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Neuroimaging studies of cognitive and brain aging often yield massive datasets that

create many analytic and statistical challenges. In this paper, we discuss and address

several limitations in the existing work. (1) Linear models are often used to model

the age effects on neuroimaging markers, which may be inadequate in capturing the

potential nonlinear age effects. (2) Marginal correlations are often used in brain network

analysis, which are not efficient in characterizing a complex brain network. (3) Due to

the challenge of high-dimensionality, only a small subset of the regional neuroimaging

markers is considered in a prediction model, which could miss important regional

markers. To overcome those obstacles, we introduce several advanced statistical

methods for analyzing data from cognitive and brain aging studies. Specifically, we

introduce semiparametric models for modeling age effects, graphical models for brain

network analysis, and penalized regression methods for selecting the most important

markers in predicting cognitive outcomes. We illustrate these methods using the healthy

aging data from the Active Brain Study.

Keywords: semiparametric model, graphical model, penalized regression methods, structural covariance,

functional connectivity

INTRODUCTION

Multimodal neuroimaging collected in cognitive aging studies provides a noninvasive way to
investigate brain changes in structure, function, and metabolism as people age, and thus helps
us to understand age-related cognitive changes. However, the high-dimensionality and complex
structure of those multimodal neuroimaging data raise statistical challenges. Additionally, the age
range is large in aging studies and very often the age effects may not be linear in the large age
interval. For instance, participant’s age ranges from 50 to 90 in the Active Brain Study, a successful
aging cohort. To efficiently analyze those data, there is a strong need for introduction of advanced
statistical methods. We will elaborate on the limitations of several existing methods and introduce
three advanced statistical methods in sequence.

First, age is a complex variable and often has a nonlinear effect on the outcomes of interest.
In developmental studies, flexible semiparametric models have been well used, because it is well-
known that growth curves are nonlinear. However, in aging studies, linear or quadratic models
are often used to characterize age-related changes. Although a majority of aging research treats
aging as a linear process (constant rate of change) and linear models are often considered the
gold standard method for evaluating aging effects, this approach may not be the most effective
method for representing the complexity of aging data. For instance, Raz et al. (2010) used linear
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mixed effects models to characterize the age-related brain
structural changes in a longitudinal neuroimaging study with 76
participants whose age ranges from 49 to 85. Similarly, Resnick
et al. (2003) also used linear mixed effects models to show the
age-related brain structural changes in the longitudinal Baltimore
study. However, as noted in Fjell et al. (2010), Gogtay et al. (2004),
and Thompson et al. (2011); brain structure may show complex
age-related nonlinear changes, and could be misspecified by a
linear or quadratic model. We have shown that misspecified
linear models can result in biased estimates and low powers in
statistical tests (Chen et al., 2012). As a nonparametric method, a
spline model is recommended for its flexibility and robustness.
To accurately model the age trajectories of the neuroimaging
markers, we will introduce a spline-based semiparametric model
in the methods section and illustrate these methods using
the structural neuroimaging data from the Active Brain Study
in the example section. The semiparametric model excels at
determining rates of global and regional brain atrophy and
identifying vulnerable regions of interest (ROIs) susceptible to
aging.

