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Object. Pathologic prediction of prostate cancer can be made by predicting the patient’s prostate metastasis prior to surgery based
on biopsy information. Because biopsy variables associated with pathology have uncertainty regarding individual patient
differences, a method for classification according to these variables is needed. Method. We propose a deep belief network and
Dempster-Shafer- (DBN-DS-) based multiclassifier for the pathologic prediction of prostate cancer. The DBN-DS learns
prostate-specific antigen (PSA), Gleason score, and clinical T stage variable information using three DBNs. Uncertainty
regarding the predicted output was removed from the DBN and combined with information from DS to make a correct
decision. Result. The new method was validated on pathology data from 6342 patients with prostate cancer. The pathology
stages consisted of organ-confined disease (OCD; 3892 patients) and non-organ-confined disease (NOCD; 2453 patients). The
results showed that the accuracy of the proposed DBN-DS was 81.27%, which is higher than the 64.14% of the Partin table.
Conclusion. The proposed DBN-DS is more effective than other methods in predicting pathology stage. The performance is high
because of the linear combination using the results of pathology-related features. The proposed method may be effective in
decision support for prostate cancer treatment.

1. Introduction

Prostate cancer is the most common cancer in men, with
around 1.1 million cases diagnosed and approximately
309,000 deaths in men worldwide in 2012 [1]. It is estimated
that 40–50% of men may also have potentially extraprostatic
disease [2].

Carcinectomy and radiotherapy are the typical treat-
ments for prostate cancer [3]. The choice of treatment for

prostate cancer requires extensive experience and analysis
of treatment cases. Pathological staging is the process of pre-
dicting the likelihood of prostate cancer disease spreading in
a patient prior to treatment. The clinical stage evaluation is
based on data gathered from clinical tests that are available
prior to treatment or the surgical removal of the tumor. Can-
cer staging evaluation occurs both before and after the tumor
is removed: the clinical and pathological stages, respectively
[4]. Pathologic staging is determined after the removal of
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the tumor tissue and after surgery. This is more likely to be
more accurate than clinical staging because it evaluates the
direct nature of the disease. Therefore, the prediction of path-
ological stages using clinical data analysis is an important
factor in the treatment of prostate cancer [5].

Pathologic staging prediction is very important because it
provides physicians with optimal treatment and manage-
ment strategies. For example, radical prostatectomy (RP),
the surgical removal of the prostate gland, provides the best
opportunity for cure when prostate cancer is localized and
accurate prediction of the pathology stage can provide the
most beneficial treatment approach [6–8]. Currently, Partin
tables are used to predict the prognostic clinical outcome
for prostate cancer, which are based on statistical methods
such as logistic regression [9, 10]. The Partin tables use clin-
ical test data including prostate-specific antigen (PSA) level,
Gleason score, and clinical T stage to predict the pathology
stage. While the Partin tables have been verified from 2001
to 2011, there are questions about their applicability to cur-
rent patients following environmental changes [11]. Thus, a
new classification method using machine learning is needed
to provide an accurate prediction of the pathology stage [12].

Deep belief networks (DBN) are a deep learning tech-
nique and is an effective method for classification prediction
[13, 14]. As DBN supports both unsupervised and supervised
learning, it is possible to effectively learn about uncertain
data relationships [15, 16]. Because PSA level, Gleason score,
and clinical T stage for stage prediction have uncertainties in
each patient, a combination of evidence for each variable is
needed. The Dempster-Shafer theory (DS) is a technique
used to fuse information based on trust values [17, 18]. The
DS allows the combination of evidence from different sources
to arrive at a degree of belief (represented by a mathematical
object called a “belief function”) that considered all available
evidence [19, 20]. This technique is a method for fusing
information using a stochastic calculation method for belief
values [21]. This allows fusion of the classification results of
each variable to the pathology stage.

In this paper, we propose a DBN-DS-based multiclassi-
fier for pathologic stage prediction of prostate cancer. The
proposed DBN-DS uses patient PSA level, Gleason score,
and clinical T stage and three DBNs to predict the pathology
stage by combining the predicted information from the clas-
sifier. The classifiers are created by learning data according to
features. When output values are generated using each
learned DBN classifier, the final predicted result is provided
by stochastically calculating the predicted output from each
DBN classifier using DS. This paper is organized as follows:
Section 2 presents the proposed technique and its process.
Section 3 explains the experiments and presents their out-
comes. Finally, Section 4 presents the conclusions.

