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Abstract: Modeling of thermodynamic properties, like heat capacities for stoichiometric solids,
includes the treatment of different sources of data which may be inconsistent and diverse. In this
work, an approach based on the covariance matrix adaptation evolution strategy (CMA-ES) is
proposed and described as an alternative method for data treatment and fitting with the support of
data source dependent weight factors and physical constraints. This is applied to a Gibb’s Free Energy
stoichiometric model for different magnesium sulfate hydrates by means of the NASA9 polynomial.
Its behavior is proved by: (i) The comparison of the model to other standard methods for different
heat capacity data, yielding a more plausible curve at high temperature ranges; (ii) the comparison
of the fitted heat capacity values of MgSO4·7H2O against DSC measurements, resulting in a mean
relative error of a 0.7% and a normalized root mean square deviation of 1.1%; and (iii) comparing the
Van’t Hoff and proposed Stoichiometric model vapor-solid equilibrium curves to different literature
data for MgSO4·7H2O, MgSO4·6H2O, and MgSO4·1H2O, resulting in similar equilibrium values,
especially for MgSO4·7H2O and MgSO4·6H2O. The results show good agreement with the employed
data and confirm this method as a viable alternative for fitting complex physically constrained data
sets, while being a potential approach for automatic data fitting of substance data.

Keywords: constrained evolutionary strategy; thermodynamic model; stoichiometric solid model;
NASA9; heat capacity; data dispersion; data fitting; vapor-solid equilibrium; salt hydrates;
magnesium sulfate

1. Introduction

Thermodynamic property estimation is an important step for establishing new innova-
tion processes. In engineering and, especially, in material related disciplines, a lot of work
has been applied into gathering and fitting data for describing different thermodynamic
properties of the studied substances. Data points from different sources are not always
consistent due to the employed methods, the experimental devices or even the composition
of the sample.

Due to these discrepancies, it is important to develop and use methods more insen-
sitive to data scattering as, a priori, it is impossible to discard or accept data directly by
looking at the deviations if no uncertainty value is found. Furthermore, the data discarded
on a first analysis could be still valid under certain conditions or confirmed when new data
sets are added to the data pool.

Typical fitting methods often rely on point densities. The procedure to model the
curve tries to follow the path where most points are located without taking into account the
overall picture or even trying to calculate a better curve where the overall least squares sum
may be further minimized. Those methods, such as the Levenberg-Marquardt algorithm
(LM) used in Scipy [1], are dependent mainly on local minima and frequently fail to
preserve a proper physical behavior as shown in Figure 1.

Materials 2021, 14, 471. https://doi.org/10.3390/ma14020471 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-3580-9489
https://orcid.org/0000-0002-8341-9813
https://doi.org/10.3390/ma14020471
https://doi.org/10.3390/ma14020471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14020471
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/2/471?type=check_update&version=2


Materials 2021, 14, 471 2 of 24Materials 2021, 14, x FOR PEER REVIEW 2 of 24 
 

 

 

Figure 1. Fitting of the heat capacity for the substance MgSO4·1H2O using the Levenberg-Mar-

quardt algorithm. 

The correct physical or thermodynamical description of the model is crucial to the 

goodness of the model. A precise statistical data fit that, on the other hand may lead to an 

incorrect phenomenological behavior, can hinder the practicality of the fitting process for 

further uses, especially at ranges where no data is to be found. In this work, utilizing a 

constrained evolutionary strategy (ES), an approach to find the global minima of the so-

lution will be introduced, while preserving a physical meaning in the result due to the 

flexibility that such a method provides. 

The mentioned ES, as will be shown later in this work, can be very effective for mod-

eling the Gibbs’ Free Energy of stoichiometric solids. The Gibbs’ Free Energy G of an in-

compressible solid is given as a function of the enthalpy H, temperature T, and entropy S 

by the expression [2]: 

G = H − TS. (1) 

For incompressible solids, the change in properties due to volume or pressure 

changes are relatively small. So, for our purposes, the difference in enthalpy can be written 

as function of the heat capacity Cp at constant pressure: 

dH = CpdT. (2) 

From the Second Law of Thermodynamics, the entropy can be defined as a function 

of the enthalpy which, according to (2), is dependent on the heat capacity and its temper-

ature variation. Treating with incompressible substances guarantees that the variation of 

the pressure of the system is negligible: 

TdS = dH − Vdp (3) 

dS = (1/T)dH = (Cp/T)dT. (4) 

Using this proved simplification, gathering temperature-dependent heat capacity 

data and combining it with the enthalpy and entropy of formation at standard conditions, 

the temperature-dependent enthalpies and entropies can be obtained. These expressions 

Figure 1. Fitting of the heat capacity for the substance MgSO4·1H2O using the Levenberg-
Marquardt algorithm.

The correct physical or thermodynamical description of the model is crucial to the
goodness of the model. A precise statistical data fit that, on the other hand may lead to
an incorrect phenomenological behavior, can hinder the practicality of the fitting process
for further uses, especially at ranges where no data is to be found. In this work, utilizing
a constrained evolutionary strategy (ES), an approach to find the global minima of the
solution will be introduced, while preserving a physical meaning in the result due to the
flexibility that such a method provides.

The mentioned ES, as will be shown later in this work, can be very effective for
modeling the Gibbs’ Free Energy of stoichiometric solids. The Gibbs’ Free Energy G of an
incompressible solid is given as a function of the enthalpy H, temperature T, and entropy S
by the expression [2]:

G = H − TS. (1)

For incompressible solids, the change in properties due to volume or pressure changes
are relatively small. So, for our purposes, the difference in enthalpy can be written as
function of the heat capacity Cp at constant pressure:

dH = CpdT. (2)

From the Second Law of Thermodynamics, the entropy can be defined as a function of
the enthalpy which, according to (2), is dependent on the heat capacity and its temperature
variation. Treating with incompressible substances guarantees that the variation of the
pressure of the system is negligible:

TdS = dH − Vdp (3)

dS = (1/T)dH = (Cp/T)dT. (4)

Using this proved simplification, gathering temperature-dependent heat capacity
data and combining it with the enthalpy and entropy of formation at standard conditions,
the temperature-dependent enthalpies and entropies can be obtained. These expressions
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can be also used to check the correct thermodynamic description of the heat capacity
fitting process.

In relation to the stoichiometric solid model, obtaining an accurate heat capacity curve
is crucial for defining the Gibbs free energy of the solid. Depending on the substance of
study, the amount of data can be scarce but, on the other hand, big datasets can present a
large dispersion. For this reason, the use of more advanced fitting methods is increasingly
important to deal with random or unexpected data distribution. Furthermore, it is an
important prerequisite, that the fitting is physically feasible.