Second, marginal correlations are often used in brain network
analyses. For example, structural covariance was studied in
Mechelli et al. (2005) and Alexander-Bloch et al. (2013),
which may be related to structural and functional connectivity.
There is also a large literature on Pearson correlation based
functional connectivity analysis, where the correlation between
two functional magnetic resonance imaging (fMRI) time series
[that is the blood-oxygen-level dependent (BOLD) signal] is
computed. However, marginal correlation between two brain
ROIs is indirect and weak in the sense that all the components
in a system are correlated to some degree. Two regions can be
indirectly associated with each other due to their correlation with
a third region. Moreover, when the number of ROIs is large, the
sample covariance/correlation matrix is unstable, as the number
of parameters increases quadratically with the number of ROIs.
Alternatively, graphical models are attractive for inferring brain
connectivity due to their advantages over conventional marginal
correlation based analysis (Lauritzen, 1996; Yuan and Lin, 2007;
Koller and Friedman, 2009). Graphical models can generate
either partial correlations or a binary undirected graph. Sparse
penalty is used to regularize the loglikelihood function and make
the solution robust. Partial correlation is a desirable measure, as
it quantifies the conditional association between two ROIs given
the rest of ROIs. Partial correlation can be interpreted as the
adjusted correlation. Preliminary applications to neuroimaging
data can be found in Salvador et al. (2005), Valdés-Sosa et al.
(2005), and Smith (2012). In the methods section, we will
introduce two graphical methods for brain network analysis. We
will apply these methods to the cortical thickness data from the
Active Brain Study for building cortical networks.

Third, the high dimensional neuroimaging markers may
provide informative early signs of age-related cognitive and
functional decline. For example, brain atrophy in the basal
ganglia, hippocampus, and prefrontal areas often precedes the
clinical diagnosis of cognitive impairment (Amieva et al., 2005;
Grober et al., 2008; Jedynak et al., 2012). It is of great interest
to select the informative neuroimaging markers for predicting

cognitive decline. However, the high-dimensionality of the
neuroimaging markers posit challenges on how to efficiently pick
up the informative subset of the markers. Traditional backward
or forward variable selection methods are computationally
inefficient given the large number of neuroimaging markers.
Also neuroimaging markers are often highly correlated with
each other. The unpenalized least square based estimates
often suffer from high variability or instability (that is with
large variance). Moreover, when the number of neuroimaging
markers is larger than the sample size, the design matrix
is singular and not invertible, and thus there is no unique
estimate. In contrast, penalized regression methods can lead
to stable solutions and are computationally efficient by using
advanced algorithms (Tibshirani, 1996; Fan and Li, 2001; Zou,
2006; Meinshausen and Bühlmann, 2010). Penalized regression
methods can simultaneously select and estimate the effects
of the predictors. The variable selection is achieved by the
sparsity penalty. In the methods section, we will introduce
penalized regression methods for selecting the optimal subset of
neuroimaging biomarkers for predicting cognitive outcomes. We
will illustrate those methods using structural neuroimaging and
cognitive data from the Active Brain Study.

The rest of the paper is structured as follows. In the methods
section, we introduce the three sets of methods including
the spline-based semiparametric model, graphical models, and
penalized regression methods. In the examples section, we apply
those methods to the data from the Active brain study. We end
our paper with general discussions.

METHODS

Semiparametric Models and Methods
We first introduce some notations. Let n be the number of
subjects and let R be the number of ROIs. For the ith participant,
denote ti as the age, denote Yir as the structural/metabolic
imaging markers [for instance, volume, fractional anisotropy
(FA), myo-inositol (MI)] at the rth ROI, and denote Zi as other
predictors such as education and sex that we want to study. To
accurately and efficiently model the age effects, we introduce the
following semiparametric model (1) for neuroimaging markers
in cross-sectional studies.

Yir = µr(ti)+ Ziβr + ǫir, i = 1, · · · , n, r = 1, · · · ,R, (1)

where µr(t) is the unspecified aging trajectory for the older
people at the rth ROI evaluated at age t, and βr are the
regression coefficients of the other predictors at the ROI. The
measurement errors ǫir are assumed to be independently and
identically distributed and follow a normal distribution N(0, σ 2

r )
with mean zero and variance σ 2

r . Model (1) consists of both
the nonparametric part µr(t) and the parametric part Zβr ,
and thus it is called semiparametric model. The semiparametric
model is a parsimonious way to both capture the potential
nonlinear age trajectory and investigate the effects of other
predictors. Notably, the traditional linear model is a special case
of model (1), where the function µr(t) is specified as a linear
function β0r + β1rt. Extension of model (1) to longitudinal data
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case is straightforward, which can be accomplished by either
introducing subject-specific random effects or using generalized
least square methods (Wood, 2006; Wu and Zhang, 2006).