2. Materials and Methods

2.1. Data Set. The study data comprised 6345 male patients
extracted from the Korean Prostate Cancer Registry (KPCR)
which is extended from Smart Prostate Cancer Data Base
(SPCDB) at six tertiary medical centers in Korea [22]. The
three input variables consist of initial PSA, Gleason score,

TRUS volume, and clinical T stage. Two output variables
consisting of pathologic T stage (pT2a, pT2b, pT3a, pT3b,
and pT3c) and N stage (pN1) were used. The output variables
are transformed using the guidelines of the American Joint
Committee on Cancer (AJCC), which were used to identify
the pathologic stage as organ-confined disease (OCD;
pT2+) or non-organ-confined disease (NOCD; pT3+ or N+)
[23]. For the experiments, the data from the KPCR were
divided into a training set 70% (4039 patients) and a valida-
tion set 30% (2306 patients).

2.2. Deep Belief Network. A deep belief network (DBN) is a
generative graphical model or a type of deep neural network
composed of multiple layers of latent variables, with connec-
tions between the layers but not between the units within
each layer. The DBN is composed of restricted Boltzmann
machine (RBM) layers. The learning method in the DBN is
done by configuring the visible layer and hidden layer 1 into
a single RBM. The DBN is composed of multiple layers of
RBMs [24]. The RBMs consist of visible and hidden unit
layers. Once learning is complete, hidden layers 1 and 2 are
trained via the RBM by giving a new input as a value of the
hidden layer 1. As such, learning is performed up to the last
layer sequentially [25]. One classification technique using
the DBN is back propagation, which is configured in the
uppermost layer in the DBN [26]. This technique shows bet-
ter results than an artificial neural network (ANN), which
uses a connection intensity that is arbitrarily selected.

In this study, we constructed a classifier for three input
and two output variables to construct a multiclassifier, as
shown in Figure 1. We created one classifier for each vari-
able. Our idea was to use multiclassifiers for each variable
[27]. The purpose of this study was to make a linear combi-
nation of the predictions of the classifiers using DS [28].
Therefore, one variable must be converted into several input
values. As PSA levels are continuous data, they were con-
verted into binary numbers and configured as an input node.
Because Gleason score and the clinical T stage are categorical
data, they constitute an input node by constructing data in
flag form.

2.3. Dempster-Shafer-Based Information Fusion. Dempster-
Shafer (DS) is a mathematical theory that deals with the
uncertainty and inaccuracy problems presented by Arthur
Dempster and Glenn Shafer [29]. The DS provides an effec-
tive method for establishing evidence intervals using belief
and likelihood values for the data set. The DS can support
the combination of information. As a result, it is possible to
use a combination rule to set various information as an evi-
dence value and to calculate the result of all the evidence [30].

The DS expresses the degree of certainty as a section and
sets mutually exclusive hypotheses such as probability. The
set of objects is called the environment and is denoted by θ.
The θ can have several elements such as θ = θ1, θ2, θ3,… ,
θk , and the number of subsets is 2k. When θ has only one
element, it is called an identification frame. A set of 2k subsets
is called a power set and is denoted by θ. The degree to which
θ is supported by any evidence is called the basic probability
assignment functionm (1). Them is mapped to a probability
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value of 0 for an empty set, and the sum of m is 1 for all sub-
sets of θ (2).

m 2k → 0, 1 , 1

m ∅ = 0,

〠
U∈2k

m U = 1 2

Belief H , which is the belief value for any hypothesis H
(hypnosis; belief in a hypothesis is constituted by the sum of
the masses of all sets enclosed by subjective probabilities) by
given evidence, as shown in

Bel H = 〠
U∈H

m U 3

The degree of trust depends on the reliability of the given
evidence and on the overall environmental impact; the ratio
of the degree is expressed by e.

me A =
1 − r m A , A ⊂ θ,
r + 1 − r m θ , A = 0,

4

where r is a value between 0 and 1 and is true if r = 0 and
false if r = 1. The DS calculates the value of a new belief
through the process of fusion between different evidence.
Thus, the convergence between the evidence can be
expressed as (5); if X ∩ Y =∅, then the convergence value
of the two evidence is zero.

m1⨁m2 A = 1 − p −1 〠
X⋂Y=A

m1 X m2 Y , 5

p = 〠
X∩Y=∅

m1 X m2 Y 6

The DS expresses the confidence measure for H as
Bel H , Pls H and the term as the interval. This interval
is called the “evidential interval.” Plausibility Pls means
the extent to which the hypothesis is not negated based on
evidence (empty period except for true and false intervals),
which means the maximum likelihood of being trusted. Bel
has a range from 0 to 1 (true and false), Pls can be defined
as in (7) and has a value of [0,1]. Likewise, the likelihood
values can express the process of fusion from multiple evi-
dence as well as the fusion of belief values.

