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ABSTRACT To date, much progress has been made in dietary therapy for obese
patients. A low-carbohydrate diet (LCD) has reached a revival in its clinical use dur-
ing the past decade with undefined mechanisms and debatable efficacy. The gut
microbiota has been suggested to promote energy harvesting. Here, we propose
that the gut microbiota contributes to the inconsistent outcome under an LCD. To
test this hypothesis, patients with obesity or patients who were overweight were
randomly assigned to a normal diet (ND) or an LCD group with ad libitum energy
intake for 12 weeks. Using matched sampling, the microbiome profile at baseline
and end stage was examined. The relative abundance of butyrate-producing bacte-
ria, including Porphyromonadaceae Parabacteroides and Ruminococcaceae Oscillospira,
was markedly increased after LCD intervention for 12 weeks. Moreover, within the
LCD group, participants with a higher relative abundance of Bacteroidaceae
Bacteroides at baseline exhibited a better response to LCD intervention and achieved
greater weight loss outcomes. Nevertheless, the adoption of an artificial neural net-
work (ANN)-based prediction model greatly surpasses a general linear model in pre-
dicting weight loss outcomes after LCD intervention. Therefore, the gut microbiota
served as a positive outcome predictor and has the potential to predict weight loss
outcomes after short-term LCD intervention. Gut microbiota may help to guide the
clinical application of short-term LCD intervention to develop effective weight loss
strategies. (This study has been registered at the China Clinical Trial Registry under
approval no. ChiCTR1800015156).

IMPORTANCE Obesity and its related complications pose a serious threat to human
health. Short-term low-carbohydrate diet (LCD) intervention without calorie restric-
tion has a significant weight loss effect for overweight/obese people. Furthermore,
the relative abundance of Bacteroidaceae Bacteroides is a positive outcome predictor
of individual weight loss after short-term LCD intervention. Moreover, leveraging on
these distinct gut microbial structures at baseline, we have established a prediction
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model based on the artificial neural network (ANN) algorithm that could be used to
estimate weight loss potential before each clinical trial (with Chinese patent number
2021104655623). This will help to guide the clinical application of short-term LCD
intervention to improve weight loss strategies.

KEYWORDS gut microbiota, low-carbohydrate diets, Bacteroidaceae Bacteroides,
artificial neural network, obesity, weight loss

Obesity or obesity-related chronic diseases affect over 2 billion people worldwide
(1). Obesity is a chronic metabolic disease caused by multiple factors, including,

but not limited to, consumption of inexpensive and calorie-dense foods, decreased
physical activity, insulin resistance, or psychosocial factors (2). Indeed, epidemiologic
data from the National Center for Health Statistics (NCHS) show that the age-adjusted
prevalence of obesity in adults was 42.4% in 2017 to 2018 in the United States (3).
Likewise, in China, more than half of Chinese adults are overweight or obese, according
to the Report on Chinese Residents’ Chronic Diseases and Nutrition in 2020 (http://
www.gov.cn/xinwen/2020-12/24/content_5572983.htm). Meanwhile, obesity is still a
detrimental factor for a plethora of chronic diseases, such as cardiovascular diseases
(CVDs), diabetes, and cancer, which has an adverse impact on overall health (4). Body
mass index (BMI)-related CVDs account for 41% of deaths and 34% of disabilities and is
the leading cause of adverse events (5).

The substantially increased epidemic (3), latent health hazards, and huge medical
expenditures (6) of obesity require the identification of effective intervention strat-
egies. For instance, lifestyle interventions, obesity pharmacotherapy, and bariatric sur-
gery have been proven and granted by the Guideline Recommendations for Obesity
Management (7). Lifestyle interventions for weight loss are the cornerstone for obesity
treatment (8). Among all lifestyle interventions, dietary intervention is the optimal
choice for promoting weight loss. A large number of different dietary approaches, such
as low-carbohydrate diet (LCD), high-protein diets, low-fat diets, low-glycemic index
diets, balanced-deficit diets, and vegetarian-, vegan-, and Mediterranean-style diets,
have been reported (7). These eating patterns with various macronutrient distributions
have substantial/spurious benefits in certain groups of patients (7, 8). As a result,
guidelines lack a consensus regarding the best dietary type to produce weight loss (7,
9). Dietary carbohydrate restriction for obesity treatment has attracted public attention
in recent years, although the ratios of macronutrients to LCD have not yet been stand-
ardized (10, 11). Proponents claimed that carbohydrate restriction is closely associated
with decreased plasma insulin levels, followed by elevated fat oxidation, energy ex-
penditure and weight loss (10). Thus, LCD is an effective and feasible weight loss strat-
egy, especially for those with obesity-related chronic diseases (e.g., type 2 diabetes)
(12). However, in other clinical investigations, weight loss after LCD intervention was
not significantly changed (9, 10). Therefore, the efficacy of LCD interventions for weight
management are inconsistent across different studies.

Although weight loss associated with LCD intervention has been reported in differ-
ent clinical trials, the exact benefit and sustainability remain a challenge to quantify.
Nonetheless, lack of sufficient evidence to evaluate the heterogeneity regarding
weight loss under LCD intervention (13) limits the application of LCD. To address this
discrepancy, further confirmatory studies have provided insight into the gut micro-
biota in the gastrointestinal track in recent years (14, 15). The gut microbiota is essen-
tial in processing dietary polysaccharides and has a further impact on acquisition and
storage of fat (14). Adjusting dietary patterns may alter the composition and diversity
of gut microbiota (16). Animal experiments showed that germ-free (GF) mice gained
body weight and presented obesity-relevant metabolic phenotypes after fecal trans-
plantation from obese twins. However, these symptoms were reversed by cohousing
with mice harboring the microbiota of the lean cotwin. This study revealed that spe-
cific members of Bacteroidetes from the microbiota of the lean cotwin account for diet-
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dependent results (17). In addition to the increased abundance of Bacteroides and a
reduction of Firmicutes (18), the body fat of GF mice was increased after transplanta-
tion of the gut microbiota from obese mice. Furthermore, some species of Bacteroides
were reported to be more abundant in lean people (19). Additionally, a 3-day high-cal-
orie diet intervention study (20) reported that the relative abundance of Bacteroidetes
decreased in the human gut after dietary intervention. Fouladi et al. reported that bari-
atric surgery, such as Roux-en-Y gastric bypass (RYGB) surgery, significantly shifts the
composition and abundance of gut microbiota, which could potentially contribute to
weight loss and metabolic benefits (21). Together, these results implied that
Bacteroides and Firmicutesmay play diverse roles in the pathogenesis of obesity.

