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Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators
of naïve T cells. Therefore, they act as a connective ring between innate and adaptive
immunity. DC subsets are heterogeneous in their ontogeny and functions. They have
proven to potentially take up and process tumor-associated antigens (TAAs). In this
regard, researchers have developed strategies such as genetically engineered or TAA-
pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical
and preclinical models. Here, we review DC classification and address how DCs are
skewed into an immunosuppressive phenotype in cancer patients. Additionally, we
present the advancements in DCs as a platform for cancer immunotherapy, emphasizing
the technologies used for in vivo targeting of endogenous DCs, ex vivo generated
vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived
DCs (iPSC-DCs) to boost antitumoral immunity.
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INTRODUCTION

Cancer evades immune surveillance as one of its hallmarks and prevents the immune system
from tumor eradication (Hanahan and Weinberg, 2011; Mittal et al., 2014). Thus, immunotherapy,
relying on cell therapy, cancer inhibitory signal antagonists, nanoparticle-based vaccines, oncolytic
viruses, and immunogenic cell death-inducing agents, is considered a cornerstone in cancer
treatment (Helmy et al., 2013; Yang, 2015; Kranz et al., 2016; Van der Jeught et al., 2018;
Riley et al., 2019; Vanmeerbeek et al., 2020; Malvehy et al., 2021). In general, cell-based cancer
immunotherapy can be divided into two subclasses, active and passive immunotherapies. Active
immunotherapy utilizes antigen-presenting cells (APCs) such as dendritic cells (DCs) to boost
patients’ immune system to fight against cancer (Van Lint et al., 2014; Jansen et al., 2020). However,
passive immunotherapy mostly involves immunization with T cells to induce immune-mediated
tumor rejection, including adoptive transfer of tumor-infiltrating lymphocytes or chimeric antigen
receptor T (CAR-T) cell therapy, which has shown significant outcomes in treating hematological
malignancies (Rosenberg et al., 2011; Fry et al., 2018; Depil et al., 2020). Cancer vaccines are one
type of immunotherapeutic strategies that have shown promising results in a personalized manner.
GVAX is one of the first tested vaccines against pancreatic cancer, and it is composed of the
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irradiated tumor cell-expressing granulocyte-macrophage
colony-stimulating factor (GM-CSF) (Le et al., 2015; Yarchoan
et al., 2020).

Dendritic cells are a type of innate immune cells and are potent
APCs. They play a central role in immune-mediated cancer
elimination through antigen presentation and T-cell priming
(Steinman, 2007, 2012; Eisenbarth, 2019; Sa-Nunes and Oliveira,
2021). After tumor-associated antigen (TAA) phagocytosis,
antigens are processed by two pathways, the cytosolic pathway
and vacuolar pathway, by which they are digested into peptides
and loaded onto the major histocompatibility complex (MHC)
class I. The TAA–MHC I complex is then transported to the
DC surface. When DC-presenting TAAs migrate and reach the
lymph nodes, they are capable of priming T cells and triggering
antitumor immunity (Joffre et al., 2012; Perez and De Palma,
2019). Before maturation, DCs have a high phagocytic capacity.
On the other hand, mature DCs have a lower endocytic ability;
express greater levels of co-stimulatory molecules [such as cluster
of differentiation 80 (CD80), inducible T-cell co-stimulator
ligand (ICOSL), programmed cell death ligand-1 (PD-L1), PD-
L2, CD31, CD27, and CD70], and C–C chemokine receptor type
7 (CCR7); and secrete high levels of pro-inflammatory cytokines
[such as interleukin-12 (IL-12) and tumor necrosis factor-alpha
(TNF-α)] (Patente et al., 2018). Accordingly, scientists have
developed modified DCs as an effective cancer vaccine approach,
leveraging the DCs’ ability to induce both cellular and humoral
immunity (Figure 1).

Dendritic cell vaccines were earlier used against highly
immunogenic cancers such as melanoma (Nestle et al., 1998;

FIGURE 1 | Antigen cross-presentation and T-cell priming. (A) Dendritic cell
primes CD8+ T cells. Primed CD8+ cells are differentiated into cytotoxic T
cells producing perforins and granzymes. (B) DC primes CD4+ T cells. Primed
CD4+ cells are differentiated into T helper cells, which in turn activate B cells
and differentiate them into memory cells and antibody-producing plasma cells.

Butterfield et al., 2003). Later on, they have been extensively
used in several clinical trials (Table 1). Commonly, patient-
derived monocytes or hematopoietic stem cells are collected and
differentiated in vitro into DCs. Then, DCs are pulsed with
TAAs or tumor lysates and cultured with maturation cytokines
(Santos and Butterfield, 2018; Yang et al., 2019). This method
is hindered by the low amount of immune cells in cancer
patients (Tjomsland et al., 2010), which could be a side effect of
other treatments such as radiation or chemotherapy. The use of
monocyte-derived DCs (MoDCs) obtained from healthy donors
can overcome this problem. Other TAA loading strategies include
targeting DCs with viral vectors (Goyvaerts et al., 2014; Sharma
et al., 2018) and mRNA-engineered DCs (Benteyn et al., 2015;
Willemen et al., 2020).

