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Abstract

Biological aging reflects decline in physiological functions and is an effective indicator of

morbidity and mortality. Numerous epigenetic age calculators are available, however

biological aging calculators based on transcription remain scarce. Here, we introduce

RNAAgeCalc, a versatile across-tissue and tissue-specific transcriptional age calculator. By

performing a meta-analysis of transcriptional age signature across multi-tissues using the

GTEx database, we identify 1,616 common age-related genes, as well as tissue-specific

age-related genes. Based on these genes, we develop new across-tissue and tissue-spe-

cific age predictors. We show that our transcriptional age calculator outperforms other prior

age related gene signatures as indicated by the higher correlation with chronological age as

well as lower median and median error. Our results also indicate that both racial and tissue

differences are associated with transcriptional age. Furthermore, we demonstrate that the

transcriptional age acceleration computed from our within-tissue predictor is significantly

correlated with mutation burden, mortality risk and cancer stage in several types of cancer

from the TCGA database, and offers complementary information to DNA methylation

age. RNAAgeCalc is available at http://www.ams.sunysb.edu/~pfkuan/softwares.

html#RNAAgeCalc, both as Bioconductor and Python packages, accompanied by a user-

friendly interactive Shiny app.

Introduction

Aging is among the most complex phenotype and is a well-known risk factor for a myriad of

diseases including cardiovascular, diabetes, arthritis, neurodegeneration and cancer [1].

Increasing evidence has pointed to the interactions between genetics, epigenetics and environ-

mental factors in the aging process [2]. Over the last decade, there has been a growing body of

research in identifying genetic and epigenetic biomarkers of aging to decipher the molecular

mechanisms underpinning disease susceptibility. For example, the genome-wide association

studies (GWAS) have identified genetic loci associated with longevity and several aging-related

diseases [3–6]. As aging is a multifactorial process determined by the dynamic nature of static

genetics as well as stochastic epigenetic variation and transcriptomics regulation, both DNA
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methylation and gene expression have emerged as promising hallmark for understanding the

aging process and its associated diseases.

Numerous estimators have been developed to predict human aging from DNA methylation

data profiled on the Illumina Infinium HumanMethylation450K BeadChip. Among the most

widely used epigenetic age estimator are the DNA methylation age calculator of Horvath [7]

and Hannum et al [8], by regressing chronological age on DNA methylation. Specifically, Hor-

vath [7] derived a multi-tissue and cell types DNA methylation age (DNAm age) estimator

across the entire lifespan of human. The predictor was constructed using> 8,000 non-cancer

samples from 82 DNA methylation datasets, including 51 healthy tissues and cell types based

on elastic net [9] model, a penalized regression statistical framework which retained 353 CpGs

in the final model. On the other hand, Hannum et al [8] developed a 71-CpGs DNA methyla-

tion age calculator based on the whole blood of 656 human samples aged 19 to 101. While the

first generation DNA methylation age estimators including Horvath’s clock and Hannum’s

clock were developed based on chronological age, the second generation DNA methylation

age estimators were obtained by optimizing the prediction error on phenotypic age derived

from clinical attributes associated with mortality and morbidity. This includes PhenoAge [10]

and GrimAge [11] which aim to improve prediction of aging related outcomes (e.g., time-to-

death, time-to-disease for cancer, Alzheimer’s disease and cardiovascular).

In addition to DNA methylation, changes in gene expression have been shown to be associ-

ated with aging and aging-related outcomes [12–19]. Specifically, de Magalhaes et al. [12]

identified 56 and 17 genes consistently over- and under-expressed with chronological age,

respectively by performing a meta-analysis on 27 microarray datasets from mice, rats and

human subjects. Their age specific signature was obtained by first regressing logarithm trans-

formed gene expression on chronological age for each individual microarray dataset. The sig-

nificance of differential expression in each dataset was determined via a two-tailed F-test,

followed by binomial tests to identify genes that were consistently over- or under-expressed

across datasets. This study was based on microarray data and 23 out of 27 datasets were from

mice or rats subjects, potentially limiting the transferability of the derived age related gene sig-

nature to human datasets. As shown in the Results section below, the gene signature of de

Magalhaes’s resulted in biased prediction of RNA age based on human RNA-Seq datasets. A

closely related work was the development of the GenAge (version 19) database of aging-related

genes, including 307 genes potentially related to human aging [13]. Unlike majority of the

gene signatures which were typically derived from statistical models (e.g., study specific associ-

ation analysis or meta-analysis), the genes in GenAge were manually curated by summarizing

the biological properties of genes from > 2,000 references on human and animal aging studies

across different tissues.

Besides the de Magalhaes et al. [12] signature and GenAge which included across-tissue

age-related genes, there were several gene signatures derived for individual tissues. For exam-

ple, Welle et al. [14] identified 718 probe sites that were related to aging in human muscle

using the microarray data from 8 healthy young men and 8 healthy old men. Rodwell et al.

[15] identified 985 genes related to aging in human kidney by analyzing the microarray data

from 74 healthy kidney with age ranging from 27 to 92 years old, whereas Lu et al. [16] identi-

fied 463 aging-related genes in human brain by analyzing the microarray data from 30 samples

with age ranging from 26 to 106 years old. Glass et al. [17] identified 1,672 and 188 genes asso-

ciated with age in skin and adipose tissue, respectively from 856 female twin samples profiled

on Illumina Human HT-12 V3 Bead chip.

To the best of our knowledge, the largest meta-analysis to identify age related genes was

conducted by Peters et al. [18] from whole blood gene expression of 14,983 human subjects of

European ancestry, profiled using microarray platform Illumina Human HT-12 V3 and HT-
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12 V4 BeadChip. 7,074 samples were used to construct the gene expression signature whereas

the remaining samples were used to test the signature. A total of 1,497 genes was significant in

both the training and test dataset. The authors further showed that the differences between the

predicted transcriptional age and chronological age were associated with biological features

related to aging, including blood pressure, cholesterol levels, fasting glucose and body mass

index. On the other hand, the most recent transcriptional age predictor was developed by

Fleischer et al. [19] based on a novel ensemble linear discriminant analysis (LDA) method

using human dermal fibroblast data. Their dataset consisted of gene expression profiled using

RNA-Seq from 133 healthy samples with age ranging from 1 to 94 years. The authors further

showed that ensemble LDA outperformed other prediction algorithms including elastic net,

support vector regression, and linear regression in terms of mean/median absolute difference

between predicted age and chronological age. By using leave-one-out cross validation, the

authors were able to obtain 4 years median absolute error and 7.8 years mean absolute error in

their dermal fibroblast dataset.