One important application of such fitted models is the modelling of the so-called
phase change materials (PCMs). Phase Change Materials are promising substances for
thermal energy storage applications, such as heat accumulators in power plants, building
or industrial processes [3,4]. The ability to predict solid-liquid or solid-vapor phase equi-
libria of interesting substances, especially those that form eutectic mixtures is essential to
understanding their thermal melting behavior, the working temperature ranges, and the
compounds that are formed at different working conditions. To understand the behavior
of the solid compounds or solid composition of a given binary mixture, a suitable and
thermodynamically correct Gibbs’ free energy model must be built from the fitting of heat
capacity, enthalpy, and entropy data. In this work, while the approach can be generally
used, the analysis is focused on the MgSO4/H2O system as it forms different hydrates that
can be applied in heating, ventilation and air conditioning systems (HVAC) [5].

In this context, the heat capacity data for MgSO4·1H2O (see Table 1 and Figure 1) is
one of those examples where the values between different data points could deviate more
than 20% and that could profit from new fitting methods.

Table 1. Gathered thermodynamic data for MgSO4·1H2O.

Type of Thermodynamic Data Reference

Cp Glasser, 2007 [6]
Cp, H0

f, S0
f DeKock, 1986 [7]

Cp Pabalan, 1987 [8]
Cp Frost, 1957 [9]
Cp Gmelin, 1939 [10]
Cp Perry, 1999 [11]

H0
f, S0

f Grevel, 2009 [12]
H0

f, S0
f Wagman, 1982 [13]

H0
f, S0

f Grevel, 2012 [14]
H0

f, S0
f Dean, 1979 [15]

H0
f, S0

f Billon, 2015 [16]

Regarding the modeling, there exist different models to describe thermodynamic
properties of stoichiometric solids. Some examples would be the Shomate equation [17]
or the NASA polynomial [18]. In this article, the NASA-9 polynomial will be employed.
The representation of this polynomial is through its adimensional form. Heat capacity data
divided by the gas constant R are represented as a seventh order polynomial:

cp(T)/R = a0
−2 + a1T−1 + a2 + a3T + a4T2 + a5T3 + a6T4, (5)

which after integration of (2) and (4) yields the two remaining parameters needed for a
complete thermodynamic description:

h(T)/RT = −a0T−2 + a1ln(T)T−1 + a2 + a3T/2 + a4T2/3 + a5T3/4 + a6T4/5 + a7/T (6)

s(T)/R = −a0T−2/2 − a1T−1 + a2ln(T) + a3T + a4T2/2 + a5T3/3 + a6T4/4 + a8. (7)

The NASA9 polynomial is the latest addition to the thermodynamic database of the
NIST. The difference with previous approaches is that the high order polynomial allowed
the use of one continuous function for a wider temperature range validity [19]. The use
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of continuous functions, instead of previous piecewise approaches, is also beneficial for
its further use in the convergence of phase equilibrium software due to its continuity. The
files generated are also simpler to read from the programming perspective. A high order
heat capacity curve allows also a better description of its integral to obtain the enthalpy
and entropy data. The high order of this polynomial increases the flexibility of the fitting
algorithm: A larger set of conditions/constraints, which reduce the degrees of freedom of
the fitting equation, and different curve behaviors could be applied. This is important as
the fitting algorithm introduced in the next section needs to be constrained to consider the
following points:

• data density,
• dispersion and abundance or lack of data sets,
• automation of the fitting procedure to avoid subjective data selection,
• correct thermodynamic model and its constraints,
• finding global minima considering the above.

These points will be discussed during the following section after introducing the
different assumptions for the fitting approach.

2. Materials and Methods

In this section, the different steps to create the proposed fitting process are explained
in detail. These steps involve problems like different data densities, the automation of the
fitting procedure or the definition of appropriate physical constraints.

2.1. Dealing with Different Data Densities: Weight Factors

The first step deals with the problem of data density. Literature data can be found in
different ways: equations, experimental points, theoretical approaches, etc. Typical fitting
approaches would tend to follow the area of higher data density, as shown in Figure 1.
In order to avoid big data deviations depending on the region, it is important to first
establish some filters by applying different weights to the datasets so that the selection is
more robust for any employed fitting method.

The proposed weight factors are distributed into two groups: data source and equation
type used in the researched literature. Every group is separated into 4 levels; the weight
factor of every corresponding level would be the negative power of two of the level
positions, starting with 0. Table 2 shows the given weight factors.

Table 2. Suggested weight factor for data pre-filtering.

Group Level Description Assigned Weight Factor

Data source

Level 0—Experimental 20

Level 1—Mixed 2−1

Level 2—Table/Theoretical 2−2

Level 3—Singular data 2−3

Equation type

Level 0—Point 20

Level 1—Quadratic 2−1

Level 2—Linear 2−2

Level 3—Constant 2−3

The proposed classification of data sources as weight factors with decreasing order is
as follows:

1. Experimental: Data points collected from experimental devices as they are most likely
to be precise and reproducible.

2. Mixed: A combination of experimental and theoretical approaches to obtain a given
curve. For example, a fitted curve from a few experimental points. This is especially
suitable when experimental points cannot be found but an equation from supposed
experimental data is given.
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3. Theoretical/Table: Data obtained through simulations or theoretical formulations
derived from other kind of properties. Table means that the value is from known data
collection tables.

4. Singular data: Singular points whose origin is unclear.

From the equation type perspective, the classification in weights following a decreas-
ing order is:

1. Point: Just data points, they are often associated with experimental data and the
combination of both gives the best weight possible.

2. Quadratic: Quadratic (or higher order) equation or curve used to fit the data.
3. Linear: the data comes in form of a linear temperature dependent fit.
4. Constant: a constant value given for a range of temperatures.
5. Not used: This extended flag has a weight of 0 and it is used to deactivate certain

values for the fitting procedure without losing them entirely.

The overall weight factor is the multiplication of both weight factors. The highest
weight would correspond to experimental points while the lowest one would be singular
data (unclear sources) with constant values. However, they are still important if no other
type of data is present. The weight factors for every ith data, wi,j for the jth data source and
wi,k for the kth equation type, are then employed for the least squares residual to give the
corresponding relative importance:

Σi(cp,i
data − cp,i

fitted)2wi,jk, (8)

where
wi,jk = wi,j wi,k (9)

In order to see the effect of such weight factors, data for anhydrous magnesium sulfate
will be employed. The data gathered to fit the corresponding NASA9 polynomial for the
salt are described in Table 3.