Fortunately, after Takahashi and Yamanaka (2006) generated
induced pluripotent stem cells (iPSCs) from mouse fibroblasts
by introducing four transcription factors (OCT4, SOX2, KLF4,
and c-MYC), iPSCs have become a template to generate DCs in
quantities suitable to produce anticancer efficacy (Senju et al.,
2011b; Sachamitr et al., 2014; Kitadani et al., 2018). Furthermore,
in vivo targeting of DCs, in which nanoparticles, antibodies,
viral vectors, and RNA are used as carriers to deliver TAAs,
co-stimulatory molecules, or adjuvants to stimulate endogenous
DCs (VandenDriessche et al., 2002; Dullaers et al., 2006; Diken
et al., 2011; Cubillos-Ruiz et al., 2012; Kreutz et al., 2013;
Van Lint et al., 2016), is considered an efficient state-of-the-
art approach to bypass leukapheresis inconveniency and the
laborious differentiation and maturation protocols. Increasing
efforts to understand DC biology will help to derive better DC
vaccines either as a single therapy or in combination with other
treatment regimens. This review provides a brief overview of
the main DC subsets and illustrates how DC and cancer cell
crosstalk in the tumor microenvironment (TME) correlates with
a positive or negative prognosis. Lastly, we discuss the cutting-
edge approaches to using DCs in cancer immunotherapy.

DC SUBSETS

DC subpopulations are classified according to their ontogeny,
morphology, function, marker expression, and cytokine secretion
into three main subtypes: MoDCs, plasmacytoid DCs (pDCs),
and conventional DCs (cDCs), which are further divided into
type 1 (cDC1s) and type 2 (cDC2s).

MoDCs
In response to inflammation, monocytes are differentiated
into DCs (Collin and Bigley, 2018). MoDCs are generated
ex vivo in vast amounts from CD14+ monocytes or CD34+
hematopoietic stem cells through culturing with IL-4 and
GM-CSF (Mastelic-Gavillet et al., 2019), which allows
for a better understanding of DC biology. T-cell-directed
differentiation by DCs is largely dependent on the maturation
signal. MoDCs treated with toll-like receptor (TLR) agonists
promote Th1 activation. For example, MoDCs electroporated
with a polyinosinic: polycytidylic acid [poly(I:C)] analog
[poly(I:C12U)], which is a TLR3 agonist, promoted CD4+ T-cell
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TABLE 1 | Clinical trials utilizing DC vaccines in cancer immunotherapy.

Intervention Cancer type Clinical response References

Autologous DCs loaded with
vaccinia-CEA-MUC-1-TRICOM
(PANVAC-V) + autologous DCs loaded with
fowl pox-CEA-MUC-1-TRICOM (PANVAC-F)

Resected hepatic or
pulmonary metastases
of colorectal carcinoma

13 of 16 patients achieved 2 years of
recurrence-free survival

Morse et al., 2013

Sipuleucel-T Prostate cancer Median OS in treated patients is 25.8 months
compared to 21.7 in placebo

Small et al., 2014

Autologous DCs loaded with TAAs Melanoma Out of 14 patients, 4 achieved PFS (12–35 months),
5 showed OS (22–40 months), and 4 achieved SD

Schreibelt et al., 2016

TriMixDC-MEL Melanoma -71% of the treated patients were alive and disease
free vs. 35% of the control
-The median time to non-salvageable disease
recurrence in treated patients were higher than in
control

Jansen et al., 2020

TriMixDC-MEL Melanoma -Out of 15 patients, 2 achieved CR, 4 achieved SD,
and 7 showed PD -Five out of 15 patients achieved
PFS (23.6–34 months)

Wilgenhof et al., 2013

WT1 mRNA-electroporated DCs Acute myeloid leukemia -Six of 30 patients achieved CR 107.6 (months
median duration), and 19 had a disease relapse -15
of these 19 had a salvage therapy, and 73.3% of
them achieved a second CR

Anguille et al., 2017

Autologous DCs loaded with allogeneic
non-small-cell lung cancer cells

Non-small-cell lung
cancer

-20 of 32 patients were alive 5 years post
vaccination -22 of 32 showed immunologic
response within 6 months of vaccination

NCT00103116

Peptide-pulsed DCs + indinavir Ewing’s sarcoma and
rhabdomyosarcoma

43% of the treated patients achieved a 5-year OS,
and 31% achieved a 5-year EFS

NCT00001566

Adenovirus-p53-transduced
DCs + 1-methyl-d-tryptophan

Breast cancer 1 of 21 patients achieved complete response, 7
showed partial response, and 2 achieved stable
disease

NCT01042535

CEA mRNA-pulsed DCs CEA-expressing cancer 3 of 23 showed SD, 1 showed CR, and 18 showed
PD

Morse et al., 2003

Tumor mRNA-pulsed DCs Brain cancer 2 of 5 patients achieved SD, none showed PR, and
3 showed PD

Caruso et al., 2004

Peptide-loaded DCs + dasatinib administered
at the same time

Metastatic melanoma -Four of six patients had partial response, and 2 out
of 6 had progressed disease -The calculated ORR
in 6 participants is 0.6667

NCT01876212

OS, overall survival; CR, complete remission; SD, stable disease; PD, progressed disease; PR, partial progression; PFS, progression-free survival; EFS, event-free survival;
ORR, overall response rate; CEA, carcinoembryonic antigen.