Unlike DNA methylation in which several user-friendly software and computer programs

are available for predicting epigenetic age across different tissues on the most widely utilized

Illumina methylation platform, there were limited transcriptional age predictors and the exist-

ing predictors have several pitfalls. First, most of the human transcriptional age predictors

were developed based on microarray data and/or limited to only a few tissues. Second, the

only predictor constructed using RNA-Seq data was the ensemble LDA predictor [19]. How-

ever, this predictor was derived based only on fibroblast data. To date, transcriptional studies

on aging using RNA-Seq data across different human tissues was limited. Recognizing the gap

in existing research of transcriptional aging based on RNA-Seq data, the aim of this study was

twofold, first to identify common age-related genes across tissues; second to construct tissue-

specific transcriptional age calculators for understanding how gene expression changed with

age in different human tissues. To this end, we utilized a large publicly available RNA-Seq

datasets as described in the following sections and developed a transcriptional age predictor

for RNA-Seq data. Our transcriptional age predictor is available both as Bioconductor and

Python packages RNAAgeCalc, accompanied by a user-friendly interactive Shiny app.

Results

An overview of the transcriptional age analysis pipeline and comparisons conducted in this

study was given in Fig 1.

Meta-analysis of age signature across multi-tissues public RNA-Seq dataset

We utilized the RNA-Seq data from the Genotype-Tissue Expression (GTEx) Program [20], a

publicly available database to identify across-tissue genes and construct our tissue-specific

transcriptional age calculator. We used GTEx V6 release which contained gene expression

data at gene, exon, and transcript level of 9,662 samples across 30 different tissues. Since tumor

showed notably different gene expression patterns compared to non-tumor [21], the 102

tumor samples from GTEx V6 release were omitted. The remaining samples with complete

gender and race information were used in the subsequent analysis. A list of GTEx tissues and

summary of non-tumor sample size by gender and race was given in S1 Table. The data pre-

processing steps were described in the Methods section.

One pitfall of individual gene expression studies for identifying age-related signatures was

the low overlap between the gene lists across different tissues [17, 22]. Meta-analysis of gene

expression for aggregating information from different datasets is a useful approach to identify

weak genetic signals and has been shown to be powerful in cancer studies [23]. In this paper,
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we performed a meta-analysis on the different tissues from the GTEx datasets, aiming at iden-

tifying common age-related gene expression signatures across the different tissues. After pre-

processing, a total of 26 tissues across 9,448 samples were included in our analysis. A summary

of number of genes, number of significant genes associated with age under different FDR cut-

offs was provided in S2 Table. Certain tissues (e.g. colon, brain) showed strong signal with

a high proportion of differentially expressed genes whereas other tissues including small

Fig 1. Overview of the transcriptional age analysis pipeline.

https://doi.org/10.1371/journal.pone.0237006.g001
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intestine, pancreas, pituitary exhibited relatively weak signal, with only a small proportion

of differentially expressed genes. At FDR < 0.05, we obtained 0.02%—33.08% genes with posi-

tive association and 0%—36.09% genes with negative association across tissues. On average,

13.91% and 13.85% genes were positively and negatively associated with age, respectively. The

differentially expressed genes had little overlap across tissues. Among the 26 tissues analyzed,

no gene was common across all tissues. Only one gene (EDA2R) was differentially expressed

in at least 20 tissues, supporting that age-related signatures were tissue-specific.

To overcome the low overlap across tissues and to identify common age-related genes

across tissues, we adapted the binomial test of de Magalhaes et al. [12]. A total of 1,616 com-

mon age-related gene across tissues (gender and race adjusted) were identified at FDR< 0.05,

as listed in S3 Table. These 1,616 genes are referred to as GTExAge thereafter. The details of

our approach was described in the Methods section.

Gene sets associated with common age-related genes

The list of genes which exhibited consistent positive association with age were enriched in

GO terms related to plasma-membrane adhesion molecules, response to interferon-gamma,

GTPase activity, and type I interferon. The enrichment analysis of genes negatively associated

with age identified KEGG terms including proteasome, ribosome biogenesis, RNA transport

in eukaryotes, citrate cycle, carbon metabolism, pyruvate metabolism, aminoacyl-tRNA bio-

synthesis as well as GO terms related to mitochondrial function, metabolic process, RNA pro-

cessing, ribosome biogenesis, and purine metabolic process. Our results were consistent with

the findings of Peters et al. [18] which showed that genes involved in RNA metabolism, ribo-

some biogenesis, purine metabolism, mitochondrial and metabolic pathways were negatively

correlated with age. In addition, genes involved in metabolism and mitochondrial protein syn-

thesis were shown to be down regulated in muscle [14]. The study of aging in human brain

[16] also indicated that age-related genes in brain played central roles in mitochondrial func-

tion. A full list of significant KEGG and GO terms was provided in S3 Table.

Within-tissue age prediction and tissue-specific age-related genes

Previous studies showed that age-related signatures were tissue-specific [22]. In this paper,

we obtained similar conclusion for the GTEx datasets (see meta-analysis section). To assess

whether RNA-Seq data was able to predict chronological age accurately, we first evaluated the

age prediction within tissue. We considered a rich class of machine learning prediction mod-

els, including elastic net [9], generalized boosted regression models (GBM) [24], random forest

[25], support vector regression (SVR) with radial kernel [26], and ensemble LDA [19], as well

as numerous candidate feature sets for each algorithm as described in the Methods section. A

summary of each candidate feature set and number of genes in each set was provided in S4

Table. Our objective here was twofold, first to evaluate which machine learning algorithm per-

formed the best in terms of age prediction, and second to evaluate whether the within-tissue

candidate feature sets had better performance compared to across-tissue candidate feature

sets.

