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Abstract

Background: Automated, image based high-content screening is a fundamental tool for discovery in biological
science. Modern robotic fluorescence microscopes are able to capture thousands of images from massively parallel
experiments such as RNA interference (RNAi) or small-molecule screens. As such, efficient computational methods
are required for automatic cellular phenotype identification capable of dealing with large image data sets. In this
paper we investigated an efficient method for the extraction of quantitative features from images by combining
second order statistics, or Haralick features, with curvelet transform. A random subspace based classifier ensemble
with multiple layer perceptron (MLP) as the base classifier was then exploited for classification. Haralick features
estimate image properties related to second-order statistics based on the grey level co-occurrence matrix (GLCM),
which has been extensively used for various image processing applications. The curvelet transform has a more
sparse representation of the image than wavelet, thus offering a description with higher time frequency resolution
and high degree of directionality and anisotropy, which is particularly appropriate for many images rich with edges
and curves. A combined feature description from Haralick feature and curvelet transform can further increase the
accuracy of classification by taking their complementary information. We then investigate the applicability of the
random subspace (RS) ensemble method for phenotype classification based on microscopy images. A base
classifier is trained with a RS sampled subset of the original feature set and the ensemble assigns a class label by
majority voting.

Results: Experimental results on the phenotype recognition from three benchmarking image sets including HeLa,
CHO and RNAi show the effectiveness of the proposed approach. The combined feature is better than any
individual one in the classification accuracy. The ensemble model produces better classification performance
compared to the component neural networks trained. For the three images sets HeLa, CHO and RNAi, the Random
Subspace Ensembles offers the classification rates 91.20%, 98.86% and 91.03% respectively, which compares sharply
with the published result 84%, 93% and 82% from a multi-purpose image classifier WND-CHARM which applied
wavelet transforms and other feature extraction methods. We investigated the problem of estimation of ensemble
parameters and found that satisfactory performance improvement could be brought by a relative medium
dimensionality of feature subsets and small ensemble size.

Conclusions: The characteristics of curvelet transform of being multiscale and multidirectional suit the description
of microscopy images very well. It is empirically demonstrated that the curvelet-based feature is clearly preferred to
wavelet-based feature for bioimage descriptions. The random subspace ensemble of MLPs is much better than a
number of commonly applied multi-class classifiers in the investigated application of phenotype recognition.
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Background
Complex cellular structures such as molecular construc-
tion of a cell can be studied by fluorescence microscopy
images of cells with appropriate stains. Robotic systems
nowadays can automatically acquire thousands of images
from cell assays, which are often referred as being “high-
content” for the large amount of information. These
images reflect the biological properties of the cell with
many features, including size, shape, amount of fluores-
cent label, DNA content, cell cycle, and cell morphol-
ogy. With interdisciplinary efforts from computer
science and biology, scientists are now able to carry out
large-scale screening of cellular phenotypes, at whole-
cell or sub-cellular levels, which are important in many
applications, e.g., delineating cellular pathways, drug tar-
get validation and even cancer diagnosis [1,2].
From the high-throughput screening, biologists can

also greatly benefit in further understanding the complex
cellular processes and genetic functions [3,4]. For exam-
ple, a gene’s normal operations in the cell can be assessed
by observing the downstream effect of perturbing gene
expression [5]. By introduction of double-stranded RNA
(dsRNA) into a diverse range of organisms and cell types,
the complementary mRNA can be degraded, a phenom-
enon known as RNA interference (RNAi) [6,7]. The dis-
covery of RNAi and the availability of whole genome
sequences allow the systematic knockdown of every gene
or specific gene sets in a genome [8-10]. Image-based
screening of the entire genome for specific cellular func-
tions thus becomes feasible by the development of Dro-
sophila RNAi technology to systematically disrupt gene
expression [11,12]. Genome-wide screens, however, pro-
duce huge volumes of image data which is beyond
human’s capability of manual analysis, and automating
the analysis of the large number of images generated in
such screening is the bottleneck in realizing the full
potential of cellular and molecular imaging studies.
To advance the development of high content screen-

ing (HCS) for genome analysis, computer vision and
pattern analysis techniques have to be resorted to char-
acterize morphological phenotypes quantitatively and to
identify genes and their dynamic relationships on a gen-
ome-wide scale [4,13]. Such a bio-image informatics fra-
mework would consist of several components: cellular
segmentation, cellular morphology and image feature
extraction, cellular phenotype classification, and cluster-
ing analysis [11,14]. In this article, our effort is made
toward further investigating the challenging multi-class
phenotype classification problem from microscopy
images by using benchmarking fluorescence microscopy
images [15-17].
With appropriate cellular segmentation results, pheno-

type recognition can be studied in a multi-class classifi-
cation framework, which involves two interweaved