Table 3. Gathered thermodynamic data for MgSO4.

Type of Thermodynamic Data Reference

Cp Glasser, 2007 [6]
Cp, H0

f, S0
f DeKock, 1986 [7]

Cp Pabalan, 1987 [8]
Cp, H0

f, S0
f Perry, 1999 [11]

H0
f, S0

f Grevel, 2009 [12]
Cp, H0

f, S0
f Wagman, 1982 [13]

Cp, H0
f, S0

f Dean, 1979 [15]
H0

f, S0
f Billon, 2015 [16]

Cp, H0
f, S0

f Aylward, 1975 [20]
Cp, H0

f, S0
f Robie, 1995 [21]

Cp, H0
f, S0

f CRC_Handbook, 2003 [22]
Cp, H0

f, S0
f Patnaik, 2003 [23]

H0
f, S0

f Rayner, 2010 [24]

For comparison purposes, two different forms of appearance for MgSO4 are shown
in Figure 2. The graph corresponding to the pure salt (Figure 2a) shows an improvement
regarding the expected shape of the curve (red line) as, due to the defined weight factors,
the algorithm tends to follow the most trusting dataset within the defined parameters.
However, using exclusively this approach is not effective, especially for areas where only
one set of data, which is much deviated with respect to the previous fitted points, exists,
as shown in the Figure 2b for temperatures higher than 470 K. On the other hand, even in
this unfavorable situation, there is an improvement for the lower temperature points.
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Another problem for the fitting of those heat capacity data is that the curve tends to go
to the infinite, when the temperature is extrapolated above the temperature range covered
by the gathered data. However, the extrapolation of the heat capacity curve to lower and
higher temperature ranges is needed for phase equilibria calculations.

To improve the fitting outcome automatically without subjective influence, the fitting
method itself should be revamped and that is where the evolutionary strategy comes
into play.

2.2. Evolutionary Strategy Method

In this section, the strategy used to fit data in an improved way will be briefly ex-
plained. The employed method is based on the covariance matrix evolutionary strategy
(CMA-ES), developed by Hansen and Ostermeier [25,26], as implemented in the DEAP
computation framework, which can be used with the Python programming language [27].
Evolutionary strategies are stochastic methods with no derivation in the algorithm. This
provides a more robust and stable solution, especially for non-linear optimization problems
or those that are poorly conditioned.

The basis of evolutionary algorithms relies on genetic evolution through the selection
of a new average distribution value (recombination) and the addition of a random vector,
which is a disturbance with an averaged zero value (mutation). Individuals, which are
solution sets, are generated each iteration after the mutation step. The generation of
individuals is led by the minimization/maximization of the value of the objective function.
In every step update, the paired dependencies between variables and the distribution of
the individuals are represented by a covariance matrix. The next recombination step or
the finding of the new average distribution value is done by the ranking of the individuals
after evaluating the objective function with them. The recombination should follow the
direction of the best ranked individuals. Due to the nature of the CMA-ES, unlike most
classical methods, the character of the main objective function is not so important.

Figure 3 illustrates a typical fitting process of a two-dimensional spherical optimization
problem. On this simple problem, the population was concentrated on the global optimum
after several iterations.
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Figure 3. Example of two-dimensional spherical optimization problem. Points are individuals, the
blue area is the solution area, and the dashed line is the dispersion calculated with the covariance
matrix. Generation 1 shows the initial random distribution. Generations 2–3 show the population
moving towards the detected favorable direction of the solution due to the ranking of the individuals.
Higher random dispersion is expected as the algorithm looks for other possible minima in the
vicinity by “mutation”. In generations 4–6, after the individuals are sufficiently dispersed, with the
information of the covariance matrix, the global minimum is pinpointed and all the individuals,
regardless of their initial position, converge to the final solution area.

The CMA-ES algorithm is calculated by sampling a multi-variable normal distri-
bution [26]. For the iteration g = 0, 1, 2, 3 . . . the set of searched variables x is calcu-
lated through:

xk
(g + 1) ∼ N (m(g), (σ(g))2C(g)) for k = 1, . . . , λ, (10)

where λ is the population size (number of calculated individuals), m is the mean value of
the search distribution, σ is the so-called overall standard deviation or step size and C is
the covariance matrix. There are different principles to adapt the searching parameters:

1. The principle of maximum probability: The average distribution value is updated
to maximize the likelihood that the previous most successful individuals are closer
to the final solution. This is the selection and recombination step. The mean of the
search distribution comes from the selection of the most relevant µ selected points
from the sample. Writing the weight (not the same as the weight factors from the
previous subpart) as ωi with the condition that:

Σiωi = 1 for i = 1, . . . , µ and µ ≤ λ, (11)

the mean of the search distribution is then:

m(g + 1) = Σiωixi:λ
(g + 1) for i = 1, . . . , µ (12)

If the setting is ωi = 1/µ, then, the mean of the search distribution is purely the
mean value of the selected points. The recombination step is implicitly defined by the
modification of the weight coefficients.

2. Two types of temporal evolution of the average statistical distribution of the strat-
egy are recorded. These paths contain significant information about the correlation
between successive steps. In particular, the algorithm is effective if there is a large
positive evolution in successive steps in the same direction. To do that, the co-
variance matrix, within the weighted selection mechanism is calculated with the
following expression:

Cµ
(g + 1) = Σiωi (xi:λ

(g + 1) − m(g)) (xi:λ
(g + 1) − m(g))T (13)
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To allow a higher weight of the recent operations to the covariance matrix, a new
factor 0 < ccov ≤ 1 is introduced as learning rate (exponential smoothing), where with 0,
there is no learning and 1 takes no older steps into consideration. Being C(0) = I (identity
matrix), the recalculation of the covariance matrix is:

C(g+1) = (1 − ccov) C(g) + ccov Cµ
(g+1)/(σ(g))2 (14)

After that, the tracking of the evolution path is needed to accelerate following dispersion
steps. Defining pc as the evolution path, with pc

(0) = 0 and a learning rate factor, cc:

pc
(g+1) = (1 − cc) p(g) + (cc (2 − cc) µeff)

1/2 (m(g+1) − m(g))/σ(g), (15)

where
µeff = (Σiωi

2)−1 (16)

This is called the cumulation. Combining all the previous steps, the final expression
for the update of the covariance matrix is achieved:

C(g + 1) = (1 − ccov) C(g) + (ccov/µeff) pc
(g + 1) (pc

(g + 1))T + ccov(1 − 1/µeff) Cµ
(g + 1)/(σ(g))2. (17)