Therefore, the present study was undertaken to verify the hypothesis that inconsis-
tent weight loss outcome under LCD intervention is due to the variation of gut micro-
biota composition. Our investigation confirmed that short-term (12-week) LCD inter-
vention results in significant weight loss and elevation of certain groups of gut
microbiota. Taking advantage of the advanced computation algorithms, such as ran-
dom forest and artificial neural networks (ANNs), we identified that a higher relative
abundance of Bacteroidaceae Bacteroides at baseline results in distinct weight loss out-
comes under LCD intervention. From the current investigation, we demonstrated that
the relative abundance of Bacteroidaceae Bacteroides is a positive outcome predictor of
individual weight loss after LCD intervention. Moreover, leveraging on these distinct
gut microbial structures at baseline, we have established a prediction model based on
the ANN algorithm to estimate weight loss potential and efficacy for each clinical trial
with the purpose to improve weight loss strategies.

RESULTS
Clinical characterizations of participants in the weight loss trial. To assess the

effect of LCD intervention on weight loss and explore potential unidentified bio-
markers associated with weight loss efficacy, a total of 51 eligible overweight or obese
participants were recruited in the present study. Their BMI and age ranged from 26.2
to 40.94 kg m22 and from 21 to 59 years old, respectively. The overall weight loss trial
was divided into two stages (stage I, baseline stage; stage II, end stage), and an over-
view of the whole study is illustrated in Fig. 1A. Fifty-one participants were recruited
and randomly assigned into two groups (the normal diet [ND] group [n = 25] and the
LCD group [n = 26]). The clinical characteristics of participants at the baseline stage are
summarized in Table 1. Baseline information about the study participants, including
age, waist circumference, and visceral fat area (VFA), between the ND and LCD groups
were not significantly different (35.80 6 8.27 versus 36.58 6 8.70 years, 90.98 6 8.22
versus 94.28 6 9.69 cm, and 104.90 6 25.98 versus 122.00 6 37.60 cm2, respectively).
Furthermore, there was no significant difference in glycometabolism, lipid metabolism,
or hepatic and renal function between the two groups. However, the average BMI,
waist-to-hip ratio (WHR), and body fat ratio (BFR) at baseline were higher in the LCD
group than those in the ND group (BMI, 28.61 6 2.04 versus 30.44 6 3.38 kg m22;
WHR, 0.876 0.05 versus 0.906 0.05; BFR [%], 33.186 4.16 versus 36.536 5.10, respec-
tively). The weight loss trial lasted for 12 weeks with either ND or LCD intervention
without energy restriction. No antibiotics or drugs were taken either 3 months before
or during the course of this weight loss trial.

Short-term LCD intervention results in obvious weight loss for obese/overweight
participants. LCD has a plethora of definitions, for example, carbohydrate reduction from
26 to 45% of total calories from the American Diabetes Association (ADA); but in the
review by the National Lipid Association (NLA), 10 to 25% of total calories from carbohy-
drates for an LCD was adopted (22). In the present study, we adopted the NLA criterion,
more specifically, a range of 10 to 25% of the total daily energy from carbohydrates (50 to
130 g day21) (23). Three-day 24-h dietary recalls, which are used by medical professionals,
nutrition specialists, and social scientists (https://dietassessmentprimer.cancer.gov/profiles/
recall/index.html; https://en.wikipedia.org/wiki/24-hour_diet_recall#cite_note-b-1), were
provided by participants every week. We calculated the proportions of three
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FIG 1 Overview of the study, dietary information, and variation of anthropometric parameters. (A) Schematic overview of the study design. (B) Daily diet
composition of three macronutrients in the normal diet (ND) and low-carbohydrate diet (LCD) group, respectively, represented in percent calories. (C)
Average proportions of carbohydrates were about 50% of the total in the ND group and up to 20% of the LCD group, calculated from 24-h dietary recalls
of 3 days in every week. Data are expressed as mean 6 SEM. P values are from unpaired, two-sided t tests. (D) Average energy intake calculated from food
conversion was generally higher in the ND group than in the LCD group. Data are expressed as mean 6 SEM, and values are from unpaired, two-sided
Student’s t test; *, P , 0.05; **, P , 0.01; ***, P , 0.001; NS, not significant. (E) Participants in the LCD group achieved a distinct decrease in BMI, waist
circumference, WHR, BFR, and VFA compared to those values observed in the ND group at the end stage. Data are expressed as mean 6 SEM, and values
are from unpaired, two-sided Student’s t test; **, P , 0.01; ***, P , 0.001.
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macronutrients and energy intake information provided by participants (24). The propor-
tions of three macronutrients (e.g., fat, protein, and carbohydrate) in the ND and LCD
groups of this study are summarized in Fig. 1B. The proportion of daily intake of carbohy-
drate was ;50% of the total in the ND group, while this ratio was reduced to ;20% for
the LCD group over the whole study period (Fig. 1C). Moreover, energy calculated from
daily dietary intake was generally higher in the ND group than in the LCD group (Fig. 1D).
The carbohydrate proportion and daily energy intake in detail are summarized in Table
S1A and S1B in the supplemental material. To assess the efficacy of weight loss for all par-
ticipants, body composition and anthropometric parameters were analyzed. As expected,
12 weeks of LCD intervention significantly improved the parameters of body size (e.g.,
BMI, waist
circumference, WHR, BFR, and VFA) (Table S1C). The reduction of BMI in the LCD group
was up to 2.15 6 1.24 kg m22 compared to that in the ND group, which was only
0.81 6 0.69 kg m22 (P , 0.001). In addition, a distinct decrease in waist circumference,
WHR, BFR, and VFA in the LCD group was also observed (Fig. 1E). Parameters, such as gly-
cometabolism, lipid metabolism, hepatic parameters, and renal function were not signifi-
cantly different between the two groups (Table S1C and S1D).