S5 Table summarized the average Pearson correlation, Spearman correlation, median error,

mean error comparing the predicted age to chronological age for each prediction algorithm,

tissue and candidate feature set, across 10 repetitions. Elastic net outperformed other algo-

rithms as illustrated by the highest correlation and lowest mean and median error for almost

all tissues and all candidate feature sets. Although ensemble LDA [19] was developed using

dermal fibroblast samples, the prediction accuracy on the GTEx fibroblast data was lower than

the other algorithms. The prediction accuracy of this model on other tissues was also lower
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than the other algorithms. These observations indicated that the ensemble LDA [19] predictor

may not be generalizable to predict transcriptional age in other tissues or datasets. As elastic

net outperformed the other algorithms, we focused on the age prediction using elastic net in

the subsequent analysis. Further comparisons of elastic net and ensemble LDA were provided

in S1 Appendix and S6 Table.

In the elastic net model, the tissue-specific candidate feature sets based on DESeq2 and all

genes outperformed the across-tissue candidate feature sets in most tissues. Another tissue-

specific candidate feature set, namely Peters et al. [18] signature developed using microarray

blood samples, performed well on the blood samples in GTEx data. On the other hand, our

across-tissue signature GTExAge performed best in adrenal gland, breast, lung, small intestine,

and stomach but lower performance compared to tissue-specific candidate feature sets in

other tissues. Another across-tissue candidate feature set, namely de Magalhaes et al. [12] sig-

nature had low prediction accuracy compared to other signatures, which was partially attrib-

uted to the fact that it was developed using a large proportion of non-human samples. Taken

together, these results suggested that tissue-specific candidate feature sets performed better

than across-tissue candidate feature sets in terms of within-tissue age prediction.

Across-tissue age prediction

To better understand the generalizability of individual tissue-specific transcriptional age pre-

dictors to other tissues, we investigated the performance of across-tissue age prediction. Elastic

net model was trained on samples from one tissue, and tested on the other tissues. Each gene

signature discussed in the Methods section was applied and the Pearson correlation between

predicted age and chronological age in test tissue was calculated. The correlation matrix was

provided in S7 Table, where the row represented the training tissue whereas the column repre-

sented the test tissue. For each predictor, we calculated the average Pearson correlation across

the tissues tested. We then averaged the correlation across all the predictors to evaluate the per-

formance of each candidate feature set. Table 1 showed the average correlation and weighted

average correlation by sample size. Our across-tissue feature set GTExAge had the highest cor-

relation, followed by the tissue-specific feature set based on all genes. These results suggested

that our across-tissue feature set GTExAge was better than tissue-specific feature sets in

across-tissue age prediction.

The heatmap of Pearson correlation between predicted age and chronological age in each

tissue based on GTExAge candidate feature was given in Fig 2. The heatmaps of all genes and

DESeq2 candidate features were given in S1 Fig. Pairs of tissues showing higher correlation

were partially attributable to the tissue lineages and functional similarities [27]. For example,

transcriptional age predictor trained on adipose tissue predicted transcriptional age in blood

Table 1. Performance evaluation based on average Pearson correlations across tissues for each candidate feature set.

signature correlation signature correlation (sample size adjusted)

GTExAge 0.3266 GTExAge 0.3556

all 0.2910 all 0.3389

DESeq2 0.2524 Pearson 0.2883

Pearson 0.2507 DESeq2 0.2858

Dev 0.2257 Dev 0.2657

Peters [18] 0.1547 Peters [18] 0.1834

GenAge [13] 0.1247 GenAge [13] 0.1272

deMagalhaes [12] 0.0841 deMagalhaes [12] 0.0962

https://doi.org/10.1371/journal.pone.0237006.t001
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vessel with high correlation (r = 0.65 in GTExAge signature) due to the similarity in anatomic

and function of these two tissues [28].

Racial effect on transcriptional age predictor

To evaluate the effect of race on age prediction, we repeated the analysis of the meta-analysis,

within-tissue prediction, and across-tissue prediction using only subsets of White samples

which made up the racial majority in GTEx database. The predictors were trained on the

White samples only and tested on White and non-White samples respectively.

For the within-tissue prediction, the White samples were also divided into 50%-50% train-

ing-test set. The predictors were built on the training set and evaluated on the test set as well as

on the non-White samples. S8 Table summarized average Pearson correlation, Spearman cor-

relation, median error and mean error in each tissue. The predictors tested on White samples

Fig 2. Heat-map of Pearson correlation matrix between predicted age and chronological age (based on GTExAge genes).

https://doi.org/10.1371/journal.pone.0237006.g002
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had higher correlation and lower error compared to non-White samples in almost all tissues,

which indicated the age-related genes were associated with racial differences.

For the across-tissue prediction, elastic net model was constructed using White samples in

each tissue. The model was then tested on the White and non-White samples of all the other

tissues respectively. The correlation matrix on the White and non-White samples (based on

GTExAge candidate feature) was provided in S9 Table. S2 Fig compared the average correla-

tion on the test sets across all the predictors. The Wilcoxon rank sum test indicated that the

difference in the average correlation between the two groups was significant (p< 0.05).

Both the within-tissue and across-tissue prediction suggested that transcriptional age predic-

tor was racial-dependent. Thus, in our transcriptional age calculator, we provided the option

for computing transcriptional age based on models trained on GTEx White samples only.

Associations with prior aging candidate genes

Here we investigated the intersection between our transcriptional age signature to candidate

genes identified from previous studies. First, we compared our tissue-specific signature to

prior tissue-specific signatures as summarized in S3 Fig, S10 and S11 Tables.