For estimation, we use spline basis functions to approximate
the unspecified function µr(t). Particularly, we assume µr(t) =
B(t)θ r , where B(t) is a set of B-spline basis functions and θ r is the
associated spline coefficients (de Boor, 1978). The B-spline basis
functions are piecewise polynomial functions in the age interval.
A smoothing penalty λ

∫
[µ′′

r (t)]
2dt is used to achieve smoothness

of the fitted function µ̂r(t), where µ′′
r (t) is the second derivative

function ofµr(t), and λ ≥ 0 is a smoothing parameter controlling
the degree of smoothness. The tuning parameter λ is crucial for
the estimation and inference and is often chosen by data driven
methods. By minimizing the penalized log-likelihood function,
we can obtain the estimate for these parameters including θ r and
βr . Compared to traditional linear model and methods, spline
method offers flexible estimation of these functions. Based on
the semiparametric model (1), we will be able to more accurately
delineate the aging trajectories and their derivative functions and
get unbiased estimates for the parametric part.

The spline-based semiparametric model and methods have
been implemented in several R packages (R Core Team, 2012)
including the mgcv package (Wood, 2006). The gam function in
mgcv can output the estimates and inferential results for both
the parametric and nonparametric parts. Specifically, for the
parametric part, estimates of the regression coefficients and p-
values are provided which is similar to a linear regression model.
For the nonparametric part, the procedure provides the estimate
and pointwise confidence intervals for the estimated function
and a p-value for testing the function as a constant. The 95%
point-wise confidence interval [µL

r (t), µ
U
r (t)] for µr(t) provides

the variability at the age t in the rth ROI, in addition to the
magnitude. The first derivative function of µr(t) indicate the rate
of brain atrophy, where in the linear case is the slope of the line.
The first derivative functions are can be easily obtained using
B′(t)θ , where B′(t) are the first derivative functions of the B-spline
basis functions. Based on the first derivative functions of the
aging trajectories, ROIs/markers show early atrophy/abnormality
could be candidate biomarkers for early diagnosis of diseases. We
adjust for multiple comparison by controlling the false discovery
rate (FDR) (Benjamini and Hochberg, 1995; Benjamini and
Heller, 2007).
Remark 1Misspecified linear models could introduce bias for the
estimates of µr(t) and βr , that is for both the nonparametric and
parametric parts.
Remark 2 To achieve good approximations of these unspecified
functions, enough number of basis functions should be used for
the penalized splines. If the procedure leads to an oversmooth
case, one can fit a regression cubic spline with fixed number of
knots without penalty, thus the degree of freedom is fixed.
Remark 3 Computing time is not a concern for ROI-level data.
Some statistical packages such as the vows have implemented
massive parallel algorithm for voxel-level data (Reiss et al., 2014).

Graphical Model and Methods
We first define a graph G = (V,E), where V is a set of
vertices/nodes, and E is a set of edges connecting pairs of

nodes in V . An adjacency matrix of a graph is a binary matrix
indicating the connection between the nodes. We introduce
graphical models for brain structural and functional network
analysis. In the past decade, Gaussian graphical model (GGM)
has been a hot topic in statistics as a tool for complex system
analysis. The GGM has many advantages over the traditional
marginal correlation based analysis including resulting in partial
correlations, i.e., direct dependency/independence, and sparse
networks. Let Y be an R-dimensional random variable following
a multivariate Gaussian distributionN(µ,G−1) with meanµ and
covariance G

−1. G is a precision matrix (inverse covariance),
and the i, jth component of G, grs = 0 indicates conditional
independence between ROIs r and s given all the other ROIs
{1, · · · ,R}/{r, s}. The partial correlation between ROIs r and s
is defined as ρrs = −grs/