components: feature representation and classification.
Efficient and discriminative image representation is a
fundamental issue in any bioimage recognition tasks.
Most of the proposed approaches for image-based high-
content screening employed feature set which consist of
different combinations of morphological, edge, texture,
geometric, moment and wavelet features [15,18-22]. In
recent years, computer science has seen much pro-
gresses in the development of various efficient image
feature description methods, many of which have
become “off-the-shelf” standard techniques applicable to
bioimages analysis. In this paper, we will show that the
curvelet transform [23-27] outperform many other
known feature descriptions for the cellular images.
Based on the latest research achievements on multireso-
lution analysis for image, Curvelet Transform can accu-
rately capture edge information by taking the form of
basis elements which exhibit very high directional sensi-
tivity and are highly anisotropic. It has been shown that
curvelet is well suited for representing images which are
rich of edge information and the efficiency has been
demonstrated in many tasks [28-31].
To our knowledge, there is no previous work discuss-

ing the use of Curvelet transform in fluorescence micro-
scope images except [32] which applied curvelet for
denoising. The research presented in this paper is to
investigate the application of curvelet on microscope
images based phenotype recognition, and compare it
with the application of wavelets. The simple statistics of
mean and standard deviation from multiscale curvelet
transform coefficients are extracted and evaluated as the
basic curvelet features. On the other hand, due to the
proven effectiveness of the traditional Haralick features
[33] for extracting texture information, and in micro-
scope images of biological cells in particular [18,19], we
proposed to form a combined image description from
the Curvelet Transform and Haralick features. Haralick
feature is based on gray-level spatial dependencies using
a Gray Level Co-occurrence Matrix (GLCM) that mea-
sures the frequency that a particular gray level is found
adjacent to another gray level. By complementarily com-
bining the advantages of each feature description
method, the classification performance can be consider-
ably enhanced.
Machine learning methods such as artificial neural

networks and Support Vector Machine (SVM) have
been utilized for the classification of subcellular protein
location patterns with fluorescence microscope images
[18-21,34]. Multi-class phenotype images, however, are
often featured with large intra-class variations and inter-
class similarities, which poses serious problems for
simultaneous multi-class separation using the standard
classifiers. And other rate-limiting factors challenging
classifier design is that the dimension of the feature
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space is often larger than the number of training exam-
ples per class. In recent years, many sophisticated learn-
ing paradigms have been proposed to design accurate
and robust classification systems. Among them, ensem-
ble learning has attracted much attention due to the
promising results for many applications. An ensemble of
classifiers integrates multiple base classifiers such as
multiple layer perceptrons (MLP) using a same learning
algorithm [35,36]. Among the representatives of ensem-
ble learning, Random Subspace method (RSM) [37] is
an efficient way to create ensemble of classifiers. RSM
divides the entire space of features into subspaces and
each subspace is formed by randomly picking features
from the entire space, allowing for features to be
repeated across subspaces. In this paper, we propose to
construct and evaluate a Random Subspace classifier
ensemble with multiple layer perceptron as the base
classifier, using the combined features from Curvelet
Transform and Haralick features.

Results
Three image sets HeLa, CHO and RNAi from the IICBU
benchmarking data [15,16] were evaluated. All of the
images are processed as wholes without any detection or
segmentation. In our experiments, a simple holdout
methodology was applied. For each of the three image
sets, we randomly split it into training and test sets, each
time with 20% of each class’s images reserved for testing
while the rest for training. The classification results are
the average from 100 runs, such that each run used a
random split of the data to training and test sets.
Our first set of experiments aims at selecting appro-

priate features from the curvelet transform. The simple
statistics of mean and standard deviation from each
band of curvelet transform have been used as efficient
signatures in several applications [29-31]. Rather than
theoretical analysis of the distribution properties of Cur-
velet Transform coefficients for the cell images, we con-
ducted empirical analysis for the usefulness to include
other statistics into the feature vectors, for example,
energy, entropy, skewness and kurtosis. To determine
the discriminating power from different combinations of
these statistics as the image features, we compared the
classification performance from the following candidate
curvelet feature vectors. In addition to the basic signa-
ture of mean and standard deviation (basic), other sets
of statistics were calculated and added to the basic sig-
nature in turn, including norm, energy, variance, skew-
ness, kurtosis, and entropy. The results were reported in
Figure 1. While the addition of variance or energy
slightly increase the classification accuracy for the HeLa
images, the inclusion of entropy clearly outperform
other kind of combinations for both of the CHO and
RNAi images.