In general, our tissue specific signatures obtained from DESeq2 analyses were consistent

with previous tissue-specific candidate age signatures, except for the comparison with Glass

et al. [17] skin signature, which could be attributed to the fact that the skin samples were taken

from different anatomic regions. Specifically, the skin samples of Glass et al. [17] were from

infra-umbilical whereas the skin samples in GTEx were from suprapubic skin, leg and fibro-

blast. To investigate the performance of transcriptional age prediction based on these prior

aging candidate genes, we performed within-tissue transcriptional age prediction using each

of these signatures. The procedure was similar to the within-tissue prediction section except

that the prior aging candidate genes were used to train the elastic net model. To evaluate the

prediction accuracy, we also reported the root mean squared error (RMSE) of the predicted

age. S12 Table summarized the comparison of prediction accuracy between DESeq2/Pearson

gene set and the prior candidate genes. For most tissues, the mean/median error and RMSE of

our tissue-specific genes selected by DESeq2 or Pearson correlation were lower compared to

the prior candidate genes.

Next, we compared our across-tissue signature (GTExAge) to the prior across-tissue signa-

tures, namely de Magalhaes [12], GenAge [13] and Horvath [7] signatures. Horvath [7] signa-

ture was based on 353 CpGs from DNA methylation, thus we considered the genes mapping

to these 353 CpGs in our comparison. We compared each of these prior across-tissue signature

to GTExAge signature by investigating their p-values in the binomial test for identifying com-

mon age-related genes across tissues (see Methods section for details). For each gene signature,

only a small proportion of genes were significant at p< 0.05 (S13 Table), indicating that our

signature GTExAge provided additional insights into age-related genes.

Association between transcriptional age and mutation burden in cancer

Since both methylome and gene expression play important roles in aging, to assess whether

they complement each other, we compared age-associated methylation to age-associated gene

expression in different tissues. We utilized the DNA methylation data and gene expression

data of The Cancer Genome Atlas (TCGA) consortium, a rich repository consisting of omics

data for multiple types of cancers. The samples with matched DNA methylation data and

RNASeq data were analyzed (see Methods section).

The number of mutations per cancer sample (mutation burden) was previously shown to be

negatively correlated with DNAm age acceleration [7]. Here, we aimed to determine whether
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transcriptional age acceleration had significant association with mutation burden. To this end,

we calculated the number of somatic mutations for each cancer sample in TCGA dataset. For

each cancer type, the Pearson and Spearman correlation between age acceleration residual and

logarithmic number of mutations were calculated. Correlation tests were performed and the p-

values were adjusted via the Benjamini & Hochberg false discovery rate (FDR) [29] procedure

(denoted padj). Table 2 compared DNAm age acceleration to transcriptional age acceleration,

where the transcriptional age was computed using all genes candidate feature set. The results

based on DESeq2 and GTExAge signature as candidate feature set were given in S14 Table.

For the transcriptional age acceleration, significant negative associations with mutation burden

were observed in brain (GBMLGG) and lung (LUAD) cancer (padj<0.05). Marginal negative

Table 2. Correlation between age acceleration residual and mutation burden.

transcriptional age acceleration (based on all genes)

Pearson_r Pearson_pv Pearson_pvadj Spearman_r Spearman_pv Spearman_pvadj

ACC -2.63E-01 1.91E-02 7.15E-02 -2.68E-01 1.71E-02 8.56E-02

BRCA 1.35E-02 7.27E-01 8.51E-01 2.48E-02 5.19E-01 7.08E-01

GBMLGG -2.53E-01 1.93E-09 1.45E-08 -1.90E-01 7.34E-06 5.51E-05

COADREAD -1.01E-02 8.43E-01 8.51E-01 -3.34E-03 9.48E-01 9.98E-01

ESCA 1.89E-01 1.06E-02 5.28E-02 9.60E-02 1.97E-01 3.70E-01

LIHC -5.62E-02 2.96E-01 4.44E-01 -4.80E-02 3.72E-01 5.58E-01

LUAD -2.41E-01 1.00E-11 1.51E-10 -2.43E-01 6.11E-12 9.16E-11

OV -6.22E-01 7.38E-02 2.21E-01 -5.83E-01 1.08E-01 3.24E-01

PAAD 2.40E-02 7.62E-01 8.51E-01 1.86E-04 9.98E-01 9.98E-01

PRAD 7.15E-02 1.18E-01 2.95E-01 7.51E-02 1.00E-01 3.24E-01

SKCM (tumor) 1.43E-01 1.49E-01 3.20E-01 1.38E-01 1.64E-01 3.51E-01

STAD 4.60E-02 3.84E-01 5.23E-01 5.88E-02 2.66E-01 4.43E-01

TGCT 1.67E-02 8.51E-01 8.51E-01 -4.39E-02 6.21E-01 7.17E-01

THCA -5.19E-02 2.56E-01 4.26E-01 -2.39E-02 6.00E-01 7.17E-01

SKCM (metastatic) 6.31E-02 2.32E-01 4.26E-01 7.63E-02 1.49E-01 3.51E-01

all tissues -1.24E-02 3.76E-01 -5.64E-03 6.88E-01

DNAm age acceleration

Pearson_r Pearson_pv Pearson_pvadj Spearman_r Spearman_pv Spearman_pvadj

ACC -1.19E-01 2.95E-01 3.65E-01 -9.89E-02 3.86E-01 4.95E-01

BRCA -1.50E-01 1.00E-04 7.52E-04 -2.32E-01 1.29E-09 1.94E-08

GBMLGG 8.42E-02 4.88E-02 8.13E-02 5.09E-02 2.34E-01 3.51E-01

COADREAD 2.35E-01 3.47E-06 5.21E-05 8.57E-02 9.47E-02 2.03E-01

ESCA -4.57E-03 9.51E-01 9.51E-01 7.75E-04 9.92E-01 9.92E-01

LIHC -1.20E-01 2.42E-02 6.06E-02 -1.41E-01 8.12E-03 3.81E-02

LUAD -1.04E-01 3.82E-03 1.91E-02 -9.24E-02 1.02E-02 3.81E-02

OV 7.85E-02 8.41E-01 9.01E-01 -3.33E-02 9.48E-01 9.92E-01

PAAD 1.41E-01 7.24E-02 1.09E-01 1.19E-01 1.29E-01 2.42E-01

PRAD -1.05E-01 2.26E-02 6.06E-02 -1.85E-01 5.60E-05 4.20E-04

SKCM (tumor) 1.64E-01 9.69E-02 1.32E-01 1.29E-01 1.93E-01 3.22E-01

STAD 1.27E-01 1.67E-02 6.06E-02 4.51E-02 3.96E-01 4.95E-01

TGCT -1.88E-01 3.26E-02 6.11E-02 -1.73E-01 5.02E-02 1.51E-01

THCA 4.58E-02 3.16E-01 3.65E-01 1.67E-02 7.15E-01 8.25E-01

SKCM (metastatic) 1.17E-01 2.89E-02 6.11E-02 9.53E-02 7.42E-02 1.85E-01

all tissues -1.64E-02 2.44E-01 -6.30E-02 7.39E-06

https://doi.org/10.1371/journal.pone.0237006.t002
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association (padj<0.1) was observed in adrenal gland (ACC). For DNAm age acceleration,