The second temporal evolution is a step-by-step control which studies the sequential
movement of the orthogonal distribution of the average distribution value, preventing
premature convergence before it really occurs, while still achieving a proper convergence
speed. This is done by the automatic control of the step size. Firstly, a conjugate evolution
path in comparison to (15) is built:

pσ
(g+1) = (1 − cσ) p(g) + (cσ (2 − cσ) µeff)

1/2 (C(g))−1/2 (m(g+1) − m(g))/σ(g). (18)

After that, the evolution path is compared to an expected distance given by a random
distribution, measured by the Euclidean norm (E) of a distributed random vector, (0, I).
Defining dσ as a damping parameter which should be close to one, the step size is calculated
as follows:

σ(g+1) = σ(g) exp(cσ/dσ ((||pσ
(g+1)||/E||N (0, I)||) − 1)). (19)

As with the previous set of equations, the algorithm cycle consists of three main parts:
(1) sampling of new solutions, (2) reorder of selected solutions according to their suitability,
(3) updating of internal state variables on the basis of the reordered samples as shown in
the previous equations. In this work, the DEAP implementation is used without further
internal modifications so that only the population size and the number of iterations are
controlled. The initial distribution can be also changed, but no systematic improvement
was observed.

In this method, due to the application of the mutation (perturbation of the best-found
solution) and the possibility of following more than one convergence direction, it is more
likely to find a solution closer to a global minimum instead of converging prematurely
to possible existing local minima. Furthermore, the lack of derivatives in the algorithm
improves the fitting stability. However, the number of iterations is usually larger than other
more common fitting algorithms. On the other hand, another advantage is the possibility
of implementing more complex conditions in DEAP. Those conditions will be discussed in
the following subsection. The results of the method will be discussed in the results section.

2.3. Definition of Constraints: Debye Model

In order to have a realistic heat capacity curve, a suitable physically plausible model
should be utilized through the definition of constraints to improve the usability of the fitted
model. For this work, the heat capacity Debye model will be introduced to define the shape
of the heat capacity curve [28]. This approach has two purposes: (1) The right prediction of
the heat capacity values outside the temperature range where data is available to influence
the correctness of the range with existing data; (2) to help to choose the right trend of the
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existing data points regardless of the point density as they can have very different slopes
and dispersions.

The Debye Model estimates the heat capacity of a solid through the phonon contri-
bution. The phononic structure is directly related to the thermodynamic properties of
solids [29]. The phonon density of states determines the thermal properties of the crystal.
In the case of the calculation of the thermal conductivity, it is mainly achieved by the low
frequency part of the distribution, while the calculation of the heat capacity is dominated
by the high-frequency region. The assumptions made by Debye (constant speed of sound)
causes a good prediction at low and high temperature ranges but incorrect results at
intermediate temperatures [30]. A typical Debye model curve can be observed in Figure 4.
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In this model, there are two temperature regimes which are dependent on the Debye
temperature TD of the solid. TD is defined as:

TD = hυ/kB (20)

where h is the Planck constant, υ is the Debye frequency (typically the maximum frequency
of the vibrations of the atoms of the solid), and kB is the Boltzmann constant. This value
can range from dozens to thousands of Kelvin, depending on the solid [29].

The Debye model at low temperature range, i.e., for temperatures much lower than
the Debye Temperature TD, predicts that the shape of the curve is proportional to T3. This
would correlate to the region I in Figure 4. The value of the heat capacity at constant
volume in that region is:

Cv/NkB = 12π4/5 (T/TD)3 (21)

where N is the number of atoms in the solid. In this work, to simplify the relation and
make it more general for any thermodynamic model, the first constraint is defined at a very
small low temperature range, which is chosen arbitrarily as between 1–5 K. Following the
Debye model, the heat capacity must have a positive increasing slope:

d2Cp/dT2 ≥ 0 for 1 K ≤ T ≤ 5 K (22)

At high temperature ranges, for temperatures much higher than the Debye tempera-
ture, the heat capacity should approach an asymptotic value provided by the Dulong-Petit
Law [31], which is quite accurate in most cases, but it does not consider all possible effects:

Cv/NkB = 3 (23)



Materials 2021, 14, 471 10 of 24

This means that the curve at intermediate and high temperature levels should have
a decreasing slope. This defines the second constraint. Between the temperatures of
50–2000 K (region III in Figure 4), the condition used will be:

d2Cp/dT2 ≤ 0 for 50 K ≤ T ≤ 2000 K (24)

The value 2000 K was arbitrarily chosen as a sufficiently large temperature to check
the validity of the Debye model even over the pure compound existence range.

The last constraint can be obtained by looking at the shape of the typical heat capacity
curve (Figure 4), the heat capacity increases as the temperature increases. The curve is
monotonically ascending. This can be used as the third necessary condition:

dCp/dT ≥ 0 for 1 K ≤ T ≤ 2000 K (25)

However, the second derivative is not defined in the temperature range between 5 K
and 50 K (region II in Figure 4). This is done to let the NASA polynomial equation adapt
itself between the two given conditions, giving the fitting process a higher flexibility and
not to force an unsolvable constraint.

The next step is to add these conditions into the objective function that must be
minimized. To comply with this, the addition of penalties becomes necessary. In this
work, the suggested approach is to force these conditions in a range of temperatures
corresponding to 1 K–2000 K. A set of, minimum, 100 temperature points should be
checked to prove if the three conditions are fulfilled in the suggested range. For every
point and condition not fulfilled, a fixed penalty value will be added to the residual. The
CMA-ES algorithm should detect in which direction the numbers of points, which fulfill
all conditions, are higher and improve the convergence rate when checking the average
distribution value.

Penalty expressions can be chosen depending on the data and the computed uncon-
strained residual, i.e., the values of the function that must be minimized, based on (8). Once
the first and last residual are computed, the penalty values can be assigned. Those penalty
values should be always of one or more orders of magnitude lower than the first residual
computed without any condition and, at least, one or more orders of magnitude higher
that the last residual computed without conditions. This is done to discard very aggressive
penalty values, which could force a premature convergence in local minima and to give the
user of the algorithm a first estimation of which values should be used.