Pls H = 1 − Bel ¬H , 7

Pls U = Pls1⨁Pls2 ⨁Pls3 ⨁⋯ ⨁Plsn 8

In this study, three output data predicted from a mul-
ticlassifier were fused and calculated. The calculation process
using DS shown in the figure as DBN#1 (initial PSA) was set
to m1, DBN#2 (Gleason score) was set to m2, and DBN#3
(clinical T stage) was set to m3. For the output data, the
empty set of each of m1, m2, and m3 is given by

m1 ∅ = 1 − m1 OCD +m1 NOCD , 9

PSA
440.6
152.8
108.8

...

Gleason score
9
8

7b
...

Clinical T
T2c
T3b
T1c
...

1 1 0 1 1 1 0 0 0

0 1 0 0 1 1 0 0 0

0 0 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0

Patient PSA Gleason score Clinical T

1 440.6 9 T2c

2 152.8 8 T3b

3 108.8 7b T1c

... ... ... ...

KPCR

Binary transform
... ...

Initial PSA (DBN#1)
... ...

Gleason score (DBN#2)

... ...

Clinical T (DBN#3)

Figure 1: Multi DBN classifiers.

3Journal of Healthcare Engineering



m2 ∅ = 1 − m2 OCD +m2 NOCD , 10

m3 ∅ = 1 − m3 OCD +m3 NOCD 11

As described above, m1, m2, and m3 were obtained, and
then m4 is combined. The combination of m4 is shown in

m4 OCD =m1 OCD ⨁m2 OCD ⨁m3 OCD

=
〠OCD∩NOCD=OCDm1 OCD m2 OCD m3 OCD
〠OCD∩NOCD=∅m1 OCD m2 OCD m3 NOCD

,

m4 NOCD =m1 NOCD ⨁m2 NOCD ⨁m3 OCD

=
〠OCD∩NOCD=NOCDm1 NOCD m2 NOCD m3 NOCD
〠OCD∩NOCD=∅m1 NOCD m2 NOCD m3 NOCD

12

Next, the interval of the pass and fail of the evidential
interval are summarized as

Bel OCD =m3 OCD ,
Pls OCD = 1 − ¬Bel OCD ,

Bel NOCD =m3 NOCD ,
Pls NOCD = 1 − ¬Bel NOCD

13

As described above, the evidential interval section is con-
structed for OCD and NOCD, and the higher probability
value of OCD and NOCD was set as the final output value.

Uncertainty data processing is a critical issue in the
data fusion process. The DS and the Bayesian methods were
compared to deal with this uncertainty. Unlike Bayesian
inference, DS can contribute different levels of information
to each source. In addition, a popular approach to data fusion
has been established; unlike the Bayesian method, reliability
can be assigned to all subsets of a hypothetical group, making
it possible to form distributions for all subsets [31].

3. Result

3.1. Dataset Description. The characteristics of the initial
PSA variable in the OCD and NOCD groups are shown
in Table 1. Among the 6345 men, the average PSA levels in
the OCD and NOCD groups in the training set were 9.535
and 18.606 ng/mL, respectively. In general, the level in the

OCD group was higher, and the validation set also shows a
difference of 9.377 and 17.899 ng/mL in the OCD and NOCD
groups, respectively. The difference in values between the
training and validation sets was not large. Although a high
number of patients were observed at maximum, this is not
a problem for analysis because they were only a fraction of
the outlier compared to the mean.

The Gleason scores in the OCD and NOCD groups are
shown in Table 2. Patients with OCD had a high Gleason
score of 6. The NOCD group had scores of 6 or more.
The difference between the OCD and NOCD groups was
significant. In the scores below 5, OCD is more distributed
than NOCD, and even more than 9 patients showed more
NOCD patients.

The clinical T stages in the OCD and NOCD groups are
shown in Table 3. Most patients were T2+. T1a occurred
only in patients with OCD. In addition, many patients that
are distributed in OCD until T1+ and patients with T3+
belong to NOCD. Although all variables are bounded by
OCD and NOCD, there are many patients who belong to
the same distributions.