negative associations were significant in breast (BRCA), liver (LIHC), lung (LUAD) and pros-

tate (PRAD) cancer. The results indicated that the transcriptional age acceleration and DNAm

age acceleration provided complementary information in mutation burden analysis.

Association between transcriptional age and mortality in cancer

We evaluated whether transcriptional age was significantly associated with mortality risk in

TCGA datasets. For each cancer type, two Cox proportional hazards models were fitted,

namely the Cox regression on age acceleration adjusting for chronological age (Mod0a) and

Cox regression on age acceleration adjusting for chronological age, stage, gender and race

(Mod1a). In Mod1a, gender was not adjusted for breast (BRCA), ovary (OV), prostate (PRAD)

and testis (TGCT) cancer. Table 3 showed that transcriptional age was significantly associated

with mortality (padj <0.05 in Mod1a) in brain (GBMLGG) cancer whereas DNAm age was

significantly associated with mortality (padj<0.05 in Mod1a) in brain (GBMLGG) and skin

(SKCM) metastatic cancer. The association between mortality and transcriptional age acceler-

ation showed consistent effect size direction between Mod0a and Mod1a, and vice versa for

the association between mortality and DNAm age acceleration. S15 Table provided the results

of transcriptional age constructed using other candidate feature sets.

We further evaluated the association between age acceleration and cancer stage. Two linear

regression models were fitted for each cancer type, namely regressing age acceleration on stage

adjusting for chronological age (Mod0b) and regressing age acceleration on stage adjusting for

chronological age, gender and race (Mod1b). Transcriptional age acceleration was marginally

associated with stage (padj <0.1 in Mod1b, Table 4 and S16 Table) in adrenal gland (ACC)

and liver (LIHC) cancer, whereas DNAm age acceleration was significantly associated with

stage (padj <0.05 in Mod1b) in pancreatic (PAAD) and testicular germ cell (TGCT) cancer.

TCGA matched tumor and normal samples

We applied our tissue-specific predictors on the matched tumor and normal samples from

TCGA. Paired t-test and Wilcox test were performed to compare the transcriptional age accel-

eration residual between tumor and matched normal samples (Fig 3). The tumor samples

from breast (BRCA), colon (COADREAD), esophagus (ESCA), prostate (PRAD) and stomach

(STAD) cancer showed significant age acceleration (padj <0.05) compared to their matched

normal samples. We then investigated the aging rate in these paired samples, which was

defined as the ratio of transcriptional age to chronological age. As shown in S4 Fig, the aging

rate was significantly higher in tumor samples compared to matched normal samples (padj

<0.05) in breast (BRCA), colon (COADREAD), esophagus (ESCA), prostate (PRAD) and

stomach (STAD) cancer. On the other hand, the aging rate was lower in liver (LIHC) and

thyroid (THCA). Since the second generation DNAm age calculator (PhenoAge [10] and

GrimAge [11]) were developed to improve prediction of aging related outcomes, we also

recomputed the transcriptional age using the genes corresponding to the CpGs of these calcu-

lators. The results were provided in S2 Appendix. Overall, DNAm age acceleration based on

PhenoAge showed age acceleration in tumor across all cancer types, whereas the transcrip-

tional age computed based on the genes corresponding to these CpGs showed weaker accelera-

tion pattern. Accelerated aging could signify aberrant chromatin conformation and instability,

and represents an early event of malignant transformation of cells [30, 31]. On the other hand,

based on our earlier results that some cancer showed negative association between mutation

burden, mortality with transcriptional age acceleration, we hypothesized that age associated

changes in transcriptome could prevent tumor formation by creating an antiproliferative
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barrier for aging cells, akin to a double-edged sword [30]. Although inverse correlation

between promoter methylation and gene expression has been observed in different tissues

[32], the exact regulatory role of methylation on transcriptome has yet to be uncovered [33].

In particular, transcriptional regulation by methylation in cancer has been shown to be a com-

plex molecular mechanism, characterized by the intricate interplay between SNPs, transcrip-

tion factors and DNA methylation in regulating gene expression [34–36].

Discussion

DNA methylation and gene expression were associated with aging and aging-related diseases. A

number of calculators to predict DNAm age from human DNAm data profiled on the Illumina

Infinium HumanMethylation450K BeadChip have been developed. For gene expression data,

although several common age-related genes across tissues as well as tissue-specific signatures

Table 3. Coefficient and p-value of age acceleration residual from Cox regression.

transcriptional age acceleration (based on all genes)