expansion and induced their differentiation toward Th1 cells
(Kaisho and Akira, 2003; Michiels et al., 2006). Electroporation of
MoDCs with CD40L and/or constitutively active TLR4 (caTLR4)
encoding mRNA, but not with CD70 mRNA, induces CD4+
T-cell differentiation into Th1 cells. However, electroporation
of DCs with CD40L, CD70, and caTLR4 mRNA (TriMixDC)
in addition to melan A antigen mRNA induces antigen-specific
CD8+ cytotoxic T cells. Additionally, MoDCs treated with
curdlan, a dectin-1 agonist, induce CD4+ T-cell skewing toward
Th1 and Th17 cells (Bonehill et al., 2008, 2009; Dragicevic et al.,
2012). However, ex vivo generated MoDCs are transcriptionally
distinct from their primary counterparts (Helft et al., 2015),
and their migration capacity and efficacy are debated (Morse
et al., 1999; Shinde et al., 2018); nevertheless, they remain the
cornerstone of cancer vaccine studies due to their accessibility,
rapid differentiation, and maturation protocols compared with
other subsets (Shinde et al., 2018; Tanyi et al., 2018). Ontogeny
studies revealed that inflammatory DCs are the closest phenotype
to MoDCs (Segura et al., 2013; Reynolds and Haniffa, 2015).

Inflammatory DCs express FcεRI, CD11c, CD11b, CD14, CD1a,
and CD209, and they are described in patients with cancer,
psoriasis, and atopic dermatitis, and in the synovial fluid of
patients with rheumatoid arthritis (Wollenberg et al., 1996;
Segura and Amigorena, 2013; Segura et al., 2013).

pDCs
Plasmacytoid DCs are one type of bone marrow-derived DCs
(BMDCs), which arise from common DC precursors and
lymphoid precursors (Naik et al., 2007; Geissmann et al., 2010;
Rodrigues et al., 2018). pDCs are known for their ability to
produce high levels of type I interferon (IFN) upon stimulation
of TLR7 and TLR9, and they play a crucial role during viral
infections (Reizis et al., 2011; Mitchell et al., 2018). They are
characterized by the expression of CD4, CD123, CD303, CD304,
blood-derived cell antigen-2 (BDCA-2), human leukocyte
antigen-DR (HLA-DR), and TLR7/TLR9 (Swiecki and Colonna,
2015; Villani et al., 2017; Wculek et al., 2020). Matsui et al.
(2009) showed that pDCs are further divided into two subtypes
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based on the expression of CD2, in which the CD2 (high) pDC
subpopulation expresses higher levels of CD80 and IL-12 p40.
pDCs have limited antigen-presenting potential (Chiang et al.,
2016), and their presence in the TME is associated with poor
cancer prognosis as they induce tumor progression through
stimulation of ICOSL, which in turn stimulates regulatory
T (Treg) cells (Conrad et al., 2012; Lombardi et al., 2015).
On the other hand, stimulated pDCs have shown promising
results as cancer vaccines. In clinical and preclinical melanoma
models, different strategies of antigen delivery or loading onto
pDCs resulted in significant type I IFN production, antigen-
specific T-cell priming, and superior chemoattractive properties
to cDC2s, eliciting antitumor activity (Tel et al., 2013; Kranz
et al., 2016; van Beek et al., 2020). Conversely, Salio et al.
(2004) showed that T-cell priming is independent of type I
IFN production. Another study suggested that the presence of
pre-classical DCs (pre-CDCs), the intermediate precursors to
cDC1s and cDC2s, in the pDC subpopulation might reflect
the responsibility for Th1-cell induction and cross-presentation
capability (Patente et al., 2018).

cDC1s
Similar to pDCs, cDC1s, and cDC2s arise from common
dendritic progenitors (CDPs) (Patente et al., 2018). cDC1s
express CD141, XCR1, and CLEC9A (Poulin et al., 2010; Wculek
et al., 2020). They have superior antigen presentation activity on
MHC I to cytotoxic T cells (Palucka et al., 2010), thus activating
Th1 and CD8+ cells (Martinez-Lopez et al., 2015; Laoui et al.,
2016). cDC1s have profound antitumor functions, and their
presence in the TME correlates with better prognosis and survival
rate (Sluijter et al., 2015; Bottcher et al., 2018; Cancel et al., 2019;
Zilionis et al., 2019). In this light, the need to generate cDC1s
in vitro that resemble primary cDC1s in a suitable quantity has
gained researchers’ interest. The Notch signaling pathway was
identified as a potent inducer of cDC differentiation (Martin-
Gayo et al., 2017). Culturing of bone marrow progenitors in a
medium containing FMS-like tyrosine kinase 3 ligand (FLT3L)
for 3 days followed by co-culturing on monolayers of OP9
stromal cells expressing the Notch ligand Delta-like 1 (OP9-
DL1) induced cDC1 differentiation with marker expressions
(CD103+, Dec205+, and CD8α+) resembling wild-type cDC1s.
The presence of OP9-DL1 produced cDC1s with preferential
migration potential compared to other methods (Lee et al., 2015;
Kirkling et al., 2018).