Table 1: Summary of initial PSA by pathology stage (organ-
confined or non-organ-confined disease) in 6345 patients with
clinically localized prostate carcinoma.

Training set
(n = 4039)

Validation set
(n = 2306)

OCD
(n = 2478)

NOCD
(n = 1561)

OCD
(n = 1414)

NOCD
(n = 892)

Initial PSA

Minimum 4 4 4 4

Maximum 160 440.60 81.13 164

Average
9.535
(0.173)

18.606
(0.622)

9.377
(0.197)

17.889
(0.653)

Table 2: Distribution of Gleason scores by pathology stage (organ-
confined or non-organ-confined disease) in 6345 patients with
clinically localized prostate carcinoma.

Gleason
score

Training set
(n = 4039)

Validation set
(n = 2306)

OCD (%)
(n = 2478)

NOCD (%)
(n = 1561)

OCD (%)
(n = 1414)

NOCD (%)
(n = 892)

3 3 (0.12) 0 (0.00) 0 (0.00) 1 (0.11)

4 5 (0.20) 5 (0.33) 6 (0.42) 1 (0.11)

5 6 (0.24) 11 (0.73) 8 (0.57) 1 (0.11)

6 1342 (54.16) 378 (24.93) 785 (55.52) 235 (26.35)

7 (3 + 4) 565 (22.80) 386 (25.46) 306 (21.64) 218 (24.44)

7 (4 + 3) 266 (10.73) 277 (18.27) 160 (11.32) 159 (17.83)

8 238 (9.60) 326 (21.50) 119 (6.42) 174 (19.51)

9 46 (1.88) 147 (9.70) 28 (1.98) 95 (10.65)

10 7 (0.28) 31 (2.04) 2 (0.14) 8 (0.90)

Table 3: Distribution of clinical T stage by pathology stage (organ-
confined disease and non-organ-confined disease) in 6345 patients
with clinically localized prostate carcinoma.

Clinical
T stage

Training set
(n = 4039)

Validation set
(n = 2306)

OCD (%)
(n = 2478)

NOCD (%)
(n = 1561)

OCD (%)
(n = 1414)

NOCD (%)
(n = 892)

T1a 9 (0.36) 0 (0.00) 3 (0.21) 0 (0.00)

T1b 107 (4.32) 49 (3.23) 74 (5.23) 18 (2.02)

T1c 988 (39.87) 410 (27.04) 556 (39.32) 225 (25.22)

T2a 691 (27.89) 380 (25.07) 417 (29.49) 241 (27.02)

T2b 278 (11.22) 161 (10.62) 151 (10.68) 97 (10.87)

T2c 234 (9.44) 224 (14.78) 126 (8.91) 127 (14.24)

T3a 150 (6.05) 233 (15.37) 66 (4.67) 135 (15.13)

T3b 21 (0.85) 104 (6.86) 21 (1.49) 49 (5.49)
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3.2. DBN-DS Based Multiclassifier. The proposed DBN and
DS-based multiclassifier is shown in Figure 2. The training
set was first changed to binary form. The initial PSA values
were expressed as nine binary numbers based on the highest
value (440 ng/mL). The Gleason score was composed of nine
flags ranging from 3 to 10. The clinical T stage consisted of
eight flags from T1a to T3b. The binary data of each of these
variables was learned by the DBN classifier; that is, the first
DBN consisted of nine input nodes because it was the input
data of the initial PSA binary data. The output nodes of all
classifiers were composed of two so that OCD and NOCD
could be calculated with probability. The DBN consisted of
three RBM layers, with the number of nodes of each RBM
the same as the number of input nodes. Unsupervised
learning was performed 100 times in total, while supervised
learning using back propagation was performed 1000 times.
Finally, we calculated the probability of the output variables
as DS and determined the final number of m4(OCD) and
m4(NOCD) as the final outputs.

3.3. Experiments. To evaluate the DBN-DS-based multiclassi-
fier, the entire data set was divided into a 70% training set
and a 30% testing set. The control groups included Decision
Tree C4.5, naive Bayesian (NB), logistic regression (LR), back
propagation (BP), support vector machine (SVM), random
forest (RF), deep belief network, and Partin tables. The exper-
iments compared the sensitivity, specificity, accuracy, and
area under the curve (AUC) using confusion matrix [31]

and receiver operating characteristics (ROC) curve analysis
[32]. The experimental results of confusion matrix are shown
in Table 4.