Coef_Mod0a PV_Mod0a PVadj_Mod0a Coef_Mod1a PV_Mod1a PVadj_Mod1a

ACC -4.08E-02 1.91E-02 1.02E-01 -1.81E-02 3.34E-01 5.91E-01

BRCA 4.38E-03 5.27E-01 6.20E-01 1.96E-03 7.83E-01 9.03E-01

GBMLGG -4.18E-02 3.23E-08 4.84E-07 -4.18E-02 3.23E-08 4.84E-07

COADREAD 1.36E-02 7.69E-02 2.00E-01 2.62E-03 7.68E-01 9.03E-01

ESCA 4.95E-03 5.37E-01 6.20E-01 4.89E-03 5.70E-01 7.77E-01

LIHC -9.36E-03 9.33E-02 2.00E-01 -4.90E-03 3.94E-01 5.91E-01

LUAD -5.26E-03 9.34E-02 2.00E-01 -3.21E-03 3.14E-01 5.91E-01

OV -3.76E-02 3.77E-01 5.14E-01 -3.76E-02 3.77E-01 5.91E-01

PAAD -2.28E-02 2.03E-02 1.02E-01 -2.41E-02 1.96E-02 1.47E-01

PRAD 6.61E-03 9.50E-01 9.50E-01 6.61E-03 9.50E-01 9.50E-01

SKCM (tumor) -1.12E-02 1.80E-01 3.38E-01 -1.15E-02 2.21E-01 5.91E-01

STAD -5.57E-04 8.18E-01 8.76E-01 3.46E-04 8.89E-01 9.50E-01

TGCT 4.68E-02 3.76E-01 5.14E-01 5.13E-02 3.77E-01 5.91E-01

THCA -3.33E-02 2.76E-01 4.60E-01 -3.38E-02 3.13E-01 5.91E-01

SKCM (metastatic) -6.33E-03 5.23E-02 1.96E-01 -5.67E-03 8.18E-02 4.09E-01

DNAm age acceleration

Coef_Mod0a PV_Mod0a PVadj_Mod0a Coef_Mod1a PV_Mod1a PVadj_Mod1a

ACC -2.66E-02 5.61E-02 1.20E-01 -2.14E-02 1.03E-01 2.57E-01

BRCA -1.12E-02 4.95E-02 1.20E-01 -7.01E-03 2.22E-01 4.16E-01

GBMLGG -1.62E-02 1.33E-06 2.00E-05 -1.62E-02 1.33E-06 2.00E-05

COADREAD -2.60E-04 9.72E-01 9.72E-01 3.07E-03 6.52E-01 8.89E-01

ESCA -2.23E-02 4.14E-02 1.20E-01 -2.14E-02 6.91E-02 2.50E-01

LIHC -8.01E-04 8.84E-01 9.47E-01 -1.62E-03 7.77E-01 8.89E-01

LUAD -8.04E-03 3.26E-02 1.20E-01 -6.51E-03 8.34E-02 2.50E-01

OV 2.18E-02 7.69E-01 9.00E-01 2.18E-02 7.69E-01 8.89E-01

PAAD -3.82E-03 5.16E-01 8.61E-01 -1.21E-03 8.47E-01 8.89E-01

PRAD -1.94E-01 1.24E-01 2.33E-01 -1.94E-01 1.24E-01 2.66E-01

SKCM (tumor) 6.48E-03 6.47E-01 9.00E-01 4.62E-03 7.38E-01 8.89E-01

STAD -1.16E-02 2.42E-02 1.20E-01 -1.20E-02 1.93E-02 9.66E-02

TGCT 1.95E-02 7.50E-01 9.00E-01 7.08E-02 4.10E-01 6.83E-01

THCA 5.01E-03 7.80E-01 9.00E-01 2.53E-03 8.89E-01 8.89E-01

SKCM (metastatic) -1.24E-02 2.25E-03 1.69E-02 -1.27E-02 1.94E-03 1.46E-02

https://doi.org/10.1371/journal.pone.0237006.t003
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have been identified, most of these age-related signatures were developed using either non-

human tissues or small sample of tissues. Here, we utilized the gene expression data in the large

GTEx database to identify common age-related genes as well as to construct a versatile across-tis-

sue and tissue-specific transcriptional age calculator (RNAAgeCalc). We showed that transcrip-

tional age acceleration was associated with lower mutation burden and lower mortality risk in

TCGA cancer samples, and offered complementary information to DNAm age. Our results also

indicated that racial difference was associated with transcriptional age. As majority of the sam-

ples in GTEx were Whites, future work included extending RNAAgeCalc to non-White samples.

RNAAgeCalc is available both as Bioconductor and Python packages as well as an interac-

tive Shiny app. We anticipate that the calculator will be useful in the development of aging bio-

marker to advance our understanding on age-related diseases. These insights may ultimately

inform development of novel treatments for age-related diseases.

Materials and methods

Implementation

Our software is capable of calculating tissue-specific transcriptional age for 26 types of tissues

based on 8 choices of candidate feature sets described in this study. That is, users are able to

Table 4. Coefficient and p-value of age acceleration residual versus stage from linear model.

transcriptional age acceleration (based on all genes)

Coef_Mod0b PV_Mod0b PVadj_Mod0b Coef_Mod1b PV_Mod1b PVadj_Mod1b

ACC -4.0291 0.0123 0.0740 -4.1381 0.0111 0.0668

BRCA 0.3976 0.0678 0.1627 0.3967 0.0673 0.2018

COADREAD 0.4338 0.0320 0.1279 0.4395 0.0290 0.1158

ESCA 0.5447 0.4358 0.5404 0.9255 0.1817 0.3634

LIHC -1.6087 0.0040 0.0485 -1.5365 0.0057 0.0668

LUAD -0.5438 0.0638 0.1627 -0.4834 0.0998 0.2396

PAAD -0.9752 0.2590 0.4440 -0.9918 0.2507 0.3760

SKCM (tumor) -0.6880 0.4953 0.5404 -0.3771 0.7085 0.7729

STAD -0.7152 0.4113 0.5404 -0.7701 0.3793 0.5057

TGCT 0.2285 0.2410 0.4440 0.2267 0.2482 0.3760

THCA -0.1152 0.7951 0.7951 -0.0855 0.8472 0.8472

SKCM (metastatic) -0.2637 0.4758 0.5404 -0.2707 0.4679 0.5615

DNAm age acceleration

Coef_Mod0b PV_Mod0b PVadj_Mod0b Coef_Mod1b PV_Mod1b PVadj_Mod1b

ACC -0.7054 0.7463 0.7463 -0.5800 0.7924 0.7924

BRCA -0.2340 0.4224 0.7070 -0.2327 0.4227 0.6853

COADREAD -0.3468 0.1271 0.4505 -0.3478 0.1271 0.5081

ESCA -0.3463 0.5302 0.7070 -0.3567 0.5108 0.6853

LIHC 0.4889 0.4480 0.7070 0.4931 0.4428 0.6853

LUAD -0.3406 0.2192 0.5261 -0.2921 0.2931 0.6853

PAAD -3.4878 0.0077 0.0459 -3.4533 0.0080 0.0481

SKCM (tumor) 0.3898 0.4906 0.7070 0.3425 0.5525 0.6853

STAD -0.2521 0.5910 0.7093 -0.2518 0.5939 0.6853

TGCT -0.5761 0.0062 0.0459 -0.5721 0.0070 0.0481

THCA 0.2498 0.6815 0.7434 0.2933 0.6282 0.6853

SKCM (metastatic) -0.4055 0.1502 0.4505 -0.3902 0.1694 0.5081

https://doi.org/10.1371/journal.pone.0237006.t004
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specify the choice of tissue, aging signatures, as well as sample type for racial consideration