The discriminating strengths of the feature vectors
from GLCM [33], Daubechies wavelet [38], Gabor wave-
let [39,40] and Curvelet transform [23] were compared
using three-layer perceptron (MLP) neural network,
which has the number of inputs same as the number of
features, one hidden layer with 20 units and linear units
representing the class labels (10 for HeLa and RNAi, 5
for CHO). The networks are trained using the Conju-
gate Gradient learning algorithm for 500 epochs. Figure
2 illustrates the comparison of accuracies for each of
the three image sets from GLCM, Daubechies wavelet,
Gabor wavelet, and curvelet feature descriptors. For all
of the three image sets, the curvelet descriptors clearly
outperforms all other descriptors. Specifically, for HeLa,
CHO and RNAi images, the classification accuracies
from Curvelet features are 86.1%, 96.4% and 87.3%
respectively, which compares favorably over the results
from GLCM features 83.3%, 95.2%, and 86%. Among
the four different features compared, the curvelet fea-
tures also consistently demonstrates the superiority over
Gabor wavelet and Daubechies wavelet, which were in
fact expected since the curvelet transform is able to cap-
ture the multi-dimensional features in wedges as
opposed to points in wavelet transforms. The multidir-
ectional features in curvelets prove to be very effective
in the classification of microscopy cell images which
often demonstrate piece-wise smooth with rich edge
information. The best classification accuracies for all of
the three image sets were from the aggregated features
by simply concatenating curvelet and GLCM, namely,
HeLa 89.2%, CHO 98.2% and RNAi 89.9% respectively.
The benefit of applying them in an integrative way is
due to the fact that GLCM and curvelet transform fea-
tures emphasize texture and edge or piece-wise smooth
characteristics of image differently. As expected, the
combination of both features from GLCM and curvelet
transform produces a higher accuracy than the methods
being used singly, as shown in Figure 2.
We proceeded to evaluate several different but com-

monly used supervised learning methods to the multi-
class phenotype classification problem, including k-near-
est neighbors (kNN), multi-layer perceptron neural net-
works, SVM and random forest, using the above three
image sets. The feature vector for each image is calcu-
lated from the sub-bands of curvelet transform (Basic +
Variance for HeLa, Basic + Entropy for CHO and
RNAi). We simply chose k = 1 for kNN in the compari-
sons. MLP is the same as used in the above experiment.
Designing SVM classifiers [41] includes selecting the
proper kernel function and choosing the appropriate
kernel parameters and C value. The popular library for
SVM, LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm,
was used in the experiment. We used the radial basis
function kernel for the SVM classifier. The parameter g
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that defines the spread of the radial function was set to
be 5.0 and parameter C that defines the trade-off
between the classifier accuracy and the margin (the gen-
eration) to be 3.0. A random forest (RF) classifier [42]
consists of many decision trees and outputs the class
that is the mode of the classes output by individual
trees. In the comparison experiments, the number of
trees for random forest classifier was chosen as 300 and
the number of variables to be randomly selected from
the available set of variables was selected as 20.

The comparison results from applying the above four
classifiers were provided in Figure 3, which confirmed
that for each image dataset, the best result was obtained
by using MLP. For RNAi, the result from MLP is 89.9%,
which is better than the published result 82% [15]. The
accuracies from other three classifiers are 71.6% (kNN),
70.1% (random forest), and 77.5% (SVM). For 2D-Hela
and CHO, the correct classification rates from MLPs are
89.2% and 98.4%, respectively, which are also very com-
petitive. The results for these two datasets obtained by

Figure 1 Comparison of the performance for different curvelet-based feature vectors for phenotype classifications from HeLa, CHO
and RNAi images.

Figure 2 Comparison of the Daubechies wavelet-based, Gabor-wavelet based, GLCM-based and curvelet-based feature descriptors for
phenotype classifications from HeLa, CHO and RNAi images.
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Shamir et al. are 84% for 2D-Hela and 93% for CHO
[15]. The results obtained by MLP contrast to the gen-
erally accepted perception that SVM classifier is better
than neural network in classification. The most reason-
able explanation for the better performance of MLP
from our experiment is that MLP as a memory-based
classifier is more resistant to insufficient data amount
comparing the margin or distance-based SVM.
Our next experimental study aims to demonstrate the

superiority of Random Subspace MLP classifier ensem-
ble over the single MLP used in the previous experi-
ments. The holdout experiment setting is similar. To
ensure the diversity among the MLPs in an ensemble,
the numbers of hidden units in the component networks
are varied by randomly choosing them from a range of
30 ~50. Using an ensemble of size 20 and 80% of origi-
nal dimensionality for feature subsets, the classification
results obtained for HeLa, CHO and RNAi were sum-
marized in Table 1, from which one can see that for all
the three image sets, the random subspace MLP ensem-
ble does bring the improvement on the classification
accuracy.
In the Random Subspace method, there are two

important parameters that have to be considered. The
first is the ensemble size L, which is the number of base