In general, the results from a training set are better than
those of a validation set because of differences in dataset vol-
umes. Sensitivity was defined as the probability of correctly
matching NOCD. Because NOCD has less data than OCD,
it is difficult to match. The proposed method has a 61.77%
improved performance compared to those of the other
models. In other words, the probability of matching NOCD
is very important because it is a prediction of the risk of the
pathology stage. Specificity was defined as the probability of
correctly matching OCD. NB had the highest specificity, with
93.78%, but its sensitivity was low. The proposed method
showed 93.56% higher performance than those of the other
models. The accuracy was defined as the probability of pre-
dicting both NOCD and OCD. The proposed model had
the highest accuracy, at 81.27%. The AUCs are shown in
Figure 3 and Table 5.

The ROC curve has the highest DBN-DS of 0.777. The
error of all models was about 0.01, and the p values were all
0.000, so the experimental results of the ROC curves were
usable. The DBN-DS predicted each of the three classifiers
constructed for each variable separately and combined them
into one. In this paper, we propose a new classification
method for the classifier. The proposed method is based on
the classification of two classifiers. In addition, as the DS
computes probability, if one classifier predicts NOCD at a

x2

Patient PSA Gleason
score 

Clinical T

1 440.6 9 T2c
2 152.8 8 T3b
3 108.8 7b T1c
... ... ... ...

KPCR

Binary
transfer

Patient PSA Gleason
score 

Clinical T

1 110111000 000000010 00000100
2 010011000 000000100 00000001
3 001101100 000001000 00100000
... ... ... ...

... ...

Initial PSA (DBN#1)

...

x1

x9

...

... ...

Gleason score (DBN#2)

...

x1

x2

x9

...

... ...

Clinical T (DBN#3)
...

x1

x2

x8

...

m1
(OCD)

m1
(NOCD)

m2
(OCD)
m2

(NOCD)

m3
(OCD)
m3

(NOCD)

m4
(NOCD)

m4
(OCD)

Dempster-Shafer

Figure 2: DBN-DS-based multiclassifier.
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high number and the two classifiers predict a low number for
OCD, then the NOCD is finally predicted based on the belief
value of the DS algorithm.

Next, the DBN-DS was evaluated. The result of the
confusion matrix for DBN-DS is shown in Table 6. In
addition, the results of the ROC curve analysis are shown
in Figure 4 and Table 7. DBN#1 learned the initial PSA.
DBN#2 learned the Gleason score, while DBN#3 learned
the clinical T stage.

Among the three variables, the initial PSA level had the
highest prediction rate. The PSA level is closely related to
pathologic stage and is the most important parameter in
prostate cancer. Variables combined with PSA showed a high
prediction rate. In other words, the reason for the high
prediction rate was that the Gleason score and clinical T
stage also affect the pathology. However, the combination
of Gleason score and clinical T stage had a lower accuracy
than that predicted by the initial PSA level alone. The two
variables are uncertain because they are diagnosed according
to the doctor’s experience. However, when combined with
PSA level, the performance was much higher. In this study,
we found that initial PSA was the most important predictor,
and that the Gleason score and clinical T stage were also
important predictors.

4. Discussion and Conclusion

Prediction models for pathology staging of prostate cancer
are based on clinical tests and can be used to predict the
spread of cancer. It is possible to diagnose cancer more pre-
cisely at the postoperative, pathological stage and to deter-
mine the degree of metastasis of prostate cancer.

We proposed a DBN-DS-based multiclassifier approach
to predict the pathologic stage of prostate cancer. The pro-
posed method provides a predictive model to improve accu-
racy through deep learning and information fusion based on
the relationship between data measured using clinical tests.
The inputs include initial PSA level, Gleason scores, and clin-
ical T stage variables. The output can be OCD or NOCD in
pathological staging (pT). This approach was evaluated using
an existing validated patient dataset that included 6345
patient records from the KPCR database, which collected
data from six tertiary medical institutions.

The performance of the proposed DBN-DS was com-
pared with that of the NB, LR, BPN, SVM, RF, DBN, and Par-
tin tables. The results showed that the proposed DBN-DS
had better sensitivity and accuracy than all other methods.