(i.e., whether to use calculators trained on all samples or Caucasian samples only). The soft-

ware is implemented as follows. For each tissue, signature and sample type, we pre-trained

the calculator using elastic net based on the GTEx samples. In the within-tissue age prediction

section, we have demonstrated that elastic net model outperforms the other prediction algo-

rithms. We saved the pre-trained model coefficients as internal data in the software. The soft-

ware takes gene expression data as input and then match the input genes to the genes in the

Fig 3. Age predictions on matched tumor and normal samples from TCGA.

https://doi.org/10.1371/journal.pone.0237006.g003
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internal data automatically. If the genes in user input data do not fully cover all the genes in

the signature, imputation will be performed automatically by the impute.knn() function

in Bioconductor package impute [37].

Our pre-trained models are computationally efficient because there is no need to re-train

the elastic net model every time a new gene expression data is provided. In scenarios where the

user input gene expression data covers the genes in the specified signature, transcriptional age

computation only requires calculating the inner product of the coefficient vector and the gene

expression. We take advantage of the vectorization in R and Python, which is computationally

efficient. In scenarios where the user input gene expression data does not cover all the genes in

the signature, the vast majority of computational time is in the imputation process. The time

complexity of nearest neighbor imputation is O(plogp) for each gene, where p is the number of

genes provided [37]. The computation could be expensive if the proportion of missing genes is

large. In such scenarios, users should be cautious with the computed transcriptional age as it

may be affected by the accuracy of imputation process.

GTEx data processing

To facilitate integrated analysis and direct comparison of multiple datasets, we utilized

recount2 [38] version of GTEx data, where all samples were processed using the same analyti-

cal pipeline. FPKM values were calculated for each individual sample using getRPKM()
function in Bioconductor package recount [38]. The benefit of using FPKM instead of raw

RNASeq count to build up prediction model was that FPKM had been normalized for the total

count and gene length, therefore enabling comparison across different RNA-Seq samples. The

recount2 version of GTEx data contained 58,037 genes while the dermal fibroblast data [19]

described in the Introduction section contained 27,142 genes. We studied genes which were

measured on both recount2 version of GTEx data and dermal fibroblast data. Genes in

recount2 were annotated using Ensembl ID whereas genes in dermal fibroblast data were

annotated using RefSeq. We mapped Ensembl ID to RefSeq using Bioconductor package org.

Hs.eg.db [39] (version 3.7.0) and only genes with one-to-one map were considered in the anal-

ysis, resulting in a total of 24,989 genes.

Meta-analysis to identify common gene signature

Within each tissue, RNASeq count data was imported from recount2 version of GTEx data-

base and the gene ID subsetting and processing were exactly the same as discussed above. Tis-

sues with fewer than 50 samples were omitted from the analysis as small sample size may lead

to conservative and biased results. To avoid the influence of low count genes on the analysis

result, genes with more than 20% samples having count per million (CPM) less than one were

filtered out. Differential expression analyses with respect to chronological age were performed

on each tissue using DESeq2 [40] based on raw gene counts, adjusting for gender (except for

ovary, prostate, testis, uterus, and vagina tissues) and race (White vs non-White). In this

paper, differentially expressed genes referred to the genes which were significantly associated

with chronological age. To determine these genes, we performed the Wald test implemented

in DESeq2 and obtained a p-value for each gene. The p-values of differential expression were

further adjusted using the false discovery rate (FDR) procedure [29].

We adapted the binomial test of de Magalhaes et al. [12] to identify common age-related

genes across tissues. Genes with FDR< 0.05 were considered significantly associated with age.

For each individual gene, binomial test was performed with the p-values calculated by the
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cumulative distribution function:

PðX � kÞ ¼
Xn

i¼k

n
i

� �

pið1 � pÞn� i ð1Þ

where n denotes the total number of tissues, k denotes the number of tissues in which the

gene was positively (negatively) associated. The parameter p was estimated by the average

proportion of positively (negatively) associated genes across tissues, resulting in value 13.86%

(13.77%). The raw p-values in binomial tests were adjusted using FDR procedure, and statisti-

cally significant genes were identified at FDR< 0.05.

Enrichment analysis of age-related genes

To identify enriched pathways among our 1,616 age-related genes, 297 KEGG pathways [41]

and 5,784 Gene Ontologies [42] (minimum and maximum number of genes for each gene set

were 15 and 500, respectively) were tested using clusterProfiler software [43]. Hypergeometric

tests were performed based on the 828 positively associated genes and 788 negative associated

genes, respectively. The p-values from hypergeometric tests were adjusted using FDR proce-

dure and gene sets with FDR< 0.05 were considered significant.

Transcriptional age prediction via machine learning models

For each individual tissue, we considered several machine learning models including elastic

net [9], generalized boosted regression models (GBM) [24], random forest [25], support vec-

tor regression (SVR) with radial kernel [26] and ensemble LDA [19]. Most of these machine

learning models have been implemented in R packages e.g., elastic net (R package glmnet

[44]), generalized boosted regression (R package gbm [45], random forest (R package ran-

domForest [46], support vector machine (R package e1071 [47]. For ensemble LDA, we

adapted the python scripts provided by the authors [19] on Github. In all these models, chro-

nological age was the response variable whereas the logarithm transformed FPKM were the

predictors. The samples were first randomly split into 50%-50% training-test set, where the

prediction algorithms were constructed on the training data and evaluated on the test data.