√
grrgss (Lauritzen, 1996). We obtain a

sparse graph byminimizing the following penalized loglikelihood
function (Yuan and Lin, 2007):

argmin
G∈G

− log |G|+ 1

n

n∑

i=1

(Yi−µ)TG(Yi−µ)+λ
∑

r 6=s

|grs|, (2)

where argmin stands for argument of the minimum, G is the
set of R × R positive definite matrices, and λ ≥ 0 is the tuning
parameter chosen by a data-driven method. The lasso penalty
(Tibshirani, 1996) is used to regularize the loglikelihood function
and achieve a sparse solution. This method is often called
graphical lasso (glasso) in the statistical literature. Along the same
line, Meinshausen and Bühlmann (2006) proposed the node-
wise regression based approach for obtaining a binary graph.
Both the glasso and the node-wise regression methods have
been implemented in the R package huge with computational
efficient algorithms (Zhao et al., 2012). The huge function in the
huge package can provide estimate for the precision matrix or
adjacency matrix of an undirected graph. The stability selection
method (Meinshausen and Bühlmann, 2010) is preferred for the
selection of the tuning parameter, which controls the sparsity
of the estimated precision/adjacency matrix. A large tuning
parameter will penalize the loglikelihood function heavily and
shrink the small elements in the precision matrix/regression
coefficients to zero, while a smaller tuning parameter will barely
penalize the loglikelihood function and thus leads to many tiny
elements in the precision matrix/regression coefficients.

Once the graph is obtained, graph summary statistics such as
centrality measures and clustering coefficient can be computed.
For visualizing and summarizing graphical objects, the R package
igraph provides a set of sophisticated tools (Csardi and Nepusz,
2006).

Penalized Regression Methods
To utilize high-dimensional markers for predicting cognitive
outcomes, we introduce penalized regression methods for
linear models. Penalized regression methods can reduce the
dimensionality of the predictors by automatically selecting the
optimal subset. The variable selection is achieved by a sparsity
penalty such as lasso (Tibshirani, 1996), adaptive lasso (Zou,
2006), elastic net (Zou, 2006), SCAD (Fan and Li, 2001), or by
stability method (Meinshausen and Bühlmann, 2010). For the
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ith participant, let Yi be the cognitive outcome, and let Xi be
the stacked p × 1 vector of neuroimaging markers and other
covariates. We consider the following linear model and penalized
method.

Yi = Xiβ + ǫi, i = 1, · · · , n, (3)

β = arg min
β∈Rp

n∑

i=1

(Yi − Xiβ)
2 + λφ(|β|), (4)

where β are the coefficients for neuroimaging markers and
covariates, and φ(.) is a penalty function of the regression
coefficients β . By minimizing the penalized least squares (4),

we can obtain the penalized estimator β̂ . The sparsity penalty
shrinkages those small regression coefficients to zeros, thus the
procedure automatically leads to a subset of the predictors. If
β̂j = 0, then the jth predictor Xj is not selected. The sparsity of
the estimate is controlled by the tuning parameter λ ≥ 0, which
is usually chosen by data driven methods such as cross-validation
or generalized cross-validation.

Thanks to the implementation of efficient algorithms,
current software package can handle thousands of predictors
simultaneously for a medium sample size such as n = 80. In
general the computational time is moderate and depends on
the size of the data that is the sample size n and the number
of predictors p. One of the popular R package glmnet has
implemented a few penalized methods including lasso and elastic
net. The glmnet function in the glmnet package provides all the
coefficient solution paths as functions of the tuning parameter
λ. To get the optimal solution, the user needs to use the cross-
validation method to select the optimal tuning parameter with
the smallest mean squared error (MSE).
Remark 4 The penalized regression methods are applicable to
generalized outcomes including binary and count data as well.
For example, we can use penalized logistic regression methods
to select informative neuroimaging markers in predicting risk of
mild cognitive impairment (MCI).
Remark 5 Because the penalty shrinkages those regression
coefficients toward to zero according to their magnitude,
large differences in the original scale of those predictors
can mess up the selection. Therefore, it is recommended to
standardize the predictors and make all the variables in the same
scale.