In a recent pathological staging methodology study,
Cosma et al. [4] use a neuro-fuzzy model, with an approach
similar to ours. The results also indicated that the neural
network-fuzzy-based computational intelligence learning
approach is suitable for prostate cancer staging and exceeds
the performance of the Partin tables. The neuro-fuzzy
model and our proposed method aim to predict whether
a patient has OCD (pT2) or NOCD (pT3+). All methods
use the initial PSA level, Gleason scores, and clinical T stage
to predict the pathologic stage of prostate cancer, but the

1.0

0.8

0.6

0.4Se
ns

iti
vi

ty

0.2

0.0
0.0 0.2 0.4 06

1 − specificity
0.8

Partin table
C4.5
NB
LR
ANN

SVM
RF
DBN
DBN_DS
Reference

1.0

Figure 3: ROC curve results of all classification methods using the
validation set.

Table 4: Experimental results of all classification methods between the training and validation sets.

Training set Validation set
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Partin table 45.96% 88.44% 70.52% 52.69% 71.36% 64.14%

C4.5 64.46% 91.32% 80.46% 56.61% 85.22% 74.15%

NB 64.46% 93.30% 81.64% 58.86% 93.78% 80.27%

LR 60.65% 92.16% 79.42% 57.29% 85.64% 74.67%

BPN 63.90% 92.02% 80.60% 61.66% 85.57% 76.32%

SVM 52.13% 89.21% 74.35% 52.13% 84.87% 72.20%

RF 57.37% 86.43% 74.86% 56.73% 70.93% 65.44%

DBN 44.61 88.04 71.65% 50.56% 85.01% 71.68%

DBN-DS (proposed) 65.13% 94.29% 82.60% 61.77% 93.56% 81.27%
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DBN-DS predicts more patient data than other studies. In
addition, it is possible to learn more deeply through the
DBN-DS in order to improve the prediction performance
in the existing DBN. The neuro-fuzzy model obtained an
area under the curve (AUC) of 0.812, while the nomogram
of the AJCC achieved an AUC of 0.582. Our proposed
DBN-DS achieved an AUC of 0.777, compared to 0.620 for
the Partin tables. This result is similar to that reported by
Cosma et al. [4], although different data sets were used for
each study; however, they show a high consistency with the
results of the present study.

Currently, the proposed DBN-DS method is imple-
mented as a research tool. Once the clinical evaluation is
completed, the proposed tool will be developed as an easy-
to-use clinical decision support system that can be accessed
by clinicians.
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Table 5: Results of a DBN-DS confusion matrix comparing the training and validation sets.

Variable
Training set Validation set

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

DBN#1 Initial PSA 38.57% 91.39% 70.78% 41.93% 88.68% 70.60%

DBN#2 Gleason score 32.51% 89.18% 67.26% 37.00% 88.47% 68.56%

DBN#3 Clinical T stage 21.19% 94.20% 65.96% 26.23% 93.85% 67.69%

DBN#1, DBN#2 Initial PSA, Gleason score 41.48% 93.71% 73.50% 41.48% 93.00% 73.07%

DBN#1, DBN#3 Initial PSA, Clinical T stage 40.02% 94.55% 73.46% 40.02% 93.85% 73.03%

DBN#2, DBN#3 Gleason score, Clinical T stage 34.19% 94.91% 71.42% 34.19% 93.49% 70.56%

DBN#1, DBN#2,
DBN#3 (proposed)

Initial PSA, Gleason score, Clinical T stage 65.13% 94.29% 82.60% 61.77% 93.56% 81.27%

Table 6: Detailed ROC curve analysis results of all classification
methods using the validation set.

AUC p value
95% confidence interval

Lower bound Upper bound

Partin table 0.620± 0.012 0.000 0.597 0.644

C4.5 0.709± 0.012 0.000 0.686 0.731

NB 0.763± 0.011 0.000 0.741 0.785

LR 0.715± 0.012 0.000 0.692 0.737

ANN 0.736± 0.012 0.000 0.714 0.758

SVM 0.685± 0.012 0.000 0.662 0.708

RF 0.638± 0.012 0.000 0.615 0.662

DBN 0.678± 0.012 0.000 0.655 0.701

DBN-DS 0.777± 0.011 0.000 0.755 0.798

DBN#1
DBN#2
DBN#3
DBN#1_DBN#2

DBN#1_DBN#3
DBN#2_DBN#3
DBN#1_DBN#2_DBN#3
Reference

1.0

0.8

0.6

0.4Se
ns

iti
vi
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0.2

0.0
0.0 0.2 0.4 0.6

1 − specificity
0.8 1.0

Figure 4: ROC curve results of DBN-DS using a validation set.