LCD intervention does not affect the overall microbial structure. Other than dis-
tinct weight loss outcomes, various dietary components may affect the composition
and diversity of gut microbiota, but other than overall composition and phylum-level
changes, previous investigations did not reach a constructive conclusion to guide clini-
cal trials of weight loss under LCD (25). In our study, fecal samples from all participants
at baseline and end stage were collected for high-throughput sequencing. Through
16S rDNA gene-based analysis, 2,478,112 high-quality reads were obtained with an av-
erage of 23,828 reads (minimum, 12,583; maximum, 32,846; median, 23,833) per sam-
ple. The rarefaction measurement of the Shannon and Simpson indexes implied that
sequencing depth captured all bacterial species and qualified for downstream analysis

TABLE 1 Baseline clinical characteristics between the ND group and LCD group

Parametersa ND (n = 25)b LCD (n = 26)b P valuec

Female/male 16/9 22/4
Age, yrs 35.80 (68.27) 36.58 (68.70) 0.745
BMI, kg m22 28.61 (62.04) 30.44 (63.38) 0.024d

BMR, kcal 1,497.41 (6202.64) 1,494.70 (6172.32) 0.959
Waist, cm 90.98 (68.22) 94.28 (69.69) 0.196
WHR, ratio 0.87 (60.05) 0.90 (60.05) 0.046d

BFR, % 33.18 (64.16) 36.53 (65.10) 0.013d

VFA, cm2 104.90 (625.98） 122.00 (637.60) 0.056
LBM, kg 50.17 (69.97) 50.38 (68.39) 0.936
FPG, mg dl21 92.61 (610.39) 90.95 (69.10) 0.378
HOMA-IR 4.14 (63.56) 3.58 (61.75) 0.492
Insulin, mIU liter21 16.29 (613.91) 15.91 (67.45) 0.904
TG, mg dl21 138.62 (689.42) 111.75 (630.84) 0.176
T_Chol, mg dl21 189.59 (640.46) 185.62 (629.53) 0.699
HDL-C, mg dl21 47.32 (68.27) 48.91 (612.11) 0.435
LDL-C, mg dl21 116.96 (635.61) 115.78 (625.55) 0.878
ALT, IU liter21 24.64 (621.22) 22.00 (610.28) 0.581
AST, IU liter21 20.51 (610.11) 19.46 (67.80) 0.688
Urea, mg dl21 13.46 (62.05) 13.23 (63.09) 0.757
Cr, mg dl21 0.79 (60.21) 0.77 (60.14) 0.615
UA, mg dl21 6.54 (61.72) 6.23 (61.76) 0.179
aBMI, body mass index; BMR, basal metabolic rate; WHR, waist-to-hip ratio; BFR, body fat ratio; VFA, visceral fat
area; LBM, lean body mass; FPG, fasting plasma glucose; HOMA-IR, homeostasis model assessment-insulin
resistance index; TG, triglyceride; T_Chol, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Cr,
creatinine; UA, uric acid.

bData are expressed as mean6 SD.
cP values were determined by independent Student’s t test.
dP value less than 0.05.
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FIG 2 Differential gut microbial characteristics in the ND and LCD groups at two different time points and potential bacterial markers of LCD intervention. (A) The
overall composition and relative abundance of the bacterial community in each group at the phylum level were not significantly different. (B) Box plots of the
a-diversity index (richness, Shannon, and Simpson) showed no significant difference in a-diversity indices between the ND group and LCD group at baseline stage
or end stage. The horizontal lines in the box plots mean median values. The highest and the lowest boundaries of the box denote the 75% and 25% quartiles, and
whiskers represent the lowest and highest values within 1.5 times the interquartile range (IQR) from the 25% and 75% quartiles, respectively. Dots represent data
points beyond the whiskers. (C) The PCoA of b-diversity based on genus distribution by binary Jaccard algorithm showed that the gut taxonomic composition was
not significantly different between the ND and LCD groups at the two different time points. (D) Two bacterial markers at the genus level were selected as optimal
biomarkers of the random forest model in the ND and LCD groups after 12 weeks of dietary intervention. The red line illustrates the number of key bacteria in the
discovery set. CV error, cross-validation error; var, variants. (E) The relative abundance of each bacteria at the genus level in the predictive model was assessed using

(Continued on next page)
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(Fig. S1A, B). The overall composition and abundance of the bacterial community at
the phylum level in each group were not significantly different (Fig. 2A). To assess gut
microbiota diversity, the a-diversity values at the genus level, including the richness,
Shannon, and Simpson indexes, were compared between two groups at the baseline
and end stage (Fig. 2B). However, these indexes were not significantly different, sug-
gesting that LCD intervention itself did not affect overall microbial composition and di-
versity. In addition, principal coordinate analysis (PCoA) based on binary Jaccard index
at the genus level was performed to assess the b-diversity among different groups,
and the microbiome structure between ND and LCD groups at two different time
points was indistinct (Fig. 2C). These findings were consistent with previous studies; for
example, a strict vegetarian diet intervention resulted in weight loss without a change
in gut microbiota diversity (26). Other studies exhibited similar results of unaltered bac-
terial diversity, although they were not about dietary intervention or weight loss
because there are many other confounding factors in the environment (27).

LCD intervention efficacy is associated with a distinct group of bacterial
biomarkers. Here, we would like to raise the question of whether without an overall
change in composition and diversity, a distinct group of bacteria is shifted with LCD
intervention and contributes to the diet-host-microbiome interaction, which results in
an obvious weight loss outcome. Therefore, to identify a particular group of bacteria, a
predesigned machine learning algorithm was used. As reported before, we applied a
5-fold cross-validation together with a random forest algorithm to identify potential
bacterial biomarkers with consideration of the lowest error rate plus standard deviation
(28–30). With this hypothesis, 16S rDNA gene sequence data from ND and LCD groups
before and after the clinical trial were further analyzed. For the data from the baseline
stage of ND and LCD groups, 10 trials of analysis failed to identify biomarkers with sig-
nificant differences in relative abundance between groups (Fig. S1C, D, S2A; Table S1E).
After 12 weeks of LCD intervention, the same analysis was performed on the matched
samples. We identified two potential bacterial biomarkers after 12 weeks of LCD inter-
vention: Ruminococcaceae Oscillospira and Odoribacteraceae Butyricimonas (Fig. 2D and
E). More specifically, the relative abundance of Ruminococcaceae Oscillospira was
higher than that at baseline. Meanwhile, the relative abundance of Odoribacteraceae
Butyricimonas had an increasing trend but did not reach statistical significance after 12
weeks of LCD intervention. Other than these, another bacterial biomarker was identi-
fied, Porphyromonadaceae Parabacteroides, that also had higher relative abundance af-
ter 12 weeks of LCD intervention (Fig. 2F; Fig. S2B). Meanwhile, the relative abundance
of change of these key bacteria after LCD intervention positively correlates with clinical
parameters, such as BMI, waist circumference, and BFR (Fig. S1E). Previous investiga-
tions have shown that these three bacteria are involved in butyrate production in the
gut, indicating that an independent factor contributing to weight loss during LCD
intervention may exist (31–33).