EXAMPLES: THE ACTIVE BRAIN STUDY

We illustrate the introduced methods using the data from the
Active Brain Study. The aim of the study is to investigate the
brain changes associated with age-related cognitive decline via
multimodal neuroimaging. We consider n = 114 participants
with structural imaging. Among them 68% are female. The
mean age of the sample is 72.3 with the standard deviation
(SD) 10. Those participants are well educated as can be seen
from the mean education years = 16.2 (SD = 2.6). They also
show high cognitive performance with mean Montreal Cognitive
Assessment (MoCA) score 25.7 (SD = 2.6). The structural
imaging was processed using standard procedures implemented

in Freesurfer version 5.3 (Dale et al., 1999; Fischl et al., 2002).
For a more detailed description of the Freesurfer processing
methods used by our group see Szymkowicz et al. (2016). Brain
volumetric indices including regional and global volumes of
cortical and subcortical structures as well as cortical thickness
were generated. Particularly, we used the anatomical cortical
parcellation in Desikan et al. (2006), which generated 34 ROIs
in each hemisphere. Similarly, the subcortical segmentation of
a brain volume is based on the existence of an atlas containing
probabilistic information on the location of structures (Fischl
et al., 2002).

Aging-Related Trajectories of Brain
Regional Volumes and Areas
We are interested in delineating the aging trajectories for the
regional volumes and areas, while adjusting for sex, education,
and the total intracranial volume (ICV). For normalization
purpose, the regional volumes are divided by the ICV. To
check the nonlinearity of the age trajectories of the regional
volumes and areas, we first applied the loess (locally weighted
scatterplot smoothing) method using the R function loess, which
is a popular exploratory tool for checking nonlinear pattern. As
a lot of ROIs show nonlinear age trajectories of brain regional
volumes, we fit a semiparametric model for the normalized
volume at each ROI with nonparametric age trajectory and
parametric effects for sex and education using the gam function
in the mgcv package. Similarly, we fit a semiparametric model
for the area at each ROI with nonparametric age trajectory
and parametric effects for sex, education and ICV. Penalized
cubic B-splines with 10 basis functions are used to fit the
age trajectories. The restricted maximum likelihood (REML,
Reiss and Todd Ogden, 2009) method is used to select the
tuning parameters. For comparison, we also fit linear and
quadratic models for the age trajectories. The quadratic age
term is centered to achieve robustness. Alternatively, orthogonal
polynomial model can be used to avoid multicollinearity
problem.

We choose the normalized volume of the lateral ventricle
and putamen for illustration. Figure 1 shows the estimated age
trajectories (the solid lines) using different methods, and the
95% pointwise confidence intervals (the shaded area) for the B-
spline fits. The lateral ventricle displays considerable expansion
especially after age 70, while the putamen shows a large amount
of decline especially before age 75. Both the lateral ventricle
expansion and the putamen volume shrinkage indicate brain
atrophy as people age. We notice that both the loess and the
semiparametric fits indicate nonlinear age patterns. As displayed
in Figure 1, linear models are not flexible enough to capture
the nonlinear age trajectories. Linear models assume the rate
of age-related change is constant as people age, which may
not be true for all the ROIs. The deviation of the linear fits
from the semiparmetric model fitted curves are large in the
two ends and the middle part of the interval, that is less
than 60, greater than 80, and around 70. The quadratic age
trajectories show agreement with the B-spline fits around the
middle of the age interval [60, 80], but not in the two ends
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FIGURE 1 | Age trajectories of the normalized lateral ventricle and putamen volumes using the semiparametric model, loess fit, linear, and quadratic

regression models.

either. The loess fits are exploratory without adjusting for sex
and education. Interestingly the B-spline fits agree with the
loess fit for the lateral ventricle volume but not the putamen
volume.