Ex vivo loading of primary cDC1s with tumor cell lysates
induced CD8+ and CD4+ T-cell infiltration and reduced tumor
progression in engrafted tumor models (Wculek et al., 2019).
IFN regulatory factor 8 (Irf8) (Guilliams et al., 2016) and basic
leucine zipper transcriptional factor ATF-like 3 (Batf3) (Poulin
et al., 2012; Grajales-Reyes et al., 2015) are critical transcriptional
factors in the development of cDC1s and are essential for
tumor rejection (Theisen et al., 2019). In Batf3−/− mice, DCs
were not able to mediate rejection of highly immunogenic
tumors as they lack cross-presentation potential with subsequent
impairment of cytotoxic T-cell activity (Hildner et al., 2008).
Transgenic expression of Irf8 into Batf3-deficient mice allowed
the development of cDC1s and restored their cross-presentation

function. However, these DCs failed to mediate rejection of
fibrosarcoma (Theisen et al., 2019). These results indicate that
immunogenic rejection of tumors is Batf3 dependent but not
limited to DC ability to cross-present tumor antigens, and there
might be other mechanisms involved, such as the ability of cDC1s
to communicate with other immune cells through the secretion
of CXC-chemokine ligand 9 (CXCL9) and CXCL10, which induce
recruitment and infiltration of T cells at the tumor site (Perez and
De Palma, 2019). Immune rejection of tumors also lay under the
effect of CCR7 expression on cDC1s. CCR7 expression promotes
TAA-carrying cDC1 migration to draining the lymph node where
CD8+ priming occurs, boosting antitumor response (Roberts
et al., 2016; Wang et al., 2016).

cDC2s
cDC2 distribution is found to be lower than that of other DC
types. They are characterized by CD172a, CD11c, CD11b, and
CD1c (O’Keeffe et al., 2015; Wculek et al., 2020). Like cDC1s,
cDC2s have shown antitumor efficacy. They act via antigen
presentation on MHC II to CD4+ T cells, promoting T-cell
differentiation into Th1, Th2, and Th17 cells (Leal Rojas et al.,
2017; Eisenbarth, 2019). Studies have shown that Irf4 is essential
for cDC2 activity and Th2-cell differentiation, which stimulates
humoral immunity and promotes B-cell proliferation (Schlitzer
et al., 2013). In mouse models, loss of Irf4 reduced cDC2 function
and defected Th2-cell differentiation (Schlitzer et al., 2013;
Williams et al., 2013; Binnewies et al., 2019). In the context of the
cDC2 ability to induce antitumor responses, cDC2s were found
to efficiently prime CD4+ T cells in vaccinated mice and induce
Th17-cell differentiation, and most noteworthy, they were able to
repolarize tumor-associated macrophages (TAMs) from M2 pro-
tumoral phenotype into M1 antitumor phenotype (Laoui et al.,
2016). Additionally, cDC2 vaccines pulsed with tumor antigens
were tested in clinical trials, and they showed effective and safe
antitumor responses against metastatic melanoma and metastatic
prostate cancer (Prue et al., 2015; Schreibelt et al., 2016).

DC MALFUNCTION IN CANCER
PATIENTS

It is well known that tumors and TME manipulate the immune
system to favor their persistence and progression. In the case of
colorectal cancer, the presence of elevated numbers of tumor-
associated DCs correlated with poor prognosis (Jochems and
Schlom, 2011). Several mechanisms were found to perturb
DC functions. For example, PD-L1 is highly expressed in
tumor-infiltrating DCs, inhibiting T-cell activation and cytokine
production. DC activity was restored upon PD-1/PD-L1
blockade (Salmon et al., 2016). Another mechanism is through
upregulation of T-cell immunoglobulin and mucin domain-
containing-3 (TIM-3) protein on DCs, which inhibits sensing
of danger signals (Maurya et al., 2014; de Mingo Pulido et al.,
2018). Michielsen et al. (2011) reported that VEGF, CCL1,
CCL2, and CXCL5 presence in conditioned medium from
colorectal cancer explants inhibited DC maturation and IL-
12p production while increasing IL-10 secretion. Melanomas

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 June 2021 | Volume 9 | Article 686544

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-686544 June 23, 2021 Time: 17:56 # 5

Salah et al. DC Vaccines in Cancer Immunotherapy

expressing β-catenin were found to induce resistance to
immunotherapeutics, reduce infiltrating cDC1s and T cells, and
promote tumor growth (Spranger et al., 2015). Moreover, the
presence of prostaglandin E2 (PGE2) stimulated tumor growth
by impairing the accumulation of intratumoral CD103+ DCs
(Zelenay et al., 2015).

Metabolic dysfunction can also influence DC maturation in
cancer patients. Hypoxia, lactic acid production, and decreased
pH impair normal DC function. In vitro cultures of prostate
cancer or melanoma cells produced high levels of lactic acid,
which was associated with modulation of DC differentiation and
maturation (Gottfried et al., 2006). Other TME-derived products
induce lipid peroxidation, which activates the endoplasmic
reticulum stress response factor via spliced X-box-binding
protein 1, leading to lipid accumulation in DCs (Tyurin et al.,
2011; Cubillos-Ruiz et al., 2015). Accumulation of lipid particles
inhibits the peptide–MHC I complex migration to the DC surface
and impairs cross-presentation potential to T cells, blocking their
activity (Herber et al., 2010; Ramakrishnan et al., 2014; Veglia
et al., 2017).

Infiltrating pDCs are incapable of type I IFN production and
can also stimulate Treg-cell expansion through the expression of
indoleamine 2,3-dioxygenase (IDO) and ICOSL, which enhance
tumor progression (Ito et al., 2007; Aspord et al., 2013). In
many cancer patients, high levels of infiltrating pDCs are linked
to poor prognosis (Lombardi et al., 2015; Saadeh et al., 2016).
Tumor DCs have shown lower antigen-trafficking potential
due to controlled CCR7 expression (Roberts et al., 2016),
resulting in decreased ability to prime T cells in lymph nodes.
Moreover, signal transducer and activator of transcription 3
(STAT3) phosphorylation, activated by IL-6 and IL-10 in chronic
lymphocytic leukemia patients’ sera, induces suppressor of
cytokine signaling 5 expression, which in turn inhibits STAT6
activation (an essential molecule for MoDC differentiation),
preventing monocyte differentiation and maturation (Toniolo
et al., 2016; Kitamura et al., 2017).