Individual weight loss in each subgroup was different under two interventions.
Further analysis of weight loss outcome of changes in BMI, waist circumference, WHR,
BFR, and VFA for each participant was performed through cluster stratification, and the
median of these five anthropometric parameters was taken as the critical cutoff point.
Two subgroups were defined: the moderate weight loss group (MG) and the distinct
weight loss group (DG). For clinical characteristic analysis at baseline of both subgroups,
only a slight difference in age for the LCD group was observed; the remaining character-
istics did not show any significant difference (Fig. S3A, B and Table S1F, G). In terms of
weight loss parameters for both subgroups (e.g., BMI, waist circumference, WHR, BFR,

FIG 2 Legend (Continued)
mean decrease accuracy (MDA). The heat map illustrates the comparison of bacteria filtered by random forest via 5-fold cross-validation in the two groups at the
end stage. (F) Box plots of all union optimal bacterial biomarkers selected through the random forest algorithm at baseline and end stages indicated that
Porphyromonadaceae Parabacteroides and Ruminococcaceae Oscillospira were significantly increased in the LCD group after 12 weeks of LCD intervention. A two-way
ANOVA with repeated measures followed by a Tukey post hoc test was used to compare multiple groups at different time points using GraphPad Prism 8.0.2; *,
P , 0.05.
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and VFA), both ND and LCD interventions showed significant changes (Fig. 3A). LCD pre-
sented a more dramatic reduction between MG and DG subgroups (BMI, 1.446 0.62 ver-
sus 2.75 6 1.34 kg m22; BFR [%], 3.28 6 1.94 versus 7.05 6 3.21; waist, 2.73 6 1.11 ver-
sus 7.05 6 3.21 cm; VFA, 8.396 4.92 versus 25.83 6 12.33 cm2; WHR, 0.016 0.01 versus
0.04 6 0.02) (Fig. 3B; Table S1H, I). Moreover, ND intervention only showed a slight
reduction between the two subgroups (BMI, 0.43 6 0.46 versus 1.11 6 0.7 kg m22; BFR
[%], 0.14 6 0.94 versus 1.71 6 1.17; waist, 0.06 6 1.43 versus 3.12 6 2.42 cm; VFA,
0.64 6 7.69 versus 10.73 6 6.53 cm2; WHR, 20.01 6 0.02 versus 0.02 6 0.01) (Fig. 3C;
Table S1J, K). The energy intake and percentage of carbohydrates, fat, and protein in
diets were almost the same between the two subgroups for ND and LCD intervention
(Fig. S3C to F; Table S1L to Q). These data suggest that individual weight loss differences
may be due to uncharacterized factors other than the percentage of carbohydrates in
the diet.

Microbial composition is a determining factor of distinct weight loss efficacy
under LCD intervention. LCD intervention results in effective weight loss efficacy, but
variations can still be observed between individuals. Herein, we would like to ask
whether there are any potential modulators leading to the difference in the two sub-
groups. It was shown that a-diversity (e.g., richness, Shannon, or Simpson index) was
not significantly different between the LCD_MG and LCD_DG subgroups at baseline or
end stage (Fig. 4A). PCoA coupled with binary Jaccard showed that between the
LCD_MG and LCD_DG subgroups, the microbial structure was significantly different at
baseline (Fig. 4B) (P = 0.0481). Moreover, cooccurrence analysis was performed to
explore the interaction between gut microbiota in LCD subgroups. Although the net-
work interaction complexity was decreased in both LCD_MG and LCD_DG subgroups
with LCD intervention for 12 weeks, the LCD_DG group exhibited stronger and broader
network interaction complexity than the LCD_MG group (Fig. 4C to F). The alteration in
subcommunity networks suggested that other than the difference in composition and
diversity, microbial differences in structure and complexity could partially explain the
inconsistent outcomes of LCD.

Identification of microbial biomarkers that interact with LCD intervention. To
date, optimal clinically assessable biomarkers to guide weight loss under LCD interven-
tion have not yet been defined. To disclose the mystery, we applied 5-fold cross-valida-
tion together with random forest to 16S rDNA gene sequence data at the baseline and

FIG 3 Individual weight loss is varied under different dietary interventions. (A) Heat map clustered by changes in anthropometric
parameters (waist, BMI, VFA, BFR, and WHR). Two groups were further classified into moderate weight loss groups (MG) and
distinct weight loss groups (DG), respectively. (B) The obvious decrease in anthropometric parameters (BMI, waist, WHR, BFR, and
VFA) of significant difference in LCD_DG compared to LCD_MG after 12 weeks of dietary intervention. Data are expressed as
mean 6 SEM and were analyzed by unpaired, two-sided Student’s t test; **, P , 0.01; ***, P , 0.001. (C) The slight reduction in
anthropometric parameters (BMI, waist, WHR, BFR, and VFA) in ND_DG compared to that in ND_MG. Data are expressed as mean 6
SEM and were analyzed by unpaired, two-sided Student’s t test; **, P , 0.01; ***, P , 0.001.
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FIG 4 Microbial composition is a determining factor regarding distinct weight loss efficacy under LCD intervention. (A) Box plots of the
a-diversity index (richness, Shannon, and Simpson) at the genus level showed no significant difference between LCD subgroups at

(Continued on next page)

Gut Microbiota Predicts Weight Loss Efficacy

Volume 9 Issue 2 e00223-21 MicrobiolSpectrum.asm.org 9

https://www.MicrobiolSpectrum.asm.org


end stages. Six optimal biomarkers were identified between the LCD_MG and LCD_DG
subgroups at baseline (Fig. 4G and H; Fig. S4A). However, only one bacterial biomarker
showed a significant difference in relative abundance at baseline (P = 0.037) (Fig. 4I).
The relative abundance of Bacteroidaceae Bacteroides at baseline positively correlated
with the ratio change of weight loss parameters at the end stage (BMI, R2 = 0.126, P =
0.076; waist, R2 = 0.190, P = 0.026; WHR, R2 =0.111, P = 0.026; BFR, R2 = 0.249, P = 0.010;
VFA, R2 = 0.289, P = 0.005) (Fig. 4J to N). Thus, the predictive linear regression model
based on the relative abundance of Bacteroidaceae Bacteroides could achieve an area
under the curve (AUC) value of 73.2% with a confidence interval (CI) of 66.7 to 78.6%
between LCD_MG and LCD_DG subgroups to predict the outcome of weight loss effi-
cacy (Fig. 4O). The difference did not remain after LCD intervention between the MG
and DG subgroups (Fig. S4B and S5A to C).