The conditions, counting also with a positive heat capacity value, are then summarized
in the following set of expressions where every constraint corresponds to the generation
of a respective penalty (pty). This is evaluated in a set of l-points l = [1, 2000] with chosen
evaluation steps (100 by default):

if cp
fitted(l) ≤ 0, a value pty0,l is added for 1 ≤ l ≤ 2000

if d cp
fitted(l)/dT ≤ 0, a value pty1,l is added for 1 ≤ l ≤ 2000

if d2 cp
fitted(l)/dT2 ≤ 0, a value pty2,l is added for 50 ≤ l ≤ 2000

if d2 cp
fitted(l)/dT2 ≤ 0, a value pty3,l is added for 1 ≤ l ≤ 5

(26)

The new minimization function, considering the previous definition, is then:

Σi(cp,i
data − cp,i

fitted)2 wi,jk + Σl(pty0,l + pty1,l + pty2,l + pty3,l) (27)

The residual would then scale with the number of points that do not fulfill the said con-
ditions which helps the convergence of the CMA-ES method by showing which individuals
(set of solutions) present fewer invalid points, forcing the algorithm to follow those.

With the control of the residual, that is to say, by checking the last residual value given
by (27), the user can observe if all the conditions were fulfilled during the fitting process or,
on the contrary, if new parameters or further iterations are necessary. If the final residual
value is of the order of magnitude of one of the added penalties, the penalty value should
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be tuned again to find better solutions. For instance, if a penalty value of 104 is defined
and the final residual is 1.10003 × 105, 11 points did not satisfy the predefined condition
and the fitting procedure failed. In other words, other penalty values should be used to
improve the final result but without hiding their effects.

With the suggested method presented in this work, apart from the penalty values
which must be chosen per substance, there are three further tunable parameters from
the DEAP CMA-ES implementation: (1) sigma which is the initial dispersion of the first
random chosen populations; (2) lambda, which is the number of individuals (possible
solutions) of the population; and (3) number of iterations. Sigma can influence how fast
the solution is obtained and has no systematic behavior. The values used in this work
were tuned for the fitted data; it should not have an impact in the end result, only in the
iterations needed. Lambda is usually chosen as a multiplier from the number of fitting
parameters. The higher lambda is, the lower the number of iterations is required to achieve
convergence. However, it can be slower than a lower lambda value with higher number
of iterations.

The previous description of the algorithm was centered on the heat capacity. For the
description of the free energy of the stoichiometric solid, the enthalpy and entropy must be
also calculated. However, they are easier to calculate as the shape of the enthalpy/entropy
curve is implicitly defined with the heat capacity data. In other words, the correct shape of
the heat capacity curve will also yield correct enthalpy and entropy curves, showing the
importance of having a correct thermodynamic definition from the beginning of the fitting
process. With the heat capacity data, 7 of the 9 NASA9 parameters can be calculated. It is
worth noting that a decrease in the degrees of freedom of the fitted equation occurs with the
definition of the previous four constraints. The Shomate equation would be insufficient for
fitting a wide temperature range equation with the mentioned thermodynamic constraints.
It would be also difficult to fulfill all conditions with a NASA7 polynomial (5 parameters
to fit heat capacity data). For this reason, the use of the NASA9 for the defined approach
would be optimal. The other two parameters of the NASA9 polynomial come from the
fitting of the standard enthalpy/entropy of formation data by the use of DEAP without
penalty factors. From there, the Gibbs’ free energy data is easily obtainable.

The fitting procedure is considered successful if no significant residual change is
noticed during the last simulation steps and the value is lower than any of the penalty
functions given unless no better solution was found.

3. Results and Discussion

In this section, the presented algorithm will be used to calculate the thermodynamic
properties of different hydrate levels of MgSO4. This is a test case to see how the model
behaves with different data dispersion. After that, the obtained heat capacity curve of
MgSO4·7H2O will be compared to differential scanning calorimeter (DSC) data taken from
internal experimental testing. Finally, an application of the Gibbs’ free energy model will
be presented, using the equilibrium vapor pressure of the hydrates in comparison to the
Van’t Hoff formulation.

3.1. Computation of NASA9 Polynomial for Different Hydrates of Magnesium Sulfate

Before fitting the data, it is necessary to do an intensive work of data gathering.
In previous sections, the source of data for the anhydrous form of magnesium sulfate
(Table 3) and the monohydrate form (Table 1) were presented. Table 4 shows the data
source of other hydration levels, namely 2, 4, 5, 6, and 7, used in this work.
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Table 4. Gathered thermodynamic data for MgSO4·2H2O, MgSO4·4H2O, MgSO4·5H2O, MgSO4·6H2O, and MgSO4·7H2O.

Type of Thermodynamic Data Reference Substance

Cp Glasser, 2007 [6] MgSO4·2H2O, MgSO4·4H2O, MgSO4·6H2O, MgSO4·7H2O
Cp, H0

f, S0
f DeKock, 1986 [7] MgSO4·2H2O, MgSO4·4H2O, MgSO4·6H2O, MgSO4·7H2O

Cp, H0
f, S0

f Pabalan, 1987 [8] MgSO4·5H2O, MgSO4·6H2O, MgSO4·7H2O
Cp Gmelin, 1939 [10] MgSO4·6H2O, MgSO4·7H2O
Cp Perry, 1999 [11] MgSO4·6H2O, MgSO4·7H2O
Cp, H0

f, S0
f Grevel, 2009 [12] MgSO4·2H2O, MgSO4·4H2O, MgSO4·6H2O, MgSO4·7H2O

Cp, H0
f, S0

f Wagman, 1982 [13] MgSO4·2H2O, MgSO4·4H2O, MgSO4·6H2O, MgSO4·7H2O
H0

f, S0
f Grevel, 2012 [14] MgSO4·4H2O, MgSO4·6H2O, MgSO4·7H2O

H0
f, S0

f Dean, 1979 [15] MgSO4·7H2O
H0

f, S0
f Billon, 2015 [16] MgSO4·4H2O, MgSO4·5H2O, MgSO4·6H2O, MgSO4·7H2O

H0
f, S0

f Aylward, 1975 [20] MgSO4·7H2O
H0

f, S0
f Robie, 1995 [21] MgSO4·7H2O

Cp, H0
f, S0

f Patnaik, 2003 [23] MgSO4·2H2O, MgSO4·4H2O, MgSO4·6H2O, MgSO4·7H2O
H0

f, S0
f Rayner, 2010 [24] MgSO4·7H2O

Cp, S0
f Cox, 1955 [32] MgSO4·6H2O

Cp, S0
f Gurevich, 2007 [33] MgSO4·7H2O

For practical purposes, the penalty functions were optimized for all hydrate levels at
the same time, as this method is very useful to automatize the calculations and obtain all
the hydration levels with unified parameters. Table 5 shows the parameters chosen for the
penalty factors after performing a first fitting process without penalty factors.

Table 5. Penalty factors for the simulation.