DCs IN CANCER IMMUNOTHERAPY

As previously mentioned, DCs are the most potent APCs
that promote cellular and humoral antitumor immunity,
making immunotherapy-based DC vaccines, with either ex vivo
generated DCs or in vivo targeting modalities, an active area
of research (Figure 2). That’s why researchers are working
to augment their efficacy, providing new paradigms of cancer
vaccines, which could be considered as potential candidates in
various clinical settings.

MoDC Vaccines
Based on the understanding of DC biology and their antigen
presentation and T-cell activation potential, numerous preclinical
and clinical studies utilizing DCs in cancer immunotherapy have
been undertaken (Steinman and Banchereau, 2007). Most clinical
trials relied on DCs generated ex vivo from blood monocytes.
Usually, IL-4 and GM-CSF are used to induce DC differentiation
from monocytes in 5–7 days (Dauer et al., 2003; Mohty et al.,

FIGURE 2 | A schematic diagram illustrates the production and mechanism of
action of DCs. (A) Ex vivo generated DCs cross-present tumor antigens to T
cells. (B) Antibodies transfer loaded TAAs to targeted DCs in vivo. MHC:
major histocompatibility complex, TCR: T-cell receptor.

2003) or 2 days as in the case of FastDCs (Dauer et al., 2005).
Other differentiation protocols include culturing peripheral
blood mononuclear cells (PBMCs) with IFN-β and either IL-3 or
GM-CSF (Breckpot et al., 2005; Mazouz et al., 2005). However,
the best maturation cocktail is yet to be defined. Immature DCs
have less potential to induce effector immune cells as they do
not produce stimulatory cytokines and express less levels of co-
stimulatory molecules (Steinman and Swanson, 1995; Trombetta
and Mellman, 2005). Different maturation cocktails were tested,
such as TLR agonists, CD40 ligand (CD40L), and other cytokines
to identify the ideal combination. Vopenkova et al. (2012) have
compared various maturation signals’ effect on MoDC functions
and stated that lipopolysaccharide and IFN-γ could give the
highest response.

To date, the first and only FDA-approved DC vaccine
(Provenge) consists of autologous APCs loaded with a
recombinant fusion protein antigen, which is composed of
GM-CSF and prostatic acid phosphatase (PAP). Provenge
synthesis requires 4 days for maturation. It increased the median
survival by 4 months in patients with metastatic castration-
resistant prostate cancer (Anassi and Ndefo, 2011; Cheever and
Higano, 2011). Accordingly, researchers have been developing
strategies to acquire DCs with the ability to express TAAs
through different techniques (Saxena and Bhardwaj, 2018; Perez
and De Palma, 2019). One TAA-loading method is through
pulsing DCs with certain epitopes to promote T-cell activity,
which was tested in melanoma patients (Carreno et al., 2015).
MUC1-pulsed DCs derived from PBMCs were tested in phase
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I/II clinical trials in patients with resected biliary and pancreatic
cancers. MUC1-pulsed DCs increased the survival of 33% of
the vaccinated patients for up to 5 years (Lepisto et al., 2008).
WT1-pulsed DCs in phase I clinical trials increased antigen-
specific cytotoxic T cells in 20% of the treated patients with
pancreatic cancer (Yanagisawa et al., 2018). Other TAA-loading
strategies include whole-tumor-cell lysate-pulsed DCs (Li et al.,
2010; Bauer et al., 2011), which express a broader range of tumor
antigens suitable for personalized treatments, tumor cell fused
with DC vaccines (Koido et al., 2013; Chen et al., 2015), or
genetically modified DCs to express cancer-specific antigens
(Miyazawa et al., 2011; Chen et al., 2013; Shindo et al., 2014;
Maeda et al., 2015; Esprit et al., 2020).

TriMixDC is one type of mRNA-engineered DCs, which
gained researchers’ interest owing to their enhanced antitumor
activity and feasibility compared to other mRNA-based vaccines
(Anguille et al., 2014; Van Lint et al., 2015). The delivery
of CD40L, CD70, and caTLR4 mRNA generates mature DCs
in a one-step process without further incubation with other
maturation cocktails for a certain period of time, which can
exhaust the cells. Moreover, it eliminates the need to perform
tumor biopsies followed by further purification in GMP settings
for clinical use, as in the case of whole-tumor mRNA-based
DC vaccines, which is laborious and time-consuming. Synthetic
mRNA-based vaccines produce fewer side effects and show a
higher possibility for optimization and large-scale generation
than whole-tumor mRNA-based DC vaccines (Van Nuffel
et al., 2010; Van Lint et al., 2014; Benteyn et al., 2015). Co-
electroporation of TriMixDC with mRNA encoding a fusion
of melanoma antigen and DC-LAMP, an approach named
TriMixDC-MEL, stimulated antigen-specific CD8+ T and Th1
cells in vaccinated patients (Bonehill et al., 2009). In a phase
II trial, TriMixDC-MEL combined with ipilimumab, a CTLA-
4 inhibitor, showed a 20% complete response and '18% partial
response in 39 patients with advanced melanoma (Wilgenhof
et al., 2016). TriMixDC-MEL plus ipilimumab also resulted in
28% overall survival (OS) after 390 weeks of median follow-up
and 18% progression-free survival (PFS) after 5+ years in patients
with stage III or IV melanoma (De Keersmaecker et al., 2020).

