVE-BCI

in the general population rather than a specific person. The evaluation carried out in such two

ways may provide a reliable performance of an EVE-BCI in the practical environment and be

encouraged in future studies.

Feasibility of the EVE-BCI

Our review aims to investigate the feasibility of the EVE-BCI (i.e., the accuracy of prediction

against the chance level). According to our statistical analyses, EVE-BCI shows a feasibility

across healthy subjects, motor impairment patients, and the overall population. Although we

get encouraging outcomes in statistical analyses, it is necessary to interpret these results dialecti-

cally. First, significant variations of results were presented across multiple papers. For example,

researchers used a similar methodology and model in two studies [52, 72], but a 12% accuracy

gap was exhibited due to different subjects and evaluation settings. Second, articles that deliver

positive results (e.g., performance higher than channel level) tend to be published [134], so our

analyses’ significant effect may be overestimated. Although biases above may exist in our review,

the gap between the overall performance of EVE-BCI and chance level was decent. Further-

more, four articles reported perfect 100% accuracy. The EVE-BCI can be conservatively consid-

ered as being feasible for the user’s intention recognition based on overall and the-state-of-art

performance. It may act as a powerful supplement in the BCI scientific community.

Recommendation

The EVE-BCI system is a feasible device for detecting the user’s intention. However, we recog-

nize that several gaps had not been explored in this area. In line with these gaps, we provide

the following recommendations for future studies:

◆Data: recruit more motor-impaired patients; explore other types of form instead of the cap

for EEG collection.

◆ Stimulation paradigm: test the feasibility of the asynchronous EVE-BCI design by applying

the brain switch mechanism using SSSEP.

◆ Vibrotactile control: investigate the effectiveness of stimulus on-time randomization on the

reduction of adaptive effect.

◆ EEG signal processing: explore the non-linear machine learning and deep learning

approaches.

◆ Reported performance: present subject-independent training and online evaluation.

Throughout reading published papers in EVE-BCI, we identify that several works may be

presented in an unclear way. To ensure the quality and avoid the ambiguity of work presenta-

tion, we proposed the following checklist (Table 6) for essential elements of an EVE-BCI that

should be reported:

Conclusions

Brain-computer interfaces are going through technological progress, and the vibrotactile

modality is drawing increasing focus from researchers in the BCI community. However, com-

pared to other types of mature BCI, such as motor imagery and visual-based ones, the

EVE-BCI remains at the initial stage, with various challenges still waiting to be tackled. In this

review, we summarises the development status of EVE-BCI by analysing 79 studies from Janu-

ary 2006 to December 2021.
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The following significant trends have been identified in our review: (1) the EEG data for

EVE-BCI development were usually recorded from healthy subjects by a cap-style device; (2)

P300 and SSSEP were the two most frequently employed paradigms in this field; (3) locations

of the vibration have been heavily investigated in nearly every part of the body, whereas other

vibration factors may lack attention from researchers; (4) signal pre-processing were usually

carried out before the feature extraction where the temporal characteristics were usually

derived and fed into a linear classification model. (5) The EVE-BCI aggregated accuracies

were significantly higher than chance levels among healthy subjects, motor-impaired patients,

and the overall population.

In addition to these major trends, several limitations of the current development in

EVE-BCI were also introduced. This review showed more targeted works needed exploring to

enhance the quality of EVE-BCI. Such works can be done in ways of data recording from

motor-impaired patients, expanding other forms of EEG collection rather than using the cap

style, applying the SSSEP in the brain switch mechanism for asynchronous EVE-BCI design,

randomizing the stimulus on-time to decrease the adaptive effect, exploring non-linear tradi-

tional machine learning algorithms and deep learning models, and evaluating the EVE-BCI by

subject-independent and online assessment. Finally, we provide recommendations on signifi-

cant elements that should be presented to clearly illustrate the EVE-BCI in an article.
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Table 6. Recommendations on key elements in the future study.

Recommendation Key elements

Data collection Clearly describe:

❖ type of subject

❖ number of subjects

❖ type of device

❖ electrode montage

❖ number of channels (location)

❖ sample rate.

Stimulation paradigm Clear describe:

❖ type of paradigm

❖ executions of each trial

❖ entire experimental produce

Vibrotactile control Clear describe and justify reasons for the choices, if any:

❖ vibration location

❖ vibration frequency and intensity

❖ vibration number

❖ on-time

❖ off-time

❖ type of tactors

EEG signal

processing

Clear describe and justify reasons for the choices, if any:

❖ type of filter

❖ artifact removal techniques (equations, if any)

❖ based-line correction (equations if any)

❖ feature extraction (equations if any)

❖ classification model (equations if any)

Reported

Performance

Clearly describe:

❖ performance metrics (equations if any)

❖ evaluation setting (offline or online, cross-validating or training-testing, and subject-

independent or subject-dependent)

https://doi.org/10.1371/journal.pone.0269001.t006
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57. Kaufmann T, Holz EM, Kübler A. Comparison of tactile, auditory, and visual modality for brain-com-

puter interface use: A case study with a patient in the locked-in state. Frontiers in Neuroscience. 2013

(7 JUL).