classifiers in the ensemble. The second is the dimen-
sionality of feature subsets M. Recently, the selection of
these two parameters has been addressed in the classifi-
cation of brain images of fMRI [36] and text categoriza-
tion [43], which shows that relatively medium M and
small L yield an ensemble that could improve the per-
formance. Our next experiment assessed the effect of
ensemble size for the phenotype image classifications.
We first varied the sizes of the ensembles from 5 com-
ponents MLPs to 50, with fixed feature subspace dimen-
sionality 350, which account for 80% of combined
features’ dimension. The same experiment procedure
described above was repeated. The results of the aver-
aged classification accuracies in Table 2 shows that
there are no real benefits of forming very large ensem-
bles. In the case of RNAi, the maximum accuracy
91.03% is reached with size 5, beyond which there is no
improvement in performance. In the cases of HeLa and
CHO, size 15 seems to be sufficient for the much
increased classification accuracies comparing to the
results in [15]. Beyond size 15, larger ensemble size may
bring quite marginal improvement for the CHO images
at the cost of heavy computational burden in the train-
ing phase.
To answer the question how the dimensionality of fea-

ture subsets M influence the classification performance
of RSM, we compared the RSM classification perfor-
mances for the three image sets by varying subspace
dimensionalities. For original 438 dimensional combined
features, selection of 55% features means 241 dimen-
sionality and so on. With 40 component MLPs in the
ensemble, the comparison results are given in Table 3,

Figure 3 Comparison of the performance for four different classifiers using the composite features from curvelet transform and
GLCM.

Table 1 Performance Improvement from Random
Subspace Ensemble (RSE)

Classifier RNAi 2D-Hela CHO

MLP 89.90% 89.20% 98.02%

MLP-RSE (ensemble size = 20) 90.10% 90.65% 98.40%
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which indicates that satisfactory results are obtained
with medium Ms. For the RNAi data, maximum 90.34%
classification rate is reached with selection of 80% of
original features (M = 350). For the HeLa and CHO
image sets, the largest accuracies 91.20% and 98.86% are
from selecting 75% and 85% of original features (M =
328 and M = 372), respectively.
The confusion matrices that summarize the details of

the above random subspace ensemble for the three
image sets are given in the following Tables 4, 5 and 6.
In the confusion matrix representation, the rows and
columns indicate true and predicted class, respectively.
The diagonal entries represent correct classification
while the off-diagonal entries represent incorrect ones.
Confusion matrix is often used in the study of multi-
class classification problems and to measure the similar-
ity between classes of phenotypes [44]. For the HeLa
images, the RS ensemble can well distinguish two Golgi
proteins, GPP130 and giantin, which have been shown
to be very difficult to discriminate by visual inspection
[45]. For the RNAi image sets, it is apparent that among
the 10 classes, CG10873 type is the easiest to be cor-
rectly classified while the CG9484 is the most difficult
one. On the other hand, the resulting confused genes do
not directly share the related biological mechanisms.
Each of these genes is associated with a different
mechanism, but some pathways can be more similar to
each others than others. For example, the gene CG8114
(Pebble), which leads to binucleate phenotype, is some-
times confused with gene CG3938 (CyclinE), which is
associated with G1 arrest. These two genes are more
related to each other than other pairs and the confusion
is often expected. However, the results from Random
Subspace ensemble indicate that these two genes can be
well distinguished without any confusion.

Discussion
Accurately and robustly classification of cellular pheno-
types is still a challenging task in image based high-

content screening. To find the best description for the
microscopy images, many features extraction methods
have been attempted in previous studies, but all encoun-
ter with various aspects of difficulty in dealing with var-
ious irregularities in the cellular morphology.
Our motivation for overcoming this challenge is two-

fold. Firstly, we have attempted to demonstrate that the
classification can be improved by using highly discrimi-
native image features. This can be achieved by the utili-
zation of the curvelet transform to extract such a
feature. Being similar to various wavelet transforms, the
curvelet transform can capture the structural informa-
tion of the images in this study at multiple scales, loca-
tions, and orientations. The major advantage is that the
curvelet transform can identify the structural detail
along the radial ‘wedges’ in the frequency domain,
which is inherent in images of rich edge information.
Secondly, the notion of combination of multiple com-
plementary features can further improve the classifica-
tion performance. The combination of features for
pattern classification has recently been embraced by the
research community of image processing and pattern
recognition [46]. However, most proposed methods for
feature combination are based on optimization techni-
ques or machine learning algorithms, which are often
very complicated for practical implementation. Our pro-
posed method offers a much simpler solution by trans-
forming multiple features into a single representation
based on which the random subspace classifier ensemble
can efficiently integrate different aspects of information
from various random subspaces. By using this strategy,
the high dimensionality problem arising from using the
conventional combination of multiple features is there-
fore implicitly avoided.
In general, the method we have proposed in this paper

can be applied to classifying and understanding complex
patterns of many biological systems. The gaining of
such knowledge can quickly provide life-science
researchers with new insights into the changing

Table 2 Comparison of Classification Performance of Varying Ensemble Sizes

Size 5 10 15 20 25 30 35 40 45 50

RNAi 91.03% 90.37% 90.05% 90.10% 89.62% 90.05% 89.38% 90.34% 89.27% 89.50%

HeLa 89.99% 90.52% 90.94% 90.65% 90.59% 90.45% 90.90% 91.05% 90.38 90.07%

CHO 98.34% 98.34% 98.52% 98.40% 98.34% 98.74% 98.60% 98.64% 98.46% 98.46%

Table 3 Comparison of Classification Performance from Random Subspace Ensemble by Varying the Subspace
Dimensionalities