Additionally, Rosa et al. (2018) reprogrammed mouse and
human fibroblasts into DCs named induced DCs (iDCs) by
transduction of PU.1, Irf8, and Batf3 transcription factors. iDCs
have cDC1-like features and can prime antigen-specific CD8+
T cells. Furthermore, BMDCs virally transduced with CCR7
gene generated CCR7-overexpressing mature-like DCs, which
had a notable migration potential to draining lymph nodes
(Okada et al., 2005).

Lastly, Squadrito et al. (2018) engineered DCs expressing
chimeric receptors that are able to take up and process TAAs
in situ. The introduction of the chimeric receptor allowed
DCs to selectively take up tumor-derived extracellular vesicles,
which can deliver TAAs to DCs. HER2-specific extracellular
vesicle-internalizing receptor (EVIR)-expressing DCs showed a
significant increase of antigen-specific cytotoxic T cells, resulting
in an antitumor response (Squadrito et al., 2018). Blocking
immunosuppressive signals is another promising approach in
cancer vaccines. Researchers utilized small-interfering RNAs

(siRNAs) to knock down PD-L1 and PD-L2 genes in DCs.
PD-L-silenced DCs increased T-cell expansion and IFN-γ and
IL-12 production (Hobo et al., 2010; van der Waart et al., 2015).

iPSC-Derived DC Vaccines
Genetically engineered DC vaccines expressing TAAs showed
significant effectiveness against many cancer types (Ojima et al.,
2007, 2008; Miyazawa et al., 2011). These strategies rely mostly
on either primary DCs or ex vivo generated MoDCs, which
require leukapheresis. Therefore, they are patient inconvenient,
and their clinical application is restrained. Also, DCs exist as
small populations in the blood (Jongbloed et al., 2010), and their
number is further reduced in cancer patients (Beckebaum et al.,
2004; Satthaporn et al., 2004; Poschke et al., 2012). Therefore,
iPSCs are considered an unlimited and potential source to
provide DCs (iPSC-DCs) in a suitable quantity.

Scientists have designed protocols to differentiate mouse and
human iPSCs into DCs (Senju et al., 2009, 2011a; Li et al., 2014).
For example, Silk et al. (2012) generated CD141+XCR1+ DCs
from iPSCs using a protocol that is free from animal-derived
products, making them compatible with clinical applications.
These iPSC-DCs were able to cross-present melan A antigen
(melanoma antigen) and prime CD8+ T cells (Silk et al.,
2012). To increase the yield of iPSC-DCs, researchers generated
proliferating iPSC-derived myeloid cells (iPSC-pMLs) through
the insertion of the c-MYC gene into iPSC-derived myeloid
cells (iPSC-MLs). iPSC-pMLs were then differentiated into iPSC-
DCs through culturing in a medium containing IL-4 and
GM-CSF for 3 days. iPSC-pMLs loaded with the OVA257-
264 peptide were able to prime CD8+ T cells in a syngeneic
mouse model. Primed antigen-specific CD8+ T cells isolated
from mouse spleen killed MO4 cells (OVA-expressing melanoma
cells) in vitro. OVA257-264 peptide-loaded iPSC-DCs provided
immunization for 3 months with no adverse effects (Zhang
et al., 2015). To further increase iPSC-pML potency, iPSC-
pMLs were virally transduced with the IFN-α gene. In a
bilateral melanoma transplantation model, local administration
of IFN-α-expressing iPSC-pMLs inhibited the tumor growth at
treatment and remote sites, in addition to inhibition of lung
metastasis (Tsuchiya et al., 2019).

In another study, researchers produced iPSC-DCs expressing
carcinoembryonic antigen (CEA) (iPSDCs-CEA) and stimulated
them using a maturation cocktail composed of recombinant
human IL-6, IL-1β, TNF-α, and PGE2 for 2 days. iPSDCs-CEA
was structurally similar to MoDCs, and the expression levels of
CD80 and CD83 co-stimulatory molecules were comparable to
those of MoDCs. Mature iPSDCs-CEA and MoDCs produced
high levels of IFN-γ and IL-12 with no significant difference
in secretion levels between both cell types. Moreover, when
iPSDCs-CEA were cultured with different cell lines expressing
the HLA-A24 allele (MKN1, MKN45, HT29, and LCL-CEA652
cells), they were able to induce CD8+ T cells against MKN45,
HT29, and LCL-CEA cells (CEA-expressing cells) but not
MKN1 (lacking endogenous CEA). These results indicate that
iPSDCs-CEA is able to stimulate human cytotoxic T cells with
great specificity against gastrointestinal cancers expressing CEA
(Kitadani et al., 2018).
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Iwamoto et al. (2014) generated iPSC-DCs and BMDCs.
Mature iPSC-DCs expressed high levels of CD80, CD86, CD11c,
and MHC II, similar to mature BMDCs. The migratory capacity
of mature iPSC-DCs identified by the expression of CCR7
was analyzed and showed comparable results to those of
mature BMDCs. In this study, using a gene-based vaccination
strategy, researchers imparted both iPSC-DCs and BMDCs the
ability to express hgp100 (human melanoma antigen) through
transduction with a recombinant adenoviral vector. Tetramer
and 51Cr-release assays revealed induction of cytotoxic T cells
against B16 cells (melanoma cell line) in mice immunized
with iPSC-DCs-hgp100 and BMDCs-hgp100. Additionally,
iPSC-DCs-hgp100 administration significantly inhibited tumor
growth in mice with subcutaneous B16 cells compared to
phosphate-buffered saline, iPSC-DCs-LacZ, and BMDCs-LacZ
as negative controls, suggesting that iPSC-DCs could be a
promising approach in clinical practice as cancer vaccines
(Iwamoto et al., 2014).