58. Guger C, Spataro R, Allison BZ, Heilinger A, Ortner R, Cho W, et al. Complete locked-in and locked-in

patients: Command following assessment and communication with vibro-tactile P300 and motor imag-

ery brain-computer interface tools. Frontiers in Neuroscience. 2017; 11(MAY). https://doi.org/10.3389/

fnins.2017.00251 PMID: 28529473

59. An WW, Si-Mohammed H, Huang N, Gamper H, Lee AK, Holz C, et al., editors. Decoding auditory and

tactile attention for use in an EEG-based brain-computer interface. 2020 8th International Winter Con-

ference on Brain-Computer Interface (BCI); 2020 26–28 Feb. 2020.

60. Thurlings ME, Brouwer AM, Van Erp JBF, Blankertz B, Werkhoven PJ. Does bimodal stimulus presen-

tation increase ERP components usable in BCIs? Journal of Neural Engineering. 2012;9(4). https://

doi.org/10.1088/1741-2560/9/4/045005 PMID: 22831989

61. Xu R, Heilinger A, Murovec N, Spataro R, Cho W, Cao F, et al., editors. Effects of Repeating a Tactile

Brain-Computer Interface on Patients with Disorder of Consciousness: A Hint of Recovery?*. 2019

9th International IEEE/EMBS Conference on Neural Engineering (NER); 2019 20–23 March 2019.

62. Lehne M, Ihme K, Brouwer A, Erp JBFv Zander TO, editors. Error-related EEG patterns during tactile

human-machine interaction. 2009 3rd International Conference on Affective Computing and Intelligent

Interaction and Workshops; 2009 10–12 Sept. 2009.

63. Chatelle C, Spencer CA, Cash SS, Hochberg LR, Edlow BL. Feasibility of an EEG-based brain-com-

puter interface in the intensive care unit. Clinical Neurophysiology. 2018; 129(8):1519–25. https://doi.

org/10.1016/j.clinph.2018.04.747 PMID: 29804044

64. Blum S, Emkes R, Minow F, Anlauff J, Finke A, Debener S. Flex-printed forehead EEG sensors (fEE-

Grid) for long-term EEG acquisition. Journal of Neural Engineering. 2020; 17(3). https://doi.org/10.

1088/1741-2552/ab914c PMID: 32380486

65. Han X, Liu YD, Yu Y, Zhou ZT. Frequency Recognition Based on Optimized Power Spectral Density

Analysis for SSSEP-Based BCIs. In: Sun Y, Lu H, Zhang L, Yang J, Huang H, editors. Intelligence Sci-

ence and Big Data Engineering, Iscide 2017. Lecture Notes in Computer Science. 105592017. p. 77–

87.
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103. Eidel M, Tröger W, Winterholler M, Giesler T, Kübler A, editors. A Tactile Brain-Computer Interface for

Virtual Wheelchair Control at Home. 2021 9th International Winter Conference on Brain-Computer

Interface (BCI); 2021 22–24 Feb. 2021.

104. Kim KT, Choi J, Kim H, Lee SJ, editors. Subject-Transfer Approach based on Convolutional Neural

Network for the SSSEP-BCIs. 2021 9th International Winter Conference on Brain-Computer Interface

(BCI); 2021 22–24 Feb. 2021.

105. Ortner R, Dinares-Ferran J, Irimia DC, Guger C, editors. Towards Improved Vibro-Tactile P300 BCIs.

23rd International Conference on Human-Computer Interaction (HCII); 2021 Jul 24–29; Electr

Network2021.

106. Liao L, Lin C, McDowell K, Wickenden AE, Gramann K, Jung T, et al. Biosensor Technologies for Aug-

mented Brain–Computer Interfaces in the Next Decades. Proceedings of the IEEE. 2012; 100(Special

Centennial Issue):1553–66.