The ANN model to predict the outcome of weight loss efficacy in the LCD
group. Because of the intricate connections between bacteria, the predicted perform-
ance only focusing on Bacteroidaceae Bacteroides was not sufficient for prediction in a
clinical setting. To overcome this shortcoming, we integrated an artificial neural net-
work (ANN) model, an even more robust deep learning model that is trained and used
to imitate biological neural networks. In recent years, an increasing number of medical
studies have applied the ANN model to process complex data because of its superior-
ity, such as to seek predictors of catheter-related thrombosis in hospitalized infants
(34), to calibrate the prediction of survival in glioblastoma patients (35), and to opti-
mize the auxiliary diagnosis of insomnia disorder (30). By integrating the data of the
LCD group into our ANN model, including clinical anthropometric parameters and fil-
tered relative abundance of all microbiota at the genus level, this model could result in
a high coefficient of determination. Based on the anthropometric parameters at base-
line (BMI, waist circumference, WHR, BFR, and VFA), change of anthropometric parame-
ters or the ratio of change over baseline parameters, our ANN model reached a high
prediction rate (Fig. 5A to O) (changes in BMI, R2 = 0.307, mean absolute error
[MAE] = 0.780; changes in waist circumference, R2 = 0.316, MAE = 1.869; changes in
WHR, R2 = 0.491, MAE = 0.010; changes in BFR, R2 = 0.470, MAE = 0.980; changes in
VFA, R2 = 0.322, MAE = 7.705; ratio of changes in BMI, R2 = 0.344, MAE = 0.022; ratio of
changes in waist circumference, R2 = 0.219, MAE = 0.020; ratio of changes in WHR, R2 =
0.449, MAE = 0.013; ratio of changes in BFR, R2 = 0.577, MAE = 0.028; ratio of changes
in VFA, R2 = 0.571, MAE = 0.051).

DISCUSSION

Our study confirmed that overweight or obese people achieved significant weight
loss on a short-term LCD intervention of ad libitum energy intake without causing clear
adverse effects, which was consistent with previous studies (12, 36). After 12 weeks of
LCD intervention, the relative abundances of certain butyrate-producing bacteria were
dramatically elevated. Indeed, the correlation between LCD intervention and gut

FIG 4 Legend (Continued)
baseline stage or end stage. (B) The PCoA of b-diversity based on genus distribution by binary Jaccard algorithm showed that the gut
taxonomic composition was significantly different between LCD subgroups at baseline but not end stage; *, P = 0.0481 is from least
significant difference (LSD). (C to F) The cooccurrence networks before and after LCD intervention reflect network interaction
complexity. All nodes were colored at the phylum level (isolated nodes were excluded), and edges were estimated by Spearman’s rank
correlation coefficient (abs[r] . 0.3, P , 0.05). On the whole, LCD_DG exhibited stronger and broader network interaction complexity
than LCD_MG at two different time points. (G) Six markers at the genus level were selected as optimal biomarkers of the random
forest model in LCD subgroups at baseline. The red line illustrates the number of key bacteria in the discovery set. (H) The relative
abundance of each bacteria at the genus level in the predictive model was assessed by MDA. The heat map illustrates the comparison
of bacteria filtered by random forest via 5-fold cross-validation in the two subgroups at the baseline stage. (I) The relative abundance
of Bacteroidaceae Bacteroides, selected through the random forest, was significantly higher in LCD_DG than in LCD_MD at the baseline
stage. Data are expressed as mean 6 SEM, and a two-way ANOVA with repeated measures followed by a Tukey post hoc test was used
to compare multiple groups at different time points using GraphPad Prism 8.0.2; *, P , 0.05. (J to N) Linear regression indicates that
the relative abundance of Bacteroidaceae Bacteroides was positively correlated with the ratio of changes in weight loss parameters
(BMI, waist, WHR, BFR, and VFA). (O) The baseline relative abundance of Bacteroidaceae Bacteroides achieved an AUC value of 73.2%
with a 95% confidence interval (95% CI) of 66.7% to 78.6% between LCD_MG and LCD_DG to predict the outcome of weight loss
efficacy.
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FIG 5 Gut microbiota-based prediction of the clinical weight loss parameters after LCD treatment by ANN. A high-accuracy ANN
prediction model was established using the relative abundance of gut microbiota at the genus level and weight loss parameters,
including the baseline value of BMI, waist, WHR, BFR, and VFA after LCD treatment (A to E), changes in weight loss parameters (F to
J), and the ratio of changes in these parameters to their baseline value in 5-fold cross-validation (K to O).
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microbiota could be bilateral, as previously demonstrated by others, suggesting that
gut microbiota may have contributed to weight loss outcome under LCD intervention.
Further analysis demonstrated that a higher relative abundance of Bacteroidaceae
Bacteroides at baseline was positively correlated with weight loss efficacy. Most impor-
tantly, our ANN prediction model with high accuracy has proven that the microbiota at
baseline can act as a predictor to assess individualized weight loss outcomes before
LCD intervention.

LCD has a long history since being first acknowledged in the 1860s, but the contri-
bution of LCD to obesity remains elusive (37). The literature has no clear consensus or
definition about what amount of carbohydrates should be consumed every day (37).
There is little evidence for the superiority of greater carbohydrate restriction.
Additionally, excessive restriction of carbohydrates, such as only 5% of total energy
driven from carbohydrates, may not be realistically achievable for most participants
(23, 38). Harvey and coworkers (38) indicated that an LCD containing 15% of total
energy from carbohydrates was easily adhered to over a 12-week period and can
achieve acceptable improvements in weight loss. However, long-term adherence to an
LCD should be advocated with great caution to avoid an increased risk of colonic dis-
ease (25) and a potential impact on coronary atherosclerosis (39). Regarding compli-
ance, safety, and cost, we designed this 12-week LCD intervention study in line with
Harvey’s research (38). The application of nutrition bars and guidance from nutritionists
allowed us to modulate the consumption of carbohydrate scientifically and effectively
for every participant in this study. One article reported that the cardiorespiratory fit-
ness and cardiometabolic profiles of obese individuals could be improved through
short-term LCD combined with prescribed exercise (40). As we know, physical exercise
is an efficient combined strategy for bodyweight control. Therefore, we recruited par-
ticipants who engaged in light physical activity or work and kept exercise time to
approximately 60 min per week as much as possible to minimize the influence of con-
founding factors. Although energy intake was not restricted, the results of the study
showed that the LCD group generally had lower energy intake than the ND group.
Such an observation might be explained by the higher satiety of protein as well as hor-
monal regulation effects of an LCD. Since the carbohydrate content of the diets is sig-
nificantly reduced, the relative proportion of energy derived from protein and fat
increased among these three main nutrients (41). It was reported that higher protein
intake due to an LCD may also increase satiety, resulting in decreased overall energy
intake. In addition, an LCD may influence hormones that could impact hunger and
appetite control, such as ghrelin, leptin, and cholecystokinin, although researchers did
not reach a consensus (23). Collectively, these effects may help to explain the lower
energy intake in the LCD group in our study (12). However, an LCD causes preferential
body fat loss in comparison with isocaloric, higher-carbohydrate diets, which might be
due to increased adipose lipolysis and fat oxidation as well as less fat synthesis (12).
Moreover, Bravata et al. reported that diets rich in protein and short of carbohydrates
could achieve rapid weight loss without significant adverse effects by promoting the
metabolism of adipose tissue in the absence of available dietary carbohydrates (37).
The present study showed that a short-term LCD intervention results in significant
weight loss without causing adverse effects on liver and kidney functions or glycolipid
metabolism in the participants, which was in accordance with other reports. For the
management of other influencing factors, such as probiotics, numerous studies have
reported that probiotic supplementation improves obesity-related parameters, leading
to weight loss (42). Herein, in our clinical trial, no probiotics or prebiotics were allowed
during the experimental period.