The optimal parameters, namely alpha and lambda in elastic net, number of trees in GBM,

cost and gamma in SVR, and bin size in ensemble LDA were selected by 10 fold cross valida-

tion in the training set. This 50%-50% training-test split and model evaluation were repeated

10 times. We considered the following candidate gene sets in constructing the prediction

models. For each candidate feature set, we first took the subset of FPKM data corresponding

to the pre-defined candidate genes. We then trained each machine learning model described

above on the training data. The trained predictors were applied on the test subset to evaluate

performance accuracy.

(i). Differentially expressed genes by DESeq2 [40] (denoted by DESeq2). Before training

the prediction models, differential expression analysis on age was first performed on

the training data. The gene filtering criterion and variables adjusted in differential

expression analysis were the same as described in the above section. Instead of using all

genes, only the most significant genes from differential expression analysis were used to

train the prediction models. Here, we used top K differentially expressed genes ranked

by the p-values from differential expression analysis. To investigate the influence of the

number of genes on prediction accuracy, we considered within-tissue prediction using

top 500, 1000, 1,500, 2,000 genes and compared their performances. S3 Appendix

showed the prediction accuracy (Pearson/Spearman correlation between predicted

PLOS ONE RNA-seq age calculator

PLOS ONE | https://doi.org/10.1371/journal.pone.0237006 August 4, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0237006


transcriptional age and chronological age, median/mean error) versus the number of

top significant genes in prediction model. For some tissues the number of top differen-

tially expressed genes did not have a huge impact on prediction accuracy, whereas for

other tissues the prediction accuracy increased with the number of top significant

genes. To reduce the computation cost, we considered the top 1,000 genes.

(ii). Genes highly correlated with chronological age by Pearson correlation (denoted by

Pearson). Before training the prediction models, Pearson correlations between the loga-

rithm transformed FPKM and chronological age were calculated on the training set.

The correlation coefficients were then sorted by its absolute value in decreasing order,

and only the top correlated (either positive or negative) genes were used to train the

prediction models. Similar to (i), we also considered top 1,000 correlated genes and a

comparison of the number of genes in the model was given in S3 Appendix.

(iii). Genes have large variance in expression across samples (denoted by Deviance). We

adapted the gene selection strategy discussed in [19], in which a gene had at least a t1-

fold difference in expression between any two samples in the training set and at least

one sample had expression level >t2 FPKM to be included in the prediction models.

t1 and t2 (typically 5 or 10) were the thresholds to control the degree of deviance of

the genes. In our analysis, we used t1 = t2 = 10 for most tissues. For some tissues

with large sample size, in order to maximize the prediction accuracy while maintain-

ing low computation cost, we increased t1 and t2 such that the number of genes

retained in the model was between 2,000 and 7,000. An alternative way of selecting

genes with high variability is based on the coefficient of variation (denoted by CVar),

which is defined as the ratio of standard deviation to mean. Since genes with higher

counts could have larger variance compared to genes with lower counts (i.e., the

well-known mean variance relationship in RNA-Seq data), selecting genes based

on CVar could potentially reduce the bias toward high count genes. We compared

these two approaches by performing within tissue transcriptional age prediction

(S17 Table). To ensure a fair comparison, the number of top genes ranked by CVar

was fixed to be the same as the number of genes ranked by Deviance. The prediction

performance of both methods was comparable. Thus, we used Deviance for selecting

large variation genes throughout this paper to be consistent with the criterion used in

[19].

(iv). The 1,497 age-related genes of [18] (denoted by Peters).

(v). All genes after filtering out low count genes. Specifically, genes with more than 20%

samples having CPM less than one were filtered out.

(vi). The 1,616 common age-related genes discussed in the meta-analysis section (denoted

by GTExAge).

(vii). The 73 common age-related genes of de Magalhaes et al. (denoted by de Magalhaes)

[12].

(viii). The 307 common age-related genes from the Ageing Gene Database (denoted by Gen-

Age) [13].

The models were evaluated by the Pearson and Spearman correlation between predicted

age and chronological age, median absolute error (median error) and mean absolute error

(mean error) on the test samples, averaging over the 10 repetitions.
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Associations with prior aging candidate genes

For the tissue-specific signatures, we extracted the genes reported in the original references

and took their intersection with the genes available in GTEx. We investigated whether these

prior aging candidate genes were significant in our DESeq2 analysis result (S10 Table).

We then compared the sign of fold change of these prior genes to the sign in our DESeq2

result (S11 Table). Fisher exact tests were performed, which showed the signs are highly

consistent (p< 0.05). The p-values of these prior genes in our DESeq2 analysis result is

given in S3 Fig.

For each prior across-tissue candidate gene set, we first computed the p-value of each gene

using the binomial test (see the meta-analysis section) as a summary measure of evidence the

gene held as candidate common age-related gene. We then enumerated the proportion of

genes which attained p< 0.05 within each prior across-tissue candidate gene set.

Comparisons of DNAm age versus transcriptional age on TCGA dataset

Illumina Human Methylation 450K annotation data were imported from the Broad GDAC

Firehose and the DNAm age were obtained by analyzing the beta value using DNAm age cal-

culator [7, 8, 10]. The TCGA RNASeq data was downloaded and processed from recount2

[38], following the same pipeline as described in the GTEx data processing section. Transcrip-

tional age was obtained by applying the tissue-specific predictors based on all genes, DESeq2

and GTExAge candidate features on the corresponding tissue in TCGA. For skin cutaneous

melanoma (SKCM), the tumor and metastatic samples were analyzed separately. For breast

invasive carcinoma (BRCA), only female samples were analyzed. Age acceleration residual was

defined as residual from regressing transcriptional age (or DNAm age) on chronological age.

The significance of the correlation between age acceleration residual and mutation burden was

evaluated by correlation tests. Cox proportional hazards model was fitted on the age accelera-

tion residual and Wald test was performed on the estimated coefficient. Linear regression

model was applied to compare age acceleration residual to cancer stage (ordinal covariate) and

t-test was performed on the estimated coefficient. Paired sample t-test and Wilcoxon test was

used to compare the transcriptional age from matched tumor and normal samples. The FDR

adjusted p-values < 0.05 were considered statistically significant.
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