Table 7: Detailed ROC curve result of DBN-DS using validation set.

AUC p value

95% confidence
interval

Lower
bound

Upper
bound

DBN#1 0.653± 0.012 0.000 0.629 0.677

DBN#2 0.627± 0.012 0.000 0.603 0.651

DBN#3 0.600± 0.012 0.000 0.576 0.625

DBN#1, DBN#2 0.672± 0.012 0.000 0.649 0.696

DBN#1, DBN#3 0.669± 0.012 0.000 0.646 0.693

DBN#2, DBN#3 0.638± 0.012 0.000 0.614 0.663

DBN#1, DBN#2,
DBN#3
(proposed)

0.777± 0.011 0.000 0.755 0.798

7Journal of Healthcare Engineering



References

[1] “International Agency for Research on Cancer—GLOBO-
CAN,” 2008, December 2017, http://globocan.iarc.fr/.

[2] C. Pound, A. W. Partin, M. A. Eisenberger, D. W. Chan,
J. D. Pearson, and P. C. Walsh, “Natural history of progression
after PSA elevation following radical prostatectomy,” JAMA,
vol. 281, no. 17, pp. 1591–1597, 1999.

[3] J. E. Oesterling, C. B. Brendler, J. I. Epstein, A. W. Kimball Jr,
and P. C. Walsh, “Correlation of clinical stage, serum prostatic
acid phosphatase and preoperative Gleason grade with final
pathological stage in 275 patients with clinically localized
adenocarcinoma of the prostate,” The Journal of Urology,
vol. 138, no. 1, pp. 92–98, 1987.

[4] G. Cosma, G. Acampora, D. Brown, R. C. Rees, M. Khan, and
A. G. Pockley, “Prediction of pathological stage in patients
with prostate cancer: a neuro-fuzzy model,” PLoS One,
vol. 11, no. 6, article e0155856, 2016.

[5] Y. Matsui, S. Egawa, C. Tsukayama et al., “Artificial neural net-
work analysis for predicting pathological stage of clinically
localized prostate cancer in the Japanese population,” Japanese
Journal of Clinical Oncology, vol. 32, no. 12, pp. 530–535, 2002.

[6] J. Epstein, P. Walsh, M. Carmichael, and C. Brendler,
“Pathologic and clinical findings to predict tumor extent of
nonpalpable (stage T1 c) prostate cancer,” JAMA, vol. 271,
no. 5, pp. 368–374, 1994.

[7] M. L. Blute, O. Nativ, H. Zincke, G. M. Farrow, T. Therneau,
and M. M. Lieber, “Pattern of failure after radical retropubic
prostatectomy for clinically and pathologically localized ade-
nocarcinoma of the prostate: influence of tumor deoxyribonu-
cleic acid ploidy,” The Journal of Urology, vol. 142, no. 5,
pp. 1262–1265, 1989.

[8] J. I. Epstein, G. Pizov, and P. C. Walsh, “Correlation of patho-
logic findings with progression after radical retropubic prosta-
tectomy,” Cancer, vol. 71, no. 11, pp. 3582–3593, 1993.

[9] A. W. Partin, M. W. Kattan, E. N. Subong et al., “Combination
of prostate-specific antigen, clinical stage, and Gleason score to
predict pathological stage of localized prostate cancer: a multi-
institutional update,” JAMA, vol. 277, no. 18, pp. 1445–1451,
1997.

[10] D. V. Makarov, B. J. Trock, E. B. Humphreys et al., “Updated
nomogram to predict pathologic stage of prostate cancer
given prostate-specific antigen level, clinical stage, and biopsy
Gleason score (Partin tables) based on cases from 2000 to
2005,” Urology, vol. 69, no. 6, pp. 1095–1101, 2007.

[11] C. W. Tsao, C. Y. Liu, T. L. Cha et al., “Artificial neural net-
work for predicting pathological stage of clinically localized
prostate cancer in a Taiwanese population,” Journal of the Chi-
nese Medical Association, vol. 77, no. 10, pp. 513–518, 2014.

[12] A. Tewari, C. Porter, J. Peabody et al., “Predictive modeling
techniques in prostate cancer,” Molecular Urology, vol. 5,
no. 4, pp. 147–152, 2001.

[13] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew,
“Deep learning for visual understanding: a review,”Neurocom-
puting, vol. 187, pp. 27–48, 2016.