PLOS ONE EEG-based vibrotactile evoked brain-computer interfaces system: A systematic review

PLOS ONE | https://doi.org/10.1371/journal.pone.0269001 June 3, 2022 29 / 31

https://doi.org/10.1016/j.clinph.2015.06.029
http://www.ncbi.nlm.nih.gov/pubmed/26209283
https://doi.org/10.3389/fnins.2010.00019
https://doi.org/10.3389/fnins.2010.00019
http://www.ncbi.nlm.nih.gov/pubmed/20582261
https://doi.org/10.1177/1550059413505533
http://www.ncbi.nlm.nih.gov/pubmed/24415400
https://doi.org/10.1155/2021/6694310
https://doi.org/10.1155/2021/6694310
http://www.ncbi.nlm.nih.gov/pubmed/33628218
https://doi.org/10.3389/fnhum.2021.641357
https://doi.org/10.3389/fnhum.2021.641357
http://www.ncbi.nlm.nih.gov/pubmed/33935672
https://doi.org/10.1371/journal.pone.0269001


107. Ferree TC, Luu P, Russell GS, Tucker DM. Scalp electrode impedance, infection risk, and EEG data

quality. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysi-

ology. 2001; 112(3):536–44.

108. Vidaurre C, Blankertz B. Towards a cure for BCI illiteracy. Brain topography. 2010; 23(2):194–8.

https://doi.org/10.1007/s10548-009-0121-6 PMID: 19946737

109. Rueda-Delgado LM, O’Halloran L, Enz N, Ruddy KL, Kiiski H, Bennett M, et al. Brain event-related

potentials predict individual differences in inhibitory control. International Journal of Psychophysiology.

2019. https://doi.org/10.1016/j.ijpsycho.2019.03.013 PMID: 30936044

110. Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpre-

dictable auditory stimuli in man. Electroencephalography and clinical neurophysiology. 1975; 38

(4):387–401. https://doi.org/10.1016/0013-4694(75)90263-1 PMID: 46819

111. Arnold G, Boone KB, Lu P, Dean A, Wen J, Nitch S, et al. Sensitivity and specificity of finger tapping

test scores for the detection of suspect effort. The Clinical Neuropsychologist. 2005; 19(1):105–20.

https://doi.org/10.1080/13854040490888567 PMID: 15814482

112. Arad E, Bartsch RP, Kantelhardt JW, Plotnik M. Performance-based approach for movement artifact

removal from electroencephalographic data recorded during locomotion. PLOS ONE. 2018; 13(5):

e0197153. https://doi.org/10.1371/journal.pone.0197153 PMID: 29768471

113. Koles ZJ, Lazar MS, Zhou SZ. Spatial patterns underlying population differences in the background

EEG. Brain topography. 1990; 2(4):275–84. https://doi.org/10.1007/BF01129656 PMID: 2223384

114. Alpaydin E. Introduction to machine learning: MIT press; 2020.

115. Fisher RA. The use of multiple measurements in taxonomic problems. Annals of eugenics. 1936; 7

(2):179–88.

116. Gnanadesikan R. Methods for statistical data analysis of multivariate observations: John Wiley &

Sons; 2011.

117. Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20(3):273–97.

118. Tolles J, Meurer WJ. Logistic regression: relating patient characteristics to outcomes. Jama. 2016;

316(5):533–4. https://doi.org/10.1001/jama.2016.7653 PMID: 27483067

119. Reynolds DA. Gaussian Mixture Models. Encyclopedia of biometrics. 2009; 741:659–63.

120. Han J, Moraga C, editors. The influence of the sigmoid function parameters on the speed of backpro-

pagation learning1995: Springer.

121. Hoque S, Miranskyy A, editors. Online and Offline Analysis of Streaming Data2018: IEEE.

122. Han C-H, Müller K-R, Hwang H-J. Brain-Switches for Asynchronous Brain–Computer Interfaces: A

Systematic Review. 2020; 9(3):422.

123. Guemann M, Bouvier S, Halgand C, Paclet F, Borrini L, Ricard D, et al. Effect of vibration characteris-

tics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper

limb amputees. Journal of NeuroEngineering and Rehabilitation. 2019; 16(1):138. https://doi.org/10.

1186/s12984-019-0597-6 PMID: 31722740

124. Stevens JC, Choo KK. Spatial acuity of the body surface over the life span. Somatosensory & motor

research. 1996; 13(2):153–66. https://doi.org/10.3109/08990229609051403 PMID: 8844964

125. Gerr FE, Letz R. Reliability of a widely used test of peripheral cutaneous vibration sensitivity and a

comparison of two testing protocols. 1988; 45(9):635–9. https://doi.org/10.1136/oem.45.9.635 PMID:

3179239

126. Shi J, Wang L, Dai Z, Zhao L, Du M, Li H, et al. Multiscale Hierarchical Design of a Flexible Piezoresis-

tive Pressure Sensor with High Sensitivity and Wide Linearity Range. 2018; 14(27):1800819. https://

doi.org/10.1002/smll.201800819 PMID: 29847706

127. Li Y, Wang X, Bao X. Sensitive acoustic vibration sensor using single-mode fiber tapers. Appl Opt.

2011; 50(13):1873–8. https://doi.org/10.1364/AO.50.001873 PMID: 21532667

128. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. Proceedings of

the fifth annual workshop on Computational learning theory; Pittsburgh, Pennsylvania, USA: Associa-

tion for Computing Machinery; 1992. p. 144–52.

129. Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. Deep learning-based electroen-

cephalography analysis: a systematic review. Journal of neural engineering. 2019; 16(5):051001.

https://doi.org/10.1088/1741-2552/ab260c PMID: 31151119

130. Alzahab NA, Apollonio L, Di Iorio A, Alshalak M, Iarlori S, Ferracuti F, et al. Hybrid Deep Learning

(hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review. 2021; 11(1):75. https://

doi.org/10.3390/brainsci11010075 PMID: 33429938

131. Lin Y-z Nie Z-h, Ma H-w. Structural Damage Detection with Automatic Feature-Extraction through

Deep Learning. 2017; 32(12):1025–46.

PLOS ONE EEG-based vibrotactile evoked brain-computer interfaces system: A systematic review

PLOS ONE | https://doi.org/10.1371/journal.pone.0269001 June 3, 2022 30 / 31

https://doi.org/10.1007/s10548-009-0121-6
http://www.ncbi.nlm.nih.gov/pubmed/19946737
https://doi.org/10.1016/j.ijpsycho.2019.03.013
http://www.ncbi.nlm.nih.gov/pubmed/30936044
https://doi.org/10.1016/0013-4694%2875%2990263-1
http://www.ncbi.nlm.nih.gov/pubmed/46819
https://doi.org/10.1080/13854040490888567
http://www.ncbi.nlm.nih.gov/pubmed/15814482
https://doi.org/10.1371/journal.pone.0197153
http://www.ncbi.nlm.nih.gov/pubmed/29768471
https://doi.org/10.1007/BF01129656
http://www.ncbi.nlm.nih.gov/pubmed/2223384
https://doi.org/10.1001/jama.2016.7653
http://www.ncbi.nlm.nih.gov/pubmed/27483067
https://doi.org/10.1186/s12984-019-0597-6
https://doi.org/10.1186/s12984-019-0597-6
http://www.ncbi.nlm.nih.gov/pubmed/31722740
https://doi.org/10.3109/08990229609051403
http://www.ncbi.nlm.nih.gov/pubmed/8844964
https://doi.org/10.1136/oem.45.9.635
http://www.ncbi.nlm.nih.gov/pubmed/3179239
https://doi.org/10.1002/smll.201800819
https://doi.org/10.1002/smll.201800819
http://www.ncbi.nlm.nih.gov/pubmed/29847706
https://doi.org/10.1364/AO.50.001873
http://www.ncbi.nlm.nih.gov/pubmed/21532667
https://doi.org/10.1088/1741-2552/ab260c
http://www.ncbi.nlm.nih.gov/pubmed/31151119
https://doi.org/10.3390/brainsci11010075
https://doi.org/10.3390/brainsci11010075
http://www.ncbi.nlm.nih.gov/pubmed/33429938
https://doi.org/10.1371/journal.pone.0269001


132. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep Learning for Computer Vision: A

Brief Review. Computational Intelligence and Neuroscience. 2018; 2018:7068349. https://doi.org/10.

1155/2018/7068349 PMID: 29487619

133. Otter DW, Medina JR, Kalita JK. A Survey of the Usages of Deep Learning for Natural Language Pro-

cessing. IEEE Transactions on Neural Networks and Learning Systems. 2021; 32(2):604–24. https://

doi.org/10.1109/TNNLS.2020.2979670 PMID: 32324570

134. Song F, Parekh S, Hooper L, Loke YK, Ryder J, Sutton AJ, et al. Dissemination and publication of

research findings: an updated review of related biases. Health technology assessment (Winchester,

England). 2010; 14(8):iii, ix-xi, 1–193. https://doi.org/10.3310/hta14080 PMID: 20181324

PLOS ONE EEG-based vibrotactile evoked brain-computer interfaces system: A systematic review

PLOS ONE | https://doi.org/10.1371/journal.pone.0269001 June 3, 2022 31 / 31

https://doi.org/10.1155/2018/7068349
https://doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1109/TNNLS.2020.2979670
http://www.ncbi.nlm.nih.gov/pubmed/32324570
https://doi.org/10.3310/hta14080
http://www.ncbi.nlm.nih.gov/pubmed/20181324
https://doi.org/10.1371/journal.pone.0269001