Minimum Initial Residual
(No pty)

Maximum Final Residual
(No pty) pty0 pty1 pty2 pty3

1016 102 106 1012 104 109

Table 6 shows the fitting parameters of the DEAP CMA-ES along the final residuals of
the fitting process. The population is chosen so that the number of individuals is 45 times
the number of parameters which must be found. The iterations are manually selected
depending on the convergence rate and the change of the residual is inspected to see if
there are big changes in the last steps. Comparing the penalty factors of Table 5 and the
residuals of the Table 6, it is visible that the conditions given are completely fulfilled as the
residuals are in all cases lower than the penalty factors. If one point does not fulfill the
condition, the additive character of the penalties would cause the residual to be larger than
the penalty factor associated to one of the defined conditions.

Table 6. Parameters of the simulation for the fitting of the heat capacities and final residual of
the calculation.

Substance Iterations Population (λ) Initial Distribution (σ) Residual

MgSO4 290 315 3 1.72 × 102

MgSO4·1H2O 280 315 3 3.17 × 101

MgSO4·2H2O 350 315 3 2.75 × 10−4

MgSO4·4H2O 350 315 3 4.26 × 103

MgSO4·5H2O 350 315 3 6.11 × 10−26

MgSO4·6H2O 350 315 3 1.50 × 103

MgSO4·7H2O 350 315 3 5.79 × 103

As mentioned during the definition of the constraints, the calculation of extended
temperature ranges, even over the pure substance existence range, is important for the cal-
culation of phase equilibria. If there is a combination of temperature-pressure-composition
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whose mixture of substances is unknown (for instance, solid-solid. solid-liquid, or solid-
vapor) due to the lack of data or impossibility of determining them experimentally, the
mixture that would reach the minimum Gibbs free energy would be the existent mixture of
substances at those conditions. This can only be theoretically calculated if the employed
Gibbs free energy model of the compounds can be correctly defined on those extended
points. In this work, as it could occur with some unknown mixture of substances, the
existence boundaries will be assumed to be unknown in order not to influence the final
result, as well as treating the model as a predictive model for phase equilibria calculation.

Figures 5–11 show the fitting results in comparison with the LM method and LM with
the proposed weight factors. While in some cases, the fitting procedures are similar in
the literature points region, it changes drastically when the temperatures are extended
beyond literature temperature points. The CMA-ES method is the only option retaining a
thermodynamic feasible model at a very large temperature range, which also affects the
fitting procedure at the region where data exist. At the same time, in substances whose
literature points are difficult to fit due to its variability, the CMA-ES method provides a
more consistent solution such as the one shown in Figure 6. This advantage is not isolated
to heat capacities but applicable too to any fitting procedure where sufficient constraints
can be defined with different data dispersion.
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A statistic overview of the different fitting methods with respect to the obtained
data is shown in Figures 12–14. The green points are the mean values of the gathered
literature values while the error bars show the 95% confidence interval. These error bars
are very dependent on the amount of data. If no more than two points are available
for a temperature point, the confidence interval cannot be calculated as they depend on
the standard error of the sampled population. For this reason, the pentahydrate form
is not shown, as the amount of data was not sufficient to build the confidence interval.
The standard error (SE) of the dataset at every temperature value, being SD the standard
deviation of the sample with n points, is calculated as:

SE = SD/(n)1/2 (28)

The error bars would correspond to a 95% confidence interval (CI), defined as:

CI(95%) = ± 1.96 SE (29)
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An error study was also performed to evaluate the different methods’ results with
respect to the literature data. This should show if a correct thermodynamic definition
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could provide worse, similar, or better results within the literature temperature data range.
In general, for a parameter y and population n, the two calculated statistical deviations
will be the mean relative error (MRE) and the normalized root mean square deviation
(NRMSD). MRE is defined as:

MRE = 1/n[Σi(|yi
data − yi

fitted|/yi
data)] (30)

The NRMSD is calculated as:

NRMSD = |[Σi(yi
data − yi

fitted)2/n]1/2/[Σi(yi
data)/n]| (31)

Recalling the results from Figures 5–11, in most fitted substances, the proposed CMA-
ES method was showing a better curve shape, from the Thermodynamics perspective,
in comparison to the other methods. On the other hand, Table 7, which shows the results
of the statistical calculations, the CMA-ES method gives similar results, although slightly
worse, in comparison to the other methods in the literature temperature range. In general,
the CMA-ES method provides a much better thermodynamic description, especially beyond
the data temperature range, and a curve shape which resembles the Debye model at a slight
statistical penalty. For instance, one of the worst statistical results of the new proposed
method is the fitted data of MgSO4·4H2O. However, when inspecting Figure 8, just after
the data at the highest temperature, the heat capacity curve fitted with the LM method
would just fall off, which is thermodynamically incorrect. This would be a source of errors
when using the LM-obtained Gibbs free energy model to calculate phase equilibria beyond
that temperature data range. In other cases, like in Figure 6 (monohydrate form), within
the data range, the only thermodynamically correct curve shape is given by the CMA-ES
method. While the constraints of the CMA-ES method are beneficial for the shape of the
curve and its use in more complex phenomena, they are statistically not so favored.

Table 7. Statistical error and deviations of the fitted heat capacity with different fitting methods, n is the number of compared
points or population.

MRE NRMSD
Substance LM LM + Weight Factor CMA-ES LM LM + Weight Factor CMA-ES n Number of Sources

MgSO4 3.02% 2.98% 3.92% 3.66% 4.73% 5.11% 694 10
MgSO4·1H2O 2.49% 1.94% 2.06% 3.55% 4.09% 4.34% 438 7
MgSO4·2H2O 0.02% 0.02% 0.02% 0.02% 0.03% 0.03% 13 2
MgSO4·4H2O 70.85% 51.21% 278.4% 2.15% 2.19% 6.63% 134 4
MgSO4·5H2O <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 201 1
MgSO4·6H2O 1.02% 0.87% 2.21% 1.06% 1.18% 1.39% 421 10
MgSO4·7H2O 246.79% 468.28% 24.93% 2.88% 3.04% 3.09% 650 9

The fitting procedure for getting the heat capacity yields 7 of the 9 NASA9 parameters.
For the remaining NASA9 polynomial parameters, any of the weighted procedures would
yield the same result as only one extra point is fitted for the enthalpy and another one for
the entropy. For that, the gathered data of the standard enthalpy of formation and standard
entropy of formation are used. No further conditions are necessary as the heat capacity
curve implicitly defines the shape of the enthalpy and entropy curve. The fitting parameters
employed for the CMA-ES and the calculation of the remaining NASA9 parameters are
displayed on Table 8. In order to give a better visualization of the fitted enthalpy and
entropy results, Figures 15 and 16 show the fitted results and literature values of MgSO4
and MgSO4·1H2O as examples.