Excluding the effect of taking probiotics and prebiotics, we surprisingly found that
short-term LCD intervention increased the relative abundance of certain groups of gut
bacteria that were positively associated with weight loss. A weight loss diet can alter the
composition of the human gut microbiota, which is highly variable (43). An LCD has long
been controversial regarding the impact on gut microbiota. Russell et al. reported that
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Bacteroidetes were decreased in people with obesity on a high-protein, low-carbohydrate
diet for 4 weeks (25). In another study, the authors found significant diet-dependent
reductions in a group of butyrate-producing Firmicutes in fecal samples from obese partici-
pants on a low-carbohydrate, weight-reducing diet for 4 weeks, but no changes were
found in the abundance of Bacteroidetes (43). After 12 weeks of an LCD intervention, the
gut microbiota was highly enriched for the genera Porphyromonadaceae Parabacteroides
belonging to Bacteroidetes and Ruminococcaceae Oscillospira belonging to Firmicutes.
Previous studies have proven that these three bacteria are involved in producing butyrate
in the gut (32, 33, 44). However, the role of butyrate in glycolipid metabolism is still contro-
versial. Duncan and coworkers found that a reduction in dietary carbohydrate intake
caused a decrease in the concentration of butyrate and butyrate-producing bacteria in the
feces of participants with obesity (45). In contrast, some other studies reported that butyr-
ate stimulates gut hormones (e.g., glucagon-like peptide-1 [GLP-1]) and restrains food
intake to alleviate obesity (46).

Among the above dominant genera, bacteria of the Parabacteroides genus are saccharo-
lytic and produce the major end products of fermentation, such as acetic acid and succinic
acid (47). The relative abundance of Parabacteroides was significantly negatively correlated
with BMI. Interestingly, members of the Parabacteroides family, such as Parabacteroides gold-
steinii (48) and Parabacteroides distasonis (49), are promising probiotics that could alleviate
obesity and obesity-associated metabolic dysfunctions. However, it was reported that
Oscillospira was associated with leanness or lower BMI and was significantly more abundant
in metabolically healthy participants who were overweight or obese (50). One study showed
that members of the Oscillospira genus are highly heritable and positively associated with
the leanness-promoting bacterial species Christensenella minuta. Animal experiments con-
firmed that GF mice gain less weight after receiving obese donor microbiota spiked with C.
minuta along with enrichment of Oscillospira (51). Some Oscillospira species likely could
secrete important short-chain fatty acids (SCFAs), which are beneficial for body weight con-
trol as well as glucose and lipid homeostasis (44). Another possible reason for the association
between Oscillospira and leanness was that Oscillospiramay be able to degrade host glycans
and thus help hosts spend metabolic energy to regenerate degraded glycoproteins (50). In
this regard, we speculated that the increased abundance of Porphyromonadaceae
Parabacteroides and Ruminococcaceae Oscillospira in this study may be a response of gut
microbiota to dietary intervention, assisting in weight loss in the LCD.

Interpersonal differences in weight loss within the LCD group have further empha-
sized the role of gut microbiota in LCD interventions. Participants in the LCD_DG sub-
group achieved significant weight loss compared to participants in the LCD_MG sub-
group, although both of them had similar proportions of carbohydrates, fat, and
protein in LCD patterns. Moreover, our work demonstrated that a higher relative abun-
dance of Bacteroidaceae Bacteroides at baseline was significantly associated with supe-
rior weight loss after a short-term LCD intervention. The gut microbiota is a complex
and dynamic ecosystem changing with modifiable aspects (52). In the present study,
the microbiota in participants who achieved more distinct weight loss exhibited stron-
ger and broader network interaction complexity than the microbiota of others in both
LCD groups. In particular, at the end stage of the trial, as the complexity of the network
decreased, Bacteroidaceae Bacteroides (labeled with a star in Fig. 5C to E) was isolated
from the network community in the LCD_MG subgroup. To determine whether
Bacteroidaceae Bacteroides could be discriminated out of weight loss on an LCD inter-
vention, a correlation analysis and a receiver operating characteristic (ROC) curve anal-
ysis were performed. From the results of these analyses, we found that the relative
abundance of Bacteroidaceae Bacteroides at baseline was positively correlated with the
ratio change in weight loss parameters at the end stage. Bacteroides is one genus of
the dominate microbiota that comprises the majority of the bacterial taxa in the gut of
most individuals (53). A previous study confirmed that individualized gut mucosal colo-
nization capacity correlated with baseline host transcriptional and microbiome charac-
teristics. In addition, probiotic colonization is predictable by the pretreatment
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microbiome. In summary, the baseline gut microbiota composition plays an essential
role in the metabolism of the host (54). Moreover, our result is in line with a recent
study that reported that the baseline gut microbiota was a preeminent predictor of
individual weight loss trajectories. More precisely, the author proved that Bacteroides
dorei was one of the strongest predictors for weight loss when present in high abun-
dance at baseline (55). Similarly, another study reported that the baseline relative
abundance of a common species in the human gut, Bacteroides cellulosilyticus, was the
most important predictor of body weight gain among the top 10 Bacteroidetes species
during the intervention of arabinoxylan-oligosaccharides (AXOS) (10.4 g day21) from
wheat bran or polyunsaturated fatty acids (PUFAs) (3.6 g day21) (56). Therefore, some
members belonging to Bacteroidaceae Bacteroides are of great importance in host me-
tabolism and promote weight loss following dietary intervention.