To enhance the antitumor potential of iPSC-DCs, Mashima
et al. (2020) generated proliferating and GM-CSF-producing
myeloid cells (GM-iPSC-pMLs) through the insertion of Csf2 and
c-MYC genes into iPSC-MLs by a lentivirus vector. Similar to
BMDCs, GM-iPSC-pMLs were able to stimulate cytotoxic T-cell
proliferation. Additionally, when GM-iPSC-pMLs were pulsed
with an OVA peptide, they were able to prime and stimulate
antigen-specific cytotoxic T cells, indicating that GM-iPSC-
MLs had cross-presentation capacity like DCs. Interestingly,
in a prophylactic experiment, administration of GM-iPSC-MLs
loaded with the OVA peptide were able to inhibit tumor
growth when taken 7 days before the mice were injected with
subcutaneous MO4 cells.

Stimulation of DCs in vivo
Since ex vivo generated MoDCs have limited migration potential,
it is crucial to focus on other research lines that involve systemic
activation of in vivo DCs. Historically, researchers used immune
activators such as bacterial products (Coley, 1910; Bernardes
et al., 2010), TLR agonists (Adams, 2009; Chi et al., 2017), and
bacillus Calmette–Guérin (BCG) (Kamat et al., 2017) to elicit
antitumor activity. Immune activators have been found to induce
antitumor immune response via DC activation (Kuhn et al.,
2013) followed by CD8+ T-cell priming (Kuhn et al., 2015), and
this approach is likely only functional when acting on DCs that
already acquired tumor antigens, such as tumor-associated DCs.
TGF-β (Pu et al., 2018), 1-methyl-tryptophan (IDO inhibitor) (Li
et al., 2010), and inhibiting IL-10 antibody (Marvel and Finn,
2014) have proven to act synergistically with DC vaccines in
inhibiting pancreatic cancer growth. Intratumoral injection of
cyclic diguanylate monophosphate (STING agonist) or cytosine-
phosphorothioate-guanine oligodeoxynucleotide (TLR agonist)
enhanced T-cell activation and stimulated in situ DC maturation
(Kawarada et al., 2001; Ohkuri et al., 2014). Imiquimod, a
TLR7/TLR8 agonist, promotes pDC-mediated antitumor activity,
and it is approved for the treatment of non-melanoma skin cancer
(Drobits et al., 2012). Poly[I:C] and its derivatives have been used
in different cancer vaccination studies and have shown significant
outcomes (Martins et al., 2015).

In a melanoma mouse model, co-administration of Poly[I:C]
and FLT3L enhanced CD103+ DC expansion and CD8+
T-cell recruitment at the tumor site and synergized PD-L1
antitumor activity (Salmon et al., 2016). The FDA granted an
orphan drug designation to a rabies vaccine combined with
poly[I:C], named YS-ON-001, for the treatment of pancreatic
cancer and hepatocellular carcinoma (Goyvaerts and Breckpot,
2018). Importantly, in an ovarian cancer model, in situ
co-administration of CD40 and TLR3 agonists has induced
the polarization of tumor-infiltrating DCs into an immune
stimulatory phenotype that was able to produce type I IFN and
IL-12 p70, resulting in tumor remission (Scarlett et al., 2009).
Interestingly, Penafuerte et al. developed FIST, a fusion protein
of IL-2 and the ectodomain of TGF-β receptor II, to block
immunosuppression activity of locally secreted TGF-β and to
activate IL-2 receptor-expressing lymphocytes. Administration
of this fusokine recruited immune cells at the tumor site and
stimulated IFN-γ secretion (Penafuerte and Galipeau, 2012).
Likewise, Van der Jeught et al. (2014) developed mRNA encoding
IFN-β and the ectodomain of TGF-β receptor II fusokine, named
Fβ2. When this mRNA was taken up by DCs and translated
into the functioning protein, it stimulated DCs and induced
antitumor immunity. Other strategies for intratumoral delivery
of immunostimulatory signals such as TNF-α, IL-12, and TGF-
β and IL-10 neutralization are extensively reviewed elsewhere
(Van der Jeught et al., 2015).

Cancer stem cells (CSCs) play a critical role in cancer
progression and metastasis. CSCs are resistant to treatment
since they possess antigens different from those present
in differentiated tumor cells (Reya et al., 2001). Therefore,
vaccination strategies relying on cells expressing stem cell
antigens have gained researchers’ interest (Dashti et al., 2016;
Zhao et al., 2017). For instance, scientists have developed next-
generation cancer vaccines that are more potent and targeted
than conventional treatments. Mackiewicz et al. (1995) have
developed a genetically engineered whole-tumor cell vaccine
expressing hyper-IL-6 against melanoma, named AGI-101H,
which has a melanoma stem cell-like phenotype (Mackiewicz and
Mackiewicz, 2009). In clinical trials, this vaccine increased the
survival of patients with advanced-stage melanoma (Mackiewicz
et al., 2015, 2018). Genetically modified B16F10 (melanoma cell
line) expressing hyper-IL-6 mixed with murine iPSCs increased
DCs, natural killer (NK)-cell infiltration, and IFN-γ and IL-
12 p70 production at the tumor site in a mouse model. The
vaccines also inhibited the number of infiltrating Treg cells at
TME and increased serum level of specific IgG against tumor
cells, resulting in a significant reduction of tumor growth with
a subsequent increase in the survival rate of the treated mice
(Gabka-Buszek et al., 2020).