Table 8. Parameters of the simulation for the fitting of enthalpy and entropy.

Substance Iterations Population (λ) Initial Distribution (σ)

All 100 55 5
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Figure 15. Fitted results of the enthalpy curve in the literature points region for: (a) MgSO4; (b) MgSO4·1H2O.
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The enthalpy and entropy data were also statistically analyzed. The results are
gathered in Table 9, which are within the expected margin of error except for the error
of the entropy values of MgSO4·2H2O. This error value is too large. However, when
inspecting the corresponding fitted diagram (Figure 17), this is caused by the low number
of points and the suitability of one point over the other with the already fitted parameters
(8 of 9 NASA9 parameters are determined before fitting the entropy curve) so it is an
unavoidable error with the current dataset.



Materials 2021, 14, 471 19 of 24

Table 9. Statistical error and deviations of the fitted enthalpy and entropy with the CMA-ES method,
n is the number of compared points or population.

Enthalpy Entropy

Substance MRE NRMSD n MRE NRMSD n

MgSO4 0.81% 1.85% 15 0.54% 1.41% 14
MgSO4·1H2O 0.21% 0.29% 10 1.80% 3.93% 8
MgSO4·2H2O 0.03% 0.04% 4 10.22% 11.17% 2
MgSO4·4H2O 0.03% 0.04% 9 1.71% 1.88% 6
MgSO4·5H2O 0.03% 0.03% 2 1.65% 1.65% 2
MgSO4·6H2O 0.03% 0.04% 10 0.12% 0.28% 9
MgSO4·7H2O 0.02% 0.03% 14 0.60% 1.28% 14
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Finally, Table 10 shows the calculated parameters for the complete formulation of the
NASA9 polynomial which can be used to define the thermodynamic properties of each
stoichiometric solid.

Table 10. Calculated NASA9 parameters through the CMA-ES method.

Substance a0 a1 a2 a3 a4 a5 a6 a7 a8

MgSO4 2.41 × 10−2 −9.67× 10−3 2.69 × 100 3.86 × 10−2 −3.86× 10−5 1.93 × 10−8 −3.62× 10−12 −1.57 × 105 −1.43 × 101

MgSO4·1H2O 2.37 × 10−2 −1.38× 10−2 6.22 × 100 3.36 × 10−2 −3.19× 10−6 4.44 × 10−9 −2.31× 10−12 −1.97 × 105 −3.01 × 101

MgSO4·2H2O 3.77 × 10−2 −2.15× 10−2 5.61 × 100 5.39 × 10−2 −9.19× 10−6 1.04 × 10−8 −4.45× 10−2 −2.32 × 105 −2.83 × 101

MgSO4·4H2O −1.24× 10−1 3.71 × 10−1 −3.71× 10−1 1.24 × 10−1 −5.20× 10−5 3.78 × 10−9 1.22 × 10−12 −3.05 × 105 −2.21 × 100

MgSO4·5H2O 3.51 × 10−9 −1.18× 10−9 1.02 × 101 8.93 × 10−2 −2.09× 10−17 1.37 × 10−19 −1.34× 10−22 −3.43 × 105 −4.84 × 101

MgSO4·6H2O −1.76× 10−1 5.27 × 10−1 −5.28× 10−1 1.76 × 10−1 −1.19× 10−4 3.54 × 10−8 −3.88× 10−12 −3.78 × 105 −2.64 × 100

MgSO4·7H2O −1.84× 10−1 5.51 × 10−1 −5.51× 10−1 1.84 × 10−1 −9.80× 10−5 1.93 × 10−8 −7.53× 10−13 −4.15 × 105 −2.71 × 100

3.2. Validation of the Model: Heat Capacity Comparison and Vapor-Solid Equilibrium Curves

Once the fitting is successful with respect to their deviation parameters, the obtained
parameters must be proved to check the goodness of the algorithm. The first checking
procedure would be to compare the fitted heat capacity curve to an experimental output.
For this, a sample of MgSO4·7H2O was measured in a Setaram BT 2.15 Calvet Calorimeter
(Setaram – KEP Technologies, Caluire, France). The sample used for the experiment was
obtained from Acros Organics and is of analysis grade with a purity of 99.5%. The water
content of the substance was determined by Thermogravimetric Analysis to be 7.1 mol
water per mol MgSO4. All heat capacity experiments were done by using the continuous
cp measurement method with a heating rate of 0.3 K/min.
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The Setaram BT2.15 Calorimeter uses a 3D-Calvet sensor (Setaram – KEP Technologies,
Caluire, France) that surrounds the sample and was calibrated absolutely by Setaram with
an electrical heater. The calorimeter is cooled with an external thermostat-controlled bath
and permits a temperature range from −50 ◦C up to 200 ◦C. The volume of the sample
cells amounts to 12 mL. A temperature calibration of the calorimeter has been done by
measurements with different heating rates of Mercury, Gallium, and Indium with onset
melting temperatures of −38.86 ◦C, 29.780 ◦C, and 156.5985 ◦C, respectively. The mean
deviation between the measured onset temperatures (with calibration) and the appropriate
reference values is 0.075 K, and all calibration experiments give onset melting temperatures
within a range of ±0.22 K. The heat flow calibration of the calorimeter has been verified by
cp measurements of NIST Standard Reference Material 720 (Synthetic Sapphire), where all
results were within ±2% deviation compared to the reference values.

The selection of the heptahydrate form is done due to its phase stability at room
temperature as it is the equilibrium phase at those conditions. The comparison is shown in
Figure 18. The curve stops just before the phase transition to another binary mixture, in this
case, it would transition to a mixture of an aqueous solution and the hexahydrate form [34].
This is shown by the rapid increase in slope at the end of the displayed experimental data.
To obtain the heat capacity data after the phase transition, it would be necessary to calculate
the phase equilibria first of the mixture of the solid hydrate and the aqueous solution with
a suitable complex excess free energy model, which is beyond the scope of this work. The
obtained residual standard deviation of the fitting is 3.974 J/(mol K) with respect to the
experimental data. The estimation is in good agreement with the measured experimental
data, calculated for n experimental points as:

SDres = [Σi(cp,i
mea − cp,i

fitted)2/(n − 2)]1/2 (32)
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To have a better overview of the deviation of the fitting procedure, the mean relative
error (MRE) and the normalized root mean square deviation (NRMSD) were also calculated.
The MRE is defined as:

MRE = 1/n[Σi(|cp,i
mea − cp,i

fitted|/cp,i
mea)] (33)
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which results in a MRE of 0.7%. The NRMSD is calculated as:

NRMSD = |[Σi(cp,i
mea − cp,i

fitted)2/n]1/2/[Σi(cp,i
mea)/n]| (34)

whose result is a NRMSD of 1.1%. Thus, the estimation is in good agreement with the
measured experimental data.