[14] R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann
machines,” in Proceedings of the twelfth international confer-
ence on artificial intelligence and statistics, AIS- TATS 2009,
pp. 448–455, Clearwater Beach, FL, USA, 2009.

[15] L. Honglak, G. Roger, R. Rajesh, and Y. N. Andrew, “Convolu-
tional deep belief networks for scalable unsupervised learning
of hierarchical representations,” in Proceedings of the 26th

Annual International Conference on Machine Learning - ICML
'09, pp. 609–616, Montreal, QC, Canada, 2009.

[16] H. Z. Wang, G. B. Wang, G. Q. Li, J. C. Peng, and Y. T. Liu,
“Deep belief network based deterministic and probabilistic
wind speed forecasting approach,” Applied Energy, vol. 182,
pp. 80–93, 2016.

[17] R. R. Yager, “On the Dempster-Shafer framework and new
combination rules,” Information Sciences, vol. 41, no. 2,
pp. 93–137, 1987.

[18] V. Khatibi and G. A. Montazer, “A fuzzy-evidential hybrid
inference engine for coronary heart disease risk assessment,”
Expert Systems with Applications, vol. 37, no. 12, pp. 8536–
8542, 2010.

[19] A. P. Dempster, “Upper and lower probabilities induced by a
multivalued mapping,” The Annals of Mathematical Statistics,
vol. 38, no. 2, pp. 325–339, 1967.

[20] G. Shafer and R. Logan, “Implementing Dempster’s rule for
hierarchical evidence,” Artificial Intelligence, vol. 33, no. 3,
pp. 271–298, 1987.

[21] H. A. Moghaddam and S. Chodratnama, “Toward semantic
content-based image retrieval using Dempster–Shafer theory
in multi-label classification framework,” International Journal
of Multimedia Information Retrieval, vol. 6, no. 4, pp. 317–326,
2017.

[22] J. Y. Lee, “Clinical research using smart prostate cancer data-
base system (SPC-DB),” Translational Andrology and Urology,
vol. 3, p. AB18, 2014.

[23] S. B. Edge and C. C. Compton, “The American Joint Commit-
tee on Cancer: the 7th edition of the AJCC Cancer Staging
Manual and the future of TNM,” Annals of Surgical Oncology,
vol. 17, no. 6, pp. 1471–1474, 2010.

[24] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504–507, 2006.

[25] M. A. Salama, A. E. Hassanien, and A. A. Fahmy, “Deep belief
network for clustering and classification of a continuous data,”
in The 10th IEEE International Symposium on Signal Process-
ing and Information Technology, pp. 473–477, Luxor, Egypt,
2010.

[26] J. Schmidhuber, “Deep learning in neural networks: an over-
view,” Neural Networks, vol. 61, pp. 85–117, 2015.

[27] R. Ranawana and V. Palade, “Multi-classifier systems:
review and a roadmap for developers,” International Journal
of Hybrid Intelligent Systems, vol. 3, no. 1, pp. 35–61, 2006.

[28] A. Al-Ani and M. Deriche, “A new technique for combining
multiple classifiers using the Dempster-Shafer theory of evi-
dence,” Journal of Artificial Intelligence Research, vol. 17,
pp. 333–361, 2002.

[29] G. Shafer, “The Dempster–Shafer theory,” in Encyclopedia of
artificial intelligence (second Ed.), S. C. Shapiro, Ed., pp. 330-
331, Wiley, New York, NY, USA, 1992.

[30] O. Basir and X. Yuan, “Engine fault diagnosis based on multi-
sensor information fusion using Dempster–Shafer evidence
theory,” Information Fusion, vol. 8, no. 4, pp. 379–386, 2007.

[31] S. V. Stehman, “Selecting and interpreting measures of the-
matic classification accuracy,” Remote Sensing of Environment,
vol. 62, no. 1, pp. 77–89, 1997.

[32] J. A. Swets, Signal Detection Theory and ROC Analysis in
Psychology and Diagnostics: Collected Papers, Psychology
Press, New York, 2014.

8 Journal of Healthcare Engineering

http://globocan.iarc.fr/

	A Deep Belief Network and Dempster-Shafer-Based Multiclassifier for the Pathology Stage of Prostate Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Data Set
	2.2. Deep Belief Network
	2.3. Dempster-Shafer-Based Information Fusion

	3. Result
	3.1. Dataset Description
	3.2. DBN-DS Based Multiclassifier
	3.3. Experiments

	4. Discussion and Conclusion
	Conflicts of Interest
	Acknowledgments