Overall, age has significant effects on almost all of the cortical
and subcortical regional volumes in both hemispheres after FDR
correction. Particularly, the cortical frontal, temporal, parietal,
occipital, cingulate lobes are significantly impacted by aging
except the left caudal anterior cingulate, bilateral entorhinal,
pericalcarine, and frontal pole. The insula shows a marginally
significant age effect. The ventricle, subcortical regions, and
corpus callosum are significant except for the bilateral caudate.
Our findings are consistent with the literature that as people age,

the brain regional volumes shrink, while the ventricle system and
CSF considerably expand. We also observe that older females
tend to have less brain atrophy compared to older males after
FDR correction. Education does not have a significant effect on
any of those regional volumes after FDR correction. Additionally,
age shows similar effects on the cortical regional areas. However,
after adjusting for the ICV, neither sex nor education has an effect
on the cortical regional areas.

In summary, the linear/quadratic model due to its parametric
nature, may not be flexible enough to capture age-related brain
changes as people age. A nonparametric/semiparametric model
should be used if there is a convincingly nonlinear pattern as
suggested by an exploratory loess fit.
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Cortical Thickness Based Cortical Network
Structural covariance has been used in the literature for studying
cortical networks and patterns of neurodegeneration (Mechelli
et al., 2005; Alexander-Bloch et al., 2013). Here, we are interested
in applying graphical models to investigate the cortical network
using the cortical thickness data from the Active Brain Study.
We consider the cortical thickness at 34 ROIs in each of the
hemispheres. For summary purpose, we group the 68 cortical
ROIs into six lobes including the frontal, temporal, parietal,
occipital, cingulate, and insula. We first compute the marginal
Pearson correlation for the structural covariance/correlation. We
then use the huge function to obtain the partial correlation (based
on the precision matrix) and a binary undirected graph (or
equivalently the adjacency matrix) using the glasso and node-
wise regression respectively. The tuning parameters are selected
by the stability method (Liu et al., 2010; Meinshausen and
Bühlmann, 2010).

The results are summarized in Figure 2. The top two patterns
in Figure 2 display the thresholded marginal/partial correlation
map for the 68 cortical ROIs (34 ROIs per hemisphere). The
bottom two patterns display the undirected graph and the frontal
subgraph plotted using function in the igraph package. The
marginal correlation map is cut by 0.3. The marginal correlation
and partial correlation show very different patterns. The range of
the marginal correlation is much larger compared to the partial
correlation. The two graphical methods share some similarity.
The left and right correlation are strong even conditional on
all the other ROIs. There are both inter- and intra-hemisphere
correlation. Based on the bottom adjacency matrix plot, we
observe that the frontal ROIs tend to be conditionally correlated
(see also the bottom right panel in Figure 2). Other graph
summary statistics can be easily calculated using functions in the
igraph package such as degree of centrality.

In summary, the marginal correlation and partial correlation
map often show different patterns. The interpretation of the two
are also different. The marginal correlation between two ROIs
does not account for the involvement of other ROIs, while the
partial correlation between two ROIs adjusts for other ROIs. Due
to the lasso penalty, the partial correlation map and the adjacency
matrix are sparse that is some of the partial correlations/elements
of the adjacency matrix are estimated to be zeros.

Predicting MoCA Using Brain Regional
Volumes
In this section, we aim to select informative brain regional
volumes in predicting the cognitive outcome MoCA. We first
normalize regional volumes via dividing by the estimated
intracranial volume (ICV), then standardize the variables by
subtracting the sample mean and divided by sample standard
deviation to make the variables comparable. The predictors we
consider include the cortical and subcortical regional volumes,
age, sex, and education. We used the glmnet function in the
R package glmnet with both lasso and elastic net penalties. We
choose the tuning parameters by 10-fold cross-validation.