The second comparison to validate the fitting is the construction of vapor-solid equi-
librium curves. To perform the calculation, the Gibbs’ Free Energy of the possible phases
involved must be first calculated. In this case, the energies of all possible hydrated phases
from MgSO4 are calculated by means of the NASA9 parameters calculated in Table 10.
For water, only solid and vapor phases are considered, as the liquid phase would need a
more complicated formulation based on excess properties and it is beyond the scope of this
work. For the solid water, a NASA7 polynomial from NIST [17,18] is employed. In the case
of vapor, from the same reference data, another NASA7 polynomial is used to define the
reference state. However, ideal gas formulation is used to calculate the thermodynamic
properties of the vapor from the reference state point. To determine which phases are
present at any given T–p combination and their phase transition, the VCS chemical stoichio-
metric solver [35] included in the Cantera open-source software [36], which allows its use in
Python, is employed. The equilibrium curves between the different hydrate levels and the
water vapor should give the dehydration curves. As a fixed initial composition is needed
to perform the equilibrium calculations, the composition of salt and water corresponding
to MgSO4·7H2O will be used as it is the most common stable form at standard conditions.
It is worth noting that all possible hydrous forms are included in the calculations, i.e.,
if any of the hydrous compounds with its corresponding proposed stoichiometric model
are much deviated from the real value at any temperature range, a different unexpected
phase composition would appear in the computed diagram.

The calculation will be compared to two data sources: (1) experimental dehydration
data from the heptahydrate and hexahydrate [37] as they are the most common stable forms
at different temperature conditions by transforming RH data into pressure [38]; (2) the equi-
librium curves of Van’t Hoff [39–41] from enthalpy and entropy of reaction/dehydration
data of the following form:

ln(p/p0) = −∆rH0/RT + ∆rS0/R, (35)

where p0 is the reference pressure or the atmospheric pressure (standard conditions) in
this case. The enthalpy and entropy of reaction, ∆rH0 and ∆rS0, when the dehydration is
seen as a reaction, can be calculated by the solvate difference rule [6]. This consists in the
calculation of the enthalpy/entropy of reaction from the difference in enthalpy/entropy of
formation between the reactants, corresponding to the hydrate before dehydration, and
the products, formed by the lower-level hydrate and water vapor. The equation is defined
in a per mol of water basis. In general, being A the anhydrous form and the dehydration
occurring from an nth hydrate to an mth hydrate in the corresponding physical state, the
enthalpy change of reaction can be defined as:

(H0
f,AnH2O(s))/(n − m) + ∆rH0 = (H0

f,AmH2O(s))/(n − m) + H0
f,H2O(g) (36)

(S0
f,AnH2O(s))/(n − m) + ∆rS0 = (S0

f,AmH2O(s))/(n − m) + S0
f,H2O(g) (37)

Van’t Hoff curves are built with the standard formation data from [12] for the salt
hydrates and [17] for vapor water. Figure 19 shows the results of the above calculations. The
black solid lines represent the calculation done in this work, the points are the experimental
data from the literature and the other lines are the corresponding Van’t Hoff equilibrium
curves. Figure 19a shows the region where experimental data exist. In this case, the Van’t
Hoff equilibrium curves for the dehydration of the heptahydrate and hexahydrate and
the computed curves fit almost perfectly, while the experimental points are also showing
almost the same behavior. Both are in good correlation with the algorithm computed data.
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Figure 19b shows also the dehydration of the monohydrate. In this case, no experimental
data exist due to the difficulty of obtaining pure salt so the comparison can be only be
performed between the calculation in this work and the Van’t Hoff curve. In this case, the
trend is similar, the curve has a similar shape but there is a discrepancy of about 10 ◦C
between them at any given pressure. As there is no experimental data available, it is
difficult to justify which approach is better. However, both approaches indicate a similar
dehydration behavior. As the determination of the vapor-solid equilibrium is dependent on
the Gibbs’ Free Energy calculation, the result shows the goodness of the achieved enthalpy
and entropy values fitted by the proposed thermodynamic model.
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The two cases, where the proposed fitted model is employed, show good correlations
with experimental data and other theoretical models. The CMA-ES method provides a
new alternative to other methods with higher flexibility due to the definition of constraints,
a more robust approach for data dispersion and a very high automation potential as
it prevents manual tuning of every point by giving a weight factor depending on data
type and source, providing still good results and avoiding subjective decisions about
which sources to choose. The weight factors also provide a way of discarding data in the
calculation with the flag “Not used” without removing them from the database as they
may be needed in complicated data sets. The results indicate that the CMA-ES algorithm
can be used not only for just heat capacity data, but also for more complex calculations like
phase equilibria in case of stoichiometric solids.

4. Conclusions

The proposed constrained evolutionary strategy is a useful and easy way to imple-
ment an approach to fit thermodynamic data to any desired model, especially, when the
dispersion of data is very large or when an automation of the fitting process is required.
Furthermore, constraints can be added to force a correct physical or thermodynamic de-
scription which is an advantage over more commonly used fitting methods. A feasible
thermodynamic description aids to choose the most relevant data in a more objective
way, to improve the usability of such data in more complex processes, and to predict
other derived properties such as the enthalpy, entropy, or Gibbs free energy from heat
capacity data.

The algorithm is robust and stable. At the current state, the algorithm needs some
manual tuning of certain parameters. However, most of the parameters need only one
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simulation beforehand, e.g., the penalty factors, and the benefits in the fitting procedure sur-
passes the disadvantages of the time consumed to tune the algorithm-specific coefficients.

The results show a reasonable agreement with the experimental comparison of the heat
capacity and the vapor-solid equilibrium of the chosen family of hydrates for magnesium
sulfate. This shows the goodness of the method to obtain thermodynamic data for the
description of the solid, a stoichiometric solid’s Gibbs Free Energy model, and use this data
consistently in more complex problems like the calculation of solid-vapor or solid-liquid
phase equilibria where the calculated enthalpy and entropy values are critical.

The model does not pose any limitation for any kind of substance or fitted property
when sufficient data is fed, especially, when physical constraints of behavior can be defined.
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