However, the regression R2 value of the correlation analysis in the present study was
unsatisfactory compared to our anticipated goal. In view of the complexity of the gut micro-
biota ecosystem, we applied an even more powerful deep learning model, called ANN, to
improve the accuracy of the prediction model. ANNs are trained and used to imitate biologi-
cal neural networks since they include a set of computational nodes and generate signals
transmitted from neuron to neuron (30, 34). In recent years, an increasing number of medical
studies have applied the ANN model to process complex data because of its superiority,
such as to seek predictors of catheter-related thrombosis in hospitalized infants (34) and to
optimize the auxiliary diagnosis of insomnia disorder (30). In the present study, by integrating
the data of LCD subgroups into the ANN model, including clinical anthropometric parame-
ters and filtered relative abundance of all microbiota at the genus level, the results of ANN
exhibited a larger R2 value of each parameter, signifying higher accuracy for prediction.
Similar to a previous study, the predictive function of discriminatory species was improved
with the interaction of multiple factors (57). We demonstrated that Bacteroidaceae
Bacteroides may play causal roles in the prediction of weight loss in an LCD intervention
while other bacteria play auxiliary roles. From what has been discussed above, the relative
abundance of gut microbiota at baseline can be a powerful predictor of weight loss outcome
after LCD intervention. An individualized weight loss prediction model based on the baseline
relative abundance of gut microbiota may be applied to clinical practice in the future.

In summary, short-term LCD intervention without calorie restriction can produce signifi-
cant weight loss in overweight and obese populations. Differences in the gut microbiota
contributed to inconsistent weight loss outcome on LCD intervention. The relative abun-
dance of gut microbiota at baseline may be taken into account in clinical practice when
evaluating the applicability of LCD intervention for weight loss. However, it may be worth
exploring probiotics for Bacteroidaceae Bacteroide that can be individually added when
using LCD interventions for weight loss. Nevertheless, this might provide new hints in
drug discovery and change the landscape of diet intervention in the near future.

CONCLUSION

Short-term LCD intervention of ad libitum energy intake facilitates weight loss. The rela-
tive abundances of certain butyrate-producing bacteria were dramatically elevated after
12 weeks of LCD intervention, indicating that gut microbiota contributed to weight loss out-
come under LCD intervention. A higher relative abundance of Bacteroidaceae Bacteroides at
baseline was positively correlated with weight loss efficacy. Most importantly, our ANN pre-
diction model with high accuracy based on the relative abundance of all bacteria at baseline
proved that the microbiota at baseline can act as predictors to assess individualized weight
loss outcomes before LCD intervention. In future studies, it will be worthwhile to test our
prediction model in a large cohort to further prove that gut microbiota at the baseline could
be utilized to predict the weight loss outcome after LCD intervention.

The present investigation has several limitations. First, the average body weight of
participants in the LCD group was slightly heavier (BMI for ND and LCD, 28.61 6 2.04
versus 30.44 6 3.38 kg m22) than that in the ND group at the baseline, which was
indeed a disadvantage of this study, but it is not easy to avoid. As all participants were
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randomly enrolled in this study, it was difficult to ensure that the participants’ weight
was the exact same between two groups at baseline. Second, we found that the relative
abundance of Ruminococcaceae Oscillospira and Odoribacteraceae Butyricimonas as well
as Porphyromonadaceae Parabacteroides increased after LCD intervention for 12 weeks.
According to the literature review, these three kinds of microbiota were related to the
production of butyrate in the gastrointestinal tract. In addition, previous studies show
that Bacteroidetes are the largest propionate producers in the human gut. However, we
failed to conduct fecal metabonomic detection due to the exhausted samples, so the
content of butyrate or propionate in the intestine of the participants could not be deter-
mined so as to confirm the 16S rDNA gene sequencing result of the relative abundance
of Bacteroides by quantitative PCR (qPCR).

MATERIALS ANDMETHODS
Participants. This clinical trial was approved by the Institutional Review Board in Zhujiang Hospital of

Southern Medical University. The study was conducted according to the Declaration of Helsinki guidelines
and was registered in the China Clinical Trial Registry (clinical trial approval no. ChiCTR1800015156). For the
present study, 51 overweight or obese individuals (BMI between 26.2 and 40.94 kg m22, age from 21 to
59 years old) were recruited. The diagnosis for being overweight and obese was based on the diagnostic cri-
teria present in reference 58. In short, being overweight was defined as 24 kg m22 # BMI,28 kg m22, while
a BMI of$28 kg m22 was classified as obese.

Inclusion criteria were (i) body weight of the participants was changed steadily or without significant
change in the last 30 days, (ii) no antibiotics or drugs were taken either 3 months before or during the course
of the weight loss trial, and (iii) all participants voluntarily participate in and cooperate with the research in-
vestigator and sign the informed consent form before the formal start of the trial. Exclusion criteria were (i)
pregnancy or preparing for pregnancy during the study period, (ii) weight loss treatment application in the
past 30 days, (iii) history of gastrointestinal disease or surgery, (iv) type 1 diabetes, type 2 diabetes, Cushing
or Cushing syndrome, thyroid-related diseases and other endocrine system diseases, (v) severe hypertension
or any other cardiovascular diseases in the past 6 months, (vi) clinical hepatobiliary diseases, including but
not limited to chronic active hepatitis and/or severe liver insufficiency and cirrhosis, (vii) kidney disease his-
tory, (viii) history of acute or chronic infection, surgery, or severe trauma in the past 6 months, (ix) adopting
any other experimental drugs within the past 30 days, (x) alcohol or drug abuse in the past 6 months, (xi)
heavy manual labor, (xii) serious physical or psychological diseases, (xiii) malignant tumors, multiple organ
dysfunction, immunocompromised function, and (xiv) participants who cannot comply with the protocol.

General study design. The eligible participants were screened according to the inclusion and exclusion
criteria during the screening period 2 weeks before the baseline. Dietary overview handouts, sample menus,
recommended recipes, and a book to calculate calories and carbohydrates were distributed to the partici-
pants 10 days before the baseline stage guided by a nutrition consultant. The clinical data of the participants
were reevaluated by investigators to confirm whether the participants were qualified before the baseline
stage. The study lasted for 12 weeks, and the baseline was the first day of the trial. The grouping and dietary
intervention plans were determined according to participants’ unique random number. During the trial pe-
riod, participants attended eight face-to-face visits at the study center (1 visit per week for the first 4 weeks
and then visits in the 6th, 8th, 10th, and 12th weeks subsequently). At other times, participants were con-
tacted by nutritionists or investigators by phone to supervise their diets, to ensure compliance, and to record
observed side effects in time. Samples of feces and blood were collected at the baseline stage and end stage
for later assays of fecal 16S rDNA gene sequencing as well as hematic biochemical index detection. After
that, further analysis of clinical data and 16S rDNA gene sequencing data analyses were performed.