Dimensionalities(%) 55 60 65 70 75 80 85 90 95 100

RNAi 89.34% 90.10% 90.20% 90.60% 89.90% 90.34% 90.20% 89.50% 89.34% 89.74%

HeLa 90.49% 90.23% 90.52% 90.57% 91.15% 90.85% 91.00% 90.51% 90.66% 90.70%

CHO 98.58% 98.68% 98.50% 98.46% 98.64% 98.64% 98.86% 98.30% 98.50% 98.80%
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biological behaviors in various treatment conditions, and
to facilitate rapid screening and testing of new therapeu-
tic interventions for major public health problems.

Conclusion
This paper further investigated the challenging multi-
class phenotype classification problem from microscopy
images. Two contributions are presented. Firstly, we
proposed to combine two different feaures from Gray
Level Co-occurrence Matrix (GLCM) and curvelet trans-
form to efficiently describe microscopy images. Sec-
ondly, we examined random subspace classifier
ensemble with multi-layer perceptron as the base classi-
fier, which seem to be well-suited to the characteristics
of microscopy images, as the high dimensionality of the
data could be implicitly solved by randomly selecting
subsets of features. Experiments on three benchmarking
microscopy image datasets showed that the random sub-
space MLP ensemble method achieved significantly
higher classification accuracies (91% for RNAi, 91.2% for
HeLa and 98.9% for CHO), compared to the published
results (82% for RNAi, 84% for HeLa and 93% for
CHO), which used wavelet as part of the features and a
general-purpose classification scheme WND-CHARM.
This supports the claim that Random Subspace ensem-
ble can be used as a simple yet efficient classifier design

methodolody and curvelet features effectively measure
the informativeness in the microscopy images.

Methods
The Benchmarking Fluorescence Microscopy Image
Datasets
Three benchmark fluorescence microscopy image data-
sets in [15,16] were used in our study, which are 2D-
Hela, CHO and RNAi. The 2D HeLa dataset is a collec-
tions of HeLa cell immunofluorescence images contain-
ing 10 distinct subcellular location patterns. The 10
organelles from the images are DNA (Nuclei), ER
(Endoplasmic reticulum), Giantin, (cis/medial Golgi),
GPP130 (cis Golgi), Lamp2 (Lysosomes), Mitochondria,
Nucleolin (Nucleoli), Actin, TfR (Endosomes), Tubulin.
CHO is a dataset of fluorescence microscope images of
CHO (Chinese Hamster Ovary) cells. The images were
taken using 5 different labels. The labels are: anti-gian-
tin, Hoechst 33258 (DNA), anti-lamp2, anti-nop4, and
anti-tubulin.
The RNAi dataset is a set of fluorescence microscopy

images of fly cells (D. melanogaster) subjected to a set
of gene-knockdowns using RNAi. The cells are stained
with DAPI to visualize their nuclei. Each class contains
20 1024 × 1024 images of the phenotypes resulting from
knockdown of a particular gene. Ten genes were

Table 4 Averaged confusion matrix for RNAi (%)

CG10873 CG1258 CG3733 CG7922 CG8222 CG12284 CG17161 CG3938 CG8114 CG9484

CG10873 100 0 0 0 0 0 0 0 0 0

CG1258 0 90.39 0 0 0 0 9.61 0 0 0

CG3733 0 0 98.76 0 0 0 0.99 0.25 0 0

CG7922 0 0 0 98.36 0 0 0 1.64 0 0

CG8222 0 5.04 0 0 89.12 0 1.59 0.27 0 3.98

CG12284 0 2.42 0 0 0.24 86.96 2.42 1.21 3.86 2.90

CG17161 0 9.28 1.59 0 0.27 0 88.86 0 0 0

CG3938 1.90 0 0 6.50 1.90 0.27 0 89.43 0 0

CG8114 0 0 0 0 0 1.11 0 0 98.89 0

CG9484 3.40 0 0.24 3.88 12.14 8.74 0 0 1.7 69.90

Table 5 Averaged confusion matrix for HeLa (%)