Targeting of DCs in vivo is another strategy that has shown
promising results. DEC205 and CLEC9A are receptors that
only DCs express. Antibodies targeting these receptors are
efficient delivery molecules (Kreutz et al., 2013; Tullett et al.,
2016). Mahnke et al. (2005) conjugated melanoma antigens with
a DEC205 antibody. The conjugate selectively delivered the
neoantigens to DCs, which stimulated CD4+ and CD8+ T-cell
responses, leading to tumor regression (Mahnke et al., 2005). In a
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phase 1 clinical trial, anti-DEC-205 antibody-mediated delivery
of NY-ESO-1 antigen was found to be safe and immunogenic,
and it was tolerable as a combination therapy with immune
checkpoint inhibitors (Dhodapkar et al., 2014). Conjugation
of MUC1 antigen to oxidized mannan targeting mannose
receptors (MRs) on DCs also stimulated DCs, and it is 1,000
times more efficient than reduced mannan conjugated to MR
in MHC I presentation to cytotoxic T cells (Apostolopoulos
et al., 2014). Researchers have used nanoparticles as vehicles
in cancer immunotherapy to deliver synthetic long peptides
(SLPs), mRNA, or viral vectors to overcome the drawbacks of
protein-based vaccines, such as their limited cellular uptake and
susceptibility to degradation by enzymes (Varypataki et al., 2016;
Verbeke et al., 2017, 2019; Sharma et al., 2018).

Poly[I:C]-adjuvanted SLPs covalently bound to cationic
dextran nanogels facilitated peptide internalization into DCs
and stimulated cytotoxic T-cell response in vivo (Kordalivand
et al., 2019). Similarly, SLPs loaded into cationic liposomes
and adjuvanted with TLR ligand efficiently induced antigen-
specific T cells in vivo (Varypataki et al., 2016). In the
case of RNA-loaded nanoparticles, Kranz et al. (2016) used
lipoplexes as carriers to protect RNA encoding neoantigens
from ribonuclease degradation and efficiently deliver RNA to
DCs. RNA lipoplexes were tested in clinical trials and found to
induce IFN-α production and stimulate effector and memory
T-cell activity (Kranz et al., 2016). Cubillos-Ruiz et al. (2012)
designed a nanoparticle carrying a Dicer substrate, which mimics
endogenous pre-miRNA. Uptake of this complex significantly
induced miR-155 activity and reverted the tolerogenic potential
of tumor-associated DCs. Subsequently, the complex abolished
ovarian cancer progression in 33% of the treated mice (Cubillos-
Ruiz et al., 2012). Lentiviral vectors attached to nanobodies is
another strategy that has proven to have an efficient targeting
potential to DCs both in vivo and in vitro (Goyvaerts et al., 2012).
Combination therapy of plasmids carrying complementary DNA
for FLT3L and adenoviral vector carrying IL-18 gene induced
DC mobilization with higher CD86 expression, and achieved
complete eradication of MCA205 fibrosarcoma in tumor-bearing
mice (Saito et al., 2008).

CONCLUSION

In the past years, immunotherapy has proven to be an off-the-
shelf treatment approach in oncology due to its higher specificity
and targeting capacity compared to traditional treatments,
including, but not limited to, adoptive transfer of (NK) cells
(Burger et al., 2019), macrophages (Klichinsky et al., 2020), T cells
(June et al., 2018), and DCs.

Dendritic cells are a heterogeneous type of cells and
play a vital role in maintaining immune homeostasis. They

are known as environmental sensors and are efficacious
in phagocytizing non-self-antigens and presenting them
on MHC I and II to CD4+ and CD8+ naïve T cells.
As a result of their plasticity, they are greatly affected
by tumor-derived products. Thus, combinatorial strategies
with other treatment modalities may act synergistically
to inhibit DC tolerogenic polarization and improve their
anticancer effect.

Dendritic cell vaccines are found to be feasible, safe,
and immunogenic in clinical trials, making them an active
area of research. For example, TriMixDC-MEL has shown
promising results in inducing antitumor immunity, and it is
being tested in clinical trials against melanoma. Moreover,
strategies to deliver antibody-loaded neoantigens, activation
signals, or nanobodies carrying SLPs or mRNA to induce DC
activation in vivo have proven their efficacy in preclinical
and clinical settings. On the other hand, some DC vaccine
approaches have shown suboptimal antitumor activity, which
could be due to improper DC generation protocol, maturation
cocktail, or route of administration. To date, we do not know
which DC subset, maturation cocktail, or antigen loading
strategy is ideal for producing optimal efficacy. Notably, all
DC subsets contribute to antitumor immunity. That’s why a
better understanding of DC biology could pave the way to
developing multiplexed DC vaccines, leveraging the crosstalk
among DC subpopulations.

Interestingly, the advancement in stem cell-based research
provided a template for the development of personalized iPSC-
DC vaccines. Furthermore, targeting strategies of DCs in vivo to
selectively deliver molecules to certain primary DC subsets offer
a substitute for the laborious, time-consuming, and costly ex vivo
generation, antigen loading, and maturation of DCs. Overall,
taking into consideration the pros and cons of DC vaccines, it
remains tempting to continue researching this field, aiming to
provide innovative strategies to enhance their clinical efficacy.
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