Dietary intervention. Participants in this experiment were grouped randomly with a random
assignment code that was generated by a random number generator. The serial number corresponds to
the participants’ random assignment code. A sealed letter was printed for each serial number and sent
to each test center. After the researchers screened the participants who met the conditions of this study,
they opened the corresponding sealed letters and selected the methods corresponding to the serial
numbers for the intervention. Participants were randomly assigned to either the ND or LCD group both
with ad libitum energy intake.

For the ND group (the normal diet without energy restriction group), according to the dietary guide-
lines of Chinese residents, the staple food should be at least 240 g (800 kcal), and the calories provided
by carbohydrates should account for 55 to 65% of the total calories.

In the LCD group, participants had fixed low-carbohydrate diets (10 to 25% of total energy intake)
(23, 38) without calorie restriction. Participants adopted standardized nutrient bar replacement to
ensure the LCD structure. Additionally, vegetable oil was chosen as the main cooking oil. Taboo foods
included fruits, bread, pasta, and other grains, processed meats, such as bacon and lunch meat, and
high-fat red meat, such as pork, fatty beef, fatty lamb, and poultry. Participants were allowed to freely
eat except the taboo foods for breakfast. For lunch and dinner, standardized nutrient bar replacements
were provided, respectively. The components of the nutrition food bar are presented in Table S1R (see
supplemental materials). In addition, participants were free to eat food other than taboo foods at lunch
and dinner. Participants in this group accepted the LCD intervention for 12 weeks.

Every participant’s diet was supervised by a dietitian to determine whether it was standard. The 3-
day 24-h dietary recalls provided by participants every week were used to calculate the average energy
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intake and proportion of carbohydrates. The energy consumed by participants was calculated according
to Chinese food composition tables (24).

Sample and clinical data collection. The age, sex, and vital signs of the participants were recorded
in detail. Weight, height, waist circumference, and hip circumference were measured on an empty stom-
ach in the morning without shoes and wearing a single layer of clothes. Anthropometric parameters,
such as BMI, BFR, WHR, VFA, and basal metabolic rate (BMR) were measured by an IOI353 body composi-
tion analyzer (Jawon Medica Ltd., South Korea.). Blood samples were collected both at the baseline and
end stage. Biochemical indicators of the blood were completed by the laboratory. Detail indexes were
as follows: glycometabolism index for fasting plasma glucose (FPG), fasting insulin; lipid metabolism
index such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
triglyceride (TG), and total cholesterol (T_Chol); hepatic function index (e.g., alanine aminotransferase
[ALT] and aspartate aminotransferase [AST]); and renal function index (e.g., urea, creatinine [Cr], and uric
acid [UA]). Some parameters were obtained by calculation, for example, insulin resistance index (HOMA-
IR) = fasting blood glucose ([mmol liter21] � fasting insulin [mIU liter21]/22.5). Laboratory inspection
items were completed on the morning of the visit after an overnight fast for at least 10 h, and no vigor-
ous exercise was allowed the day before. Moreover, participants were guided to collect fecal samples by
themselves before the formal start of the trial. Therefore, fecal samples were autonomously collected by
participants at baseline and end stage. Fecal samples were stored in a 280°C freezer.

Fecal DNA extraction and sequencing. Microbial DNA extraction of fecal samples was performed
according to the instructions of the ZR Fecal DNA kit (Zymo Research, USA). All samples were sequenced
on an Illumina HiSeq 2500 platform.

Bioinformatics and statistics. The sequences of the 16S rDNA gene V3-V4 region were amplified on
an Illumina high-throughput sequencing platform. Chimera-free sequences filtered by VSEARCH were
applied to a standard QIIME 1.91 pipeline (59). A total of 2,478,112 high-quality reads with an average of
23,828 reads (minimum, 12,583; maximum, 32,846; median, 23,833) per sample were obtained. Operational
taxonomic units (OTUs) at a 97% similarity threshold were clustered by the “Open-Reference” approach, and
taxonomy profiles were mapped using the RDP classifier against Greengenes version 13.5 database (60). For
all subsequent analyses, interfering taxa were applied to discard those whose relative abundance presented
below 0.1% in at least 70% of participants in each group. Regular alpha rarefaction, including Shannon,
Simpson, and richness indexes, was calculated with the R package ‘VEGAN’. b-Diversity was computed on
Bray-Curtis distance and estimated in two-dimensional space in the R packages ‘VEGAN’ and ‘ggplot2’. The
cooccurrence analysis based on the ‘igraph’ package was calculated for the bacterial network at the genus
level and determined subgroups by the fast-greedy modularity optimization algorithm. All nodes were col-
ored at the phylum level (isolated nodes were excluded), and edges were estimated by Spearman’s rank cor-
relation coefficient (abs[r]. 0.3, P, 0.05). To estimate the importance scores of each taxon, 5-fold cross-val-
idation together with random forest analysis were incorporated to probe key signature microbiota by the R
package ‘randomForest’. An ROC curve was plotted with the ‘pROC’ package. This study used innovative
strategies, including grid search and 5-fold cross-validation, to train an ANN prediction model utilizing
pyTorch, sklearn, and numpy packages and selected the optimized parameters consisting of learning rate,
activation function, layers, neurons, and dropout.

Other statistical analyses. To determine differences in clinical data between study groups, a statisti-
cal analysis was performed using IBM SPSS Statistics 20. The results are expressed as the means6 stand-
ard deviation (SD) in the table or the means 6 standard error of the mean (SEM) for bar graphs.
Independent samples t tests were used to compare the two groups at baseline. Changes within group
of clinical characteristics at the end stage were analyzed by using paired samples Student’s t tests. The
two-way analysis of variance (ANOVA) with repeated measures followed by a Tukey post hoc test was
performed to compare the continuous variables, including anthropometric parameters (BMI, waist cir-
cumference, WHR, BFR, and VFA), in multiple groups by GraphPad Prism 8.0.2. P values less than or equal
to 0.05 were considered significant in the study.

Data availability. Supporting information is available from the author. 16S rDNA gene sequencing
data were deposited at NCBI with project number PRJNA752174.
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