Table 1 summarizes the selected variables and their
coefficients using both penalties. The selected variables

include regional volumes from the frontal and temporal lobes,
subcortical regions, and demographic variables. Compared
to the elastic net penalty, the lasso penalty tends to choose a
small subset of correlated predictors. For example, the left pars
opercularis (Brodmann area 44) was selected but not the right
one. Consistent with the findings in the literature, we found
that volumes of subcortical and cortical ROIs including the left
accumbens, middle temporal, pars opercularis, temporal pole,
right entorhinal, medial-orbito-frontal, pars opercularis are
positively associated with MoCA.

The glmnet function can output the whole solution path.
Figure 3 displays the whole solution path for all the coefficients
as functions of the logarithm tuning parameter λ for the lasso
penalty. The vertical line corresponds to the optimal λ selected
by cross-validation. When the tuning parameter λ is small (that
is with less penalization), the magnitudes of the coefficients are
large and the variability is large. The traditional least square
estimate is similar to the small penalization case, which is not
stable. As the tuning parameter increases, the variability of
the coefficients declines. The regularization achieves the small
variance at the cost of introducing bias. The cross-validation
criterion selects the tuning parameter by balancing the variance
and bias.

To check the performance of the selected subset of the regional
volumes, we refit a model with the volume of the selected ROIs
and compare to the model with only age, sex, and education. The
selected regional volumes from the elastic net penalty explains
additional 19% variance in MoCA, where R2 increases from 16
to 35%. We conduct an ANOVA test to compare the two models,
where the p-value is less than 0.001.

DISCUSSIONS

Misspecified linear models are not uncommon in the literature,
which may lead to biased results and misleading conclusions.
Based on our previous neuroimaging analysis (Chen et al.,
2014, 2015), linear models may not always be appropriate for
characterizing the age-related brain changes, although it is the
default method due to its simplicity. In practice, cautions need
to be raised for the potential nonlinear age-related changes.
To minimize the potential bias, we introduced the spline-based
semiparametric models, which are more flexible and able to
capture the underlying age trends in the data. Notably a linear
model is a special case of the semiparametric model. When the
underlying trend is linear, semiparametric model agrees with the
linear model. Semiparametric methods have been implemented
in many statistical softwares such as R. One of the popular
implementations is the gam function in the mgcv package. The
gam function provides the estimated curves and inferential
results for both the parametric and the nonparametric parts.
Extension of the basic semiparametric model (1) has been
extensively studied in the past few decades in the statistical
literature. More sophisticated models such as varying coefficient
models and additive models have also been developed (Wood,
2006; Wu and Zhang, 2006). All these semiparametric methods
are scalable and applicable to voxel level data as well. The
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FIGURE 2 | Cortical thickness based cortical network. The top two patterns are Pearson’s correlation map (left) and partial correlation map (from the Glasso;

right) for the cortical network. The bottom two patterns are adjacency matrix of the undirected graph (from the node-wise regression; left) and graphical map of the

frontal lobe (right).

R package vows has implemented semiparametric models for
voxel-level data. A parallel algorithm is implemented to speed up
the computational procedure.

In the neuroimaging literature, network analysis provides
a systematic way to study the brain structural and functional
changes. The use of network analysis is a remarkable progress

from the pairwise relationship between ROIs. However,
researchers often compute the marginal correlation then
threshold the correlation matrix to obtain the graph/network. It
is well known that sample covariance/correlation matrix is highly
instable when the number of ROIs is large. The pairwise nature
of the marginal correlations hurts and limits the interpretation of
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TABLE 1 | Selected brain regional volumes and covariates in predicting MoCA.

lh.middle.temporal lh.pars.opercularis lh.pars.orbitalis lh.temporal.pole rh.entorhinal rh.medial.orbito.frontal

(temporal lobe) (frontal lobe) (frontal lobe) (temporal lobe) (temporal lobe) (frontal lobe)