Actin TfR ER Giantin GPP130 LAMP2 Tubulin Mitoch. Nucleolin DNA

Actin 100 0 0 0 0 0 0 0 0 0

TfR 0 80.36 1.25 0 0.23 10.78 3.75 3.63 0 0

ER 0 0 93.81 0 0 0 0.80 3.78 0 1.61

Giantin 0 0 0 95.56 4.21 0 0 0.23 0 0

GPP130 0 0.24 0.84 10.79 87.17 0.12 0 0 0.84 0

LAMP2 0 7.54 0 0.75 1.88 86.43 0 1.63 1.76 0

Tubulin 0.34 5.82 8.73 0 1.90 0 80.40 2.69 0 0.11

Mitoch. 0 4.04 3.35 0 1.81 2.09 0.42 88.15 0 0.14

Nucleolin 0 0 0 0.48 0.12 0 0 0.12 99.28 0

DNA 0 0 1.61 0 0 0 0 0 0 98.39
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selected, and their gene IDs are used as class names.
The genes are CG1258, CG3733, CG3938, CG7922,
CG8114, CG8222, CG 9484, CG10873, CG12284,
CG17161 [15,16]. According to [15,16], the images were
acquired automatically using a Delta-Vision light micro-
scope with a 60× objective. Each image is produced by
deconvolution, followed by maximum intensity projec-
tion (MIP) of a stack of 11 images at different focal
planes.
Samples of the above three image sets are illustrated

in Figures 4, 5 and 6, respectively.

Image Feature Extraction
Once the cell images are segmented, various feature
extraction methods can be applied. In our study, we cal-
culated texture features using the co-occurrence
matrices (Haralick features) and applied three multi-
resolution transforms, including Daubechies wavelet,
Gabor wavelet and curvelet.
Gray Level Co-occurrence Matrices
Gray level co-occurrence matrix (GLCM) proposed by
Haralick [33] is a common texture analysis method
which estimates image properties related to second-
order statistics. GLCM matrix is defined over an image
to be the distribution of co-occurring values at a given
offset. Mathematically, a co-occurrence matrix C is
defined over an n × m image I, parameterized by an

offset (Δx, Δy) as

C�x,�y(i, j) =
n∑

p=1

m∑
q=1

{
1, if I(p, q) = i and I(p + � x, q + �y) = j

0, otherwise
(1)

Note that the (Δx, Δy) parameterization makes the co-
occurrence matrix sensitive to rotation. An offset vector
can be chosen such that a rotation of the image not
equal to 180 degrees will result in a different co-occur-
rence distribution for the same image.
In order to estimate the similarity between different

GLCM matrices, many statistical features can be
extracted from them. The most relevant features that
are widely used in literature include: (1). Energy,
which is a measure of textural uniformity of an image
and reaches its highest value when gray level distribu-
tion has either a constant or a periodic form; (2).
Entropy, which measures the disorder of an image
and achieves its largest value when all elements in C
matrix are equal; (3). Contrast, which is a difference
moment of the C and measures the amount of local
variations in an image. In addition to these standard
features, we also calculated the following features
[33,47,48] derivable from a normalized co-occurrence
matrix:

• Correlation
• Cluster Prominence
• Cluster Shade
• Homogeneity
• Sum of sqaures
• Sum variance
• Sum entropy
• Difference variance
• Inverse difference (INV)
• Inverse difference normalized (INN)

Table 6 Averaged confusion matrix for CHO (%)

anti-giantin DNA anti-lamp2 anti-nop4 anti-tubulin

anti-giantin 99.73 0 0 0 0.27

DNA 0 100 0 0 0

anti-lamp2 0 0 100 0 0

anti-nop4 0 0 0 98.34 1.66

anti-tubulin 1.70 0 0 4.67 93.63

Figure 4 Sample 2D HeLa images.
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The details of these textbook materials are not
included here as they can be found in many resources,
for example [47,48].
For GLCM feature case, 16 gray co-occurrence

matrices were created for each image with an offset that
specifies four orientations 0, π/4, π/2 and 3π/4 and 4
distances (1,2,3 and 4 pixels) for each direction. Then
for each normalized co-occurrence matrix P (i, j), 12 dif-
ferent type of statistic measurements were estimated,
including correlation, variance, contrast, energy, differ-
ence variance, entropy, and homogeneity. Thus the
dimension of GLCM feature is 16 × 12 = 192.
Discrete Wavelet Transform
Wavelet transform [38] has some nice features of space-
frequency localization and multi-resolutions. Let L2(R)
denote the vector space of a measurable, square integr-
able, one-dimensional function. The continuous wavelet
transform of a 1D signal f(t) Î L2(R) is defined as

(Waf )(b) =
∫

f (t)φa,b(t)dt (2)

where the wavelet basis function ja, b(t) Î L2(R) can
be expressed as

φa,b(t) = a− 1
2 φ(

t − b
a

) (3)

These basis functions are called wavelets and have at
least one vanishing moment. The arguments a and b
denote the scale and location parameters, respectively.
The oscillation in the basis functions increases with a
decrease in a. Eq. (2) can be discretized by restraining a
and b to a discrete lattice (a = 2n, b Î Z). Typically,
there are some more constraints on j when a non-
redundant complete transform is implemented and a
multiresolution representation is pursued.
The wavelet basis functions in Eq.(3) are dilated and

translated versions of the mother wavelet j (t). There-
fore, the wavelet coefficients of any scale (or resolution)
could be computed from the wavelet coefficients of the
next higher resolutions. This enables the implementa-
tion of wavelet transform using a tree structure known

Figure 5 Sample CHO images.