Elastic-net 0.047 0.345 −0.320 0.145 0.188 0.048

LASSO 0.004 0.433 −0.343 0.154 0.193 0.005

rh.pars.opercularis lh.Accumbens Age Sex (F vs. M) Education

(frontal lobe)

Elastic-net 0.031 0.309 −0.231 0.331 0.177

LASSO - 0.358 −0.225 0.329 0.177

FIGURE 3 | Solution paths from the penalized regression with lasso penalty.

the subsequent network based results. To address the limitation
of the marginal correlation, we introduced two Gaussian
graphical models, which can generate either partial correlations
or an undirected graph. Under the multivariate Gaussian
assumption, a zero partial correlation for two ROIs given
all the other ROIs is equivalent to conditional independence
between the two ROIs. Similarly, for an undirected Gaussian
graph, the edges indicate conditional dependence between
ROIs. We illustrated the graphical models using the cortical
thickness data, where the generated cortical networks may be
related to the cortical structural connectivity. The application
of graphical model to fMRI for investigating functional
connectivity is straightforward, but need to be modified to
account for the temporal correlation within each time series.
Besides partial correlation in the time domain, there is a

few works on correlation measure in the frequency domain
such as the total independence (Wen et al., 2012) and partial
correlation for multivariate time series (Fried and Didelez,
2005).

For testing the brain network differences between groups such
as young vs. older, there are three levels of tests including the
edge-level, node-level, and subgraph-level (Nichols and Holmes,
2002; Kim et al., 2014, 2015; Narayan and Allen, 2016). The
edge-level testing approach first tests the group differences at the
edges one by one, then applies multiple correction for the p-
values such as FDR correction. The node-level testing method
investigates the group differences in graph summary statistics
at each node such as degree of centrality. The subgraph-level
testing aims to detect either topologically connected cluster
difference (Zalesky et al., 2010) or differences in graph overall
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metrics such as clustering coefficient. The three levels of testing
approaches provide complementary ways of testing the brain
network differences.

Efficiently and accurately predicting cognitive decline is a
central topic in cognitive and brain aging studies. In practice,
very often an a priori subset of neuroimaging biomarkers
are used to predict cognitive outcomes, which are based on
the predetermined hypothesis. Hypothesis-driven methods are
a recommended way to conduct research that can generate
reproducible results. However, by chance, wemaymiss important
neuroimaging markers that could indeed be predictive for
cognitive decline. We introduced penalized regression methods
for incorporating a large amount of neuroimaging biomarkers in
predicting cognitive outcomes, where the number of predictors
can be close to or even larger than the number of subjects.
These data-driven methods can simultaneously estimate the
regression coefficients and select a subset of the high-dimensional
predictors. We illustrated those methods using the brain
regional volumes in predicting MoCA outcomes. Moreover,
these methods are applicable to categorical cognitive impairment
outcomes such as a variable with three nominal levels: normal,
mild cognitive impairment, and dementia. In addition to the
penalized regression methods, some machine learning type of
methods such as penalized support vector machine (SVM) can
be used for building prediction/classification rule based on
high dimensional neuroimaging biomarkers (Zhu et al., 2004;
Zhang et al., 2006; Wu and Liu, 2007; Robinson et al., 2015).
For long term followup longitudinal studies, penalized mixed
effects model can be used to improve the prediction accuracy
by incorporating both the individual trajectories and baseline

or longitudinal neuroimaging biomarkers (Bondell et al., 2010;
Ibrahim et al., 2011).

Neuroimaging data collected in studies of cognitive and brain
aging raise statistical and analytic challenges due to the high
dimensionality and complex structure. Fortunately, advanced
statistical methods developed in the past few decades for high
dimensional data and complex structured data could be applied
for leveraging the multimodal neuroimaging analysis. These
approaches provide a good starting point for analyzing such data.
However, there is a strong need for developing new statistical
methods that are specific to the multimodal neuroimaging
analyses in cognitive and brain aging studies.
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