Figure 6 RNAi image set of fluorescence microscopy images of fly cells (D. melanogaster).
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as a pyramid algorithm [38]. Here, the wavelet trans-
form of a 1D signal is calculated by splitting it into two
parts, with a low-pass filter (LPF) and high pass filter
(HPF), respectively. The low frequency part is split again
into two parts of high and low frequencies. And the ori-
ginal signal can be reconstructed from the DWT coeffi-
cients. The DWT for two dimensional images x[m, n]
can be similarly defined by implementing the one
dimensional DWT for each dimension m and n sepa-
rately: DWTn[DWTm[x[m, n]]]. 2D Wavelet transform
(WT) decomposes an image into “subbands” that are
localised in frequency and orientation. A wavelet trans-
form is created by passing the image through a series of
filter bank stages.
There are several ways of generating a 2D wavelet

transform. The construction of the digital filters differs
mainly in their scaling and wavelet coefficients. Scaling
and wavelet function coefficients are characteristic of
their particular families. In the following, we’ll use Dau-
bechies D4 for image decomposition [38]. The Daube-
chies (D4) transform has four wavelet and scaling
coefficients. In our application, two levels of resolution
were extracted for each wavelet. At each resolution
level, the wavelet has three detail coefficient matrices
representing the vertical, horizontal and diagonal struc-
tures of the image. From each of the detail coefficient
matrices, the first-order and second-order statistics
mean and standard deviation were calculated as image
features.
Gabor Wavelet
Gabor wavelets [39,40] are often used to construct spec-
tral filters for segmentation or detection of certain
image texture and periodicity characteristics. In [15,16],
Gabor wavelet has been used as one of the main fea-
tures for image representation of cell microscope
images. The convolution kernel of Gabor filter is a pro-
duct of a Gaussian and a cosine function, which can be
characterized by a preferred orientation and a preferred
spatial frequency:

gλ,θ ,ϕ(x, y) = exp(−x′2 + γ y′2

2σ 2
) cos(2π

x′

λ
+ ϕ) (4)

where

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

The standard deviation s determines the effective size
of the Gaussian signal. The eccentricity of the convolu-
tion kernel g is determined by the parameter l, called
the spatial aspect ratio. l determines the frequency
(wavelength) of the cosine. θ determines the direction of
the cosine function and finally, *� is the phase offset.

Typically, an image is filtered with a set of Gabor fil-
ters of different preferred orientations and spatial fre-
quencies that cover appropriately the spatial frequency
domain, and the features obtained form a feature vector
that is further used for classification. Given an image I
(x, y), its Gabor wavelet transform is defined as

Wmn(x, y) =
∫

I(x1, y1)g∗
mn(x − x1, y − y1)dx1dy1 (5)

where * indicates the complex conjugate. We assume
the local texture regions are spatially homogeneous. The
mean μmn and standard deviation smn of the magnitude
of transform coefficients are used to represent the
regions for classification:

μmn =
∫ ∫

| Wmn(x, y)|dxdy (6)

σmn =

√∫ ∫
(|Wmn(x, y)| − μmn)2dxdy (7)

The Gabor feature vector contains pairs for all the
scales and orientations of the wavelets. From a number
of experiments we found that a filter bank with six
orientations and four scales gave the best classification
performance, which means 24 × 2 component features
will be extracted for a given image patch. Therefore, the
figuration is applied to 6 × 8 non-overlapping image
subregions each with the size 60 × 64, yielding overall
feature vector with length 4 × 5 × 48 = 960 for each
image.
Curvelet Transform
Curvelet transform is a multiresolution geometric analy-
sis proposed by Candes and Donoho [25] for the pur-
pose of overcoming the drawbacks of conventional two-
dimensional discrete wavelet transforms of lacking good
representational capability for direction selectivity. The
idea is to represent a curve as superposition of functions
of various length and width obeying the curvelet scaling
law width ≈ length2[25]. Figure 7 presents the curvelet
analysis method.
The needle-shaped elements of curvelets shown in

Figure 7 possess very high directional sensitivity and
anisotropy, which is quite different with the isotropic
elements of wavelets [27]. Such elements are very effi-
cient in representing line-like edge. Comparing the cur-
velet system with the conventional Fourier and wavelet
analysis can further help our understanding. The short-
time Fourier transform uses a shape-fixed rectangle in
Fourier domain, and conventional wavelets use shape-
changing (dilated) but area-fixed windows. By contrast,
the curvelet transform uses angled polar wedges or
angled trapezoid windows in frequency domain in order
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to resolve also directional features. The curvelet trans-
form coefficients can be expressed by

c(j, l, k) := 〈f , ϕj,l,k〉 =
∫

R2
f (x)(ϕj,l,k(x)dx (8)

where � j,l,k denotes curvelet function, and j, l and k
denotes the variable of scale, orientation, and position
respectively. In the frequency domain, the curvelet
transform can be implemented with � by means of the
window function U. Defining a pair of windows W (r) (a
radial window) and V (t) (an angular window) as below:

∞∑
j=−∞

W2(2jr) = 1, r ∈ (3/4, 3/2) (9)

∞∑
j=−∞

V2(t − 1) = 1, t ∈ (−1/2, 1/2) (10)

where variables W as a frequency domain variable, and
r and θ for each j ≥ j0, Uj is defined in the Fourier
domain by

Uj(r, θ) = 23j/4ω(2−jr)v(
2[j/2]θ

2π
) (11)

where [j/2] denotes the integer part of j/2.
From the curvelet coefficients, a common way to con-

struct image descriptor is via some statistics calculated
from each of these curvelet sub-bands. For example, the
mean μ and standard deviation δ are the most convenient
features that have been proven efficient in applications

like image retrieval and face recognition [29-31]. If n cur-
velets are used for the transform, 2n dimensional feature
vectors G = [Gμ, Gδ] are obtained, where Gμ = [μ1, μ2, . . .
, μn], Gδ= [δ1, δ2, . . . , δn].
In this paper, we applied the second generation dis-

crete curvelet transform [26], which is implemented in
four steps: (1) using 2-D fast Fourier transform for the
image; (2) forming the product of the scale and angle
windows; (3) wrapping the aforesaid product around the
origin; and (4) applying the 2-D inverse fast Fourier
transform. The fast discrete curvelet transform via
wedge wrapping was applied using the CurveLab Tool-
box http://www.curvelet.org/ in the MATLAB develop-
ment environment. Two parameters are involved in the
implementation: number of resolutions and number of
angles at the coarsest level. For the images of 2D HeLa,
CHO and RNAi, five scales were chosen which include
the coarsest wavelet level. At the 2nd coarsest level 16
angles were used. With 5 levels analysis, 82(= 1 + 16 +
32 + 32 + 1) subbands of curvelet coefficients were
computed. Therefore, a 164 dimension feature vector
was generated for each image in the three image sets.
Combined Features from GLCM and Curvelet Transform
Each feature extracted from above different methods
characterizes certain aspect of image content. The joint
exploitation of different image descriptions is often
necessary to provide comprehensive discriptions in
order for a classification system with higher accuracy.
One of the difficulties of multiple feature aggregration
lies in the high dimensionalities of the image features.
However, with Random Subspace classifier ensemble
which will be elaborated in the following, this problem
is implicitly resolved due to its dimension reduction
capability. Since the values of GLCM and curvelet fea-
tures assume different ranges, first we normalize them
in the range [-1, 1] before combining them in a single
vector.

Random Subspace Classifier Ensemble
A classifiers ensemble means a set of individually
trained classifiers is integrated appropriately based on
their component decisions [34,35]. Classifier ensembles
generally offer improved performance due to the com-
plementary information provided by the constituent
classifiers. In this study, we consider artificial neural net-
work as the base learners. The generalization perfor-
mance of neural networks is not very stable in the sense
that different settings such as different network architec-
tures and initial conditions may all influence the learn-
ing outcome. The existing of such differences between
base classifiers is a necessary condition to constitute
classifier ensemble [34]. Multi-layer perceptron (MLP)
has been successfully applied to the classification of sub-
cellular protein location patterns [18,19] and the

Figure 7 Curvelet basic digital tiling . The shaded region
represents one such typical wedge.
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performance improvement can be expected from an
MLP ensemble.
There are many ways to construct a classifier ensemble.

In this paper we focus on MLP ensembles based on differ-
ent feature subsets, following the principle of Random
Subspace method (RSM) proposed in [37]. Being different
with Bagging [49] and Boosting [50], not training samples
but the feature variables from curvelet transform and
GLCM are resampled, i.e., a large number of individual
MLP models are trained on randomly chosen subsets of
all available features (i.e. random sunspace). In another
words, by dividing the entire space of features into sub-
spaces, ensemble of MLP classifiers is created with one
base classifier trained on each subspace from randomly
selecting features from the entire space. The details of RS
ensemble can be further elaborated as in the following.
Input: a d-dimensional labeled training data set

(1) Select a random projection from the d-dimen-
sional feature space to a k-dimensional subspace;
(2) Project the data from the original d-dimensional
feature space into the selected k-dimensional
subspace;
(3) Train an MLP classifier on the acquired k-
dimensional feature;
(4) Repeat steps 1-3 m times to obtain m different
subspaces for the ensemble individuals;
(5) Aggregate the individual classifiers by majority
voting.

Availability and Requirements
The reviewers can access the Matlab code, which has
been included with the manuscript as additional file 1.

Additional material

Additional file 1: Matlab code. Matlab program used in the
experiment, including feature extraction, different classifers comparison,
and implementation of the random subspace ensemble, with the
example of RNAi data.
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