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There is growing evidence to suggest that chagasic myocardia are exposed to sustained oxidative stress induced injuries that may
contribute to disease progression. Trypanosoma cruzi invasion- and replication-mediated cellular injuries and immune-mediated
cytotoxic reactions are the common source of reactive oxygen species (ROS) during acute infection. Mitochondria are proposed to
be the major source of ROS in chronic chagasic hearts. However, it has not been established yet, whether mitochondrial dysfunction
is a causative factor in chagasic cardiomyopathy or a consequence of other pathological events. A better understanding of oxidative
stress in relation to cardiac tissue damage would be useful in the evaluation of its true role in the pathogenesis of Chagas disease
and other heart diseases. In this review, we discuss the evidence for increased oxidative stress in chagasic disease, with emphasis on
mitochondrial abnormalities, and its role in sustaining oxidative stress in myocardium.

Copyright © 2009 Shivali Gupta et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Chagas Disease

Chagas disease continues to pose a serious threat to health in
Latin America and Mexico, and is the most important emerg-
ing parasitic disease in developed countries. According to the
World Health Organization, the overall prevalence of human
Trypanosoma cruzi infection is at ∼16–18 million cases,
and ∼120 million people are at risk of infection in Latin
America [1]. In most patients, the early period of T. cruzi
infection goes virtually unnoticed whereas others develop
an acute phase that lasts several weeks and is accompanied
by such nonspecific symptoms, fever, tachycardia, weakness,
and lymphadenopathy [2, 3]. After acute control of T.
cruzi, infected patients enter an indeterminate phase, defined
by the absence of clinical symptoms although subclinical
pathology may be present. Unfortunately, 15–30 years
after the initial infection, 30–40% of the infected patients
develop life threatening dilated cardiomyopathy associated
with clinical symptoms of ventricular dilation, arrhythmia,
and cardiac arrest [4]. The pathological developments and
clinical symptoms vary widely among chagasic patients [2, 5–
7]. Not every individual infected with T. cruzi experiences

the abnormalities characteristic of the three phases of Chagas
disease: acute, indeterminate, and chronic. These facts make
Chagas disease a complex disease and difficult to understand.

Over the years, a number of mechanisms have been
proposed to explain the pathogenesis of Chagas disease
(reviewed in [8, 9]). There is growing evidence to suggest
that chagasic myocardia are exposed to sustained oxida-
tive stress-induced injuries that may contribute to disease
progression. In this review, we discuss the evidence for
increased oxidative stress in chagasic disease, with emphasis
on mitochondrial abnormalities, as well as electron transport
chain dysfunction, and its role in sustaining oxidative stress
in myocardium.

2. Sources of Oxidants

2.1. Overview. Broadly defined, reactive oxygen species
(ROS, e.g., O•−

2 , •OH, and H2O2) are derivatives of molec-
ular oxygen. ROS are unstable and react rapidly with other
free radicals and macromolecules in chain reactions to
generate increasingly harmful oxidants. ROS are produced
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through the action of specific oxidases and oxygenases (e.g.,
xanthine oxidase, and NADPH oxidase), peroxidases (e.g.,
myeloperoxidase), the Fenton reaction, and are also by-
products of the electron transport chain of mitochondria
[10]. Nitric oxide (•NO) is produced by the enzymatic
activity of nitric oxide synthases (NOS), which oxidize
L-arginine, transferring electrons from NADPH. Different
NOS isoforms have been identified, for example, inducible
NOS (iNOS) in phagocytic cells, mtNOS in mitochondria,
(eNOS) in endothelial cells, and neuronal nNOS [11].

2.2. ROS in Chagasic Hosts. During the course of T. cruzi
infection and disease development, ROS can be produced
as a consequence of tissue destruction caused by toxic
secretions of parasite, immune-mediated cytotoxic reactions,
and secondary damage to mitochondria.

In experimental studies, T. cruzi infection has been
suggested to initiate ROS formation via the stimulation
of inflammatory mediators, for example, cytokines and
chemokines, which lead to an oxidative burst of phagocytic
cells. Several investigators have used in vitro assay systems
or animal models and demonstrated that T. cruzi-mediated
macrophage activation results in increased levels of O•−

2 for-
mation, likely by the NADPH oxidase-dependent oxidative
burst [12–14]. In addition to ROS, activated macrophages
can produce large amounts of •NO by iNOS. Accordingly,
TNF-α- and IFN-γ-dependent increased iNOS expression
and •NO production is noted in splenocytes of T. cruzi-
infected mice [15] and in macrophages infected in vitro
with T. cruzi [16]. We have found increased levels of
myeloperoxidase and nitrite in the plasma of T. cruzi-infected
mice [17] that are markers of neutrophil and macrophage
activation, respectively. Relatively few studies have been
performed to elucidate inflammatory oxidative stress in
human patients. In humans, the severity of cardiac disease
was correlated with high plasma levels of TNF-α and •NO
[18]. The •NO level was also increased in indeterminate
individuals in comparison to healthy controls [19]. These
reactive oxidants are important for the control of T. cruzi,
and may elicit toxicity to host cellular components.

Recent studies provide evidence for enhanced mito-
chondrial ROS generation (H2O2 and O•−

2 ) in chagasic
myocardium. Mitochondria are the prime source of energy
and many of the body’s functions, including those of cardiac
metabolic and contractile activities, require mitochondrial
generation of ATP. Electron microscopic analysis of heart
biopsies from chagasic patients and experimental animals
have shown that with disease development, mitochondrial
degenerative changes, that is, swelling, irregular membranes,
and loss of cristae, accrue in the heart with disease
development [20–23]. Global microarray profiling of gene
expression has identified alterations in several of the mito-
chondrial function related transcripts in the myocardium of
infected humans [24] and experimental animals [25, 26].
The biochemical evidence for the mitochondrial dysfunction
was provided by documentation of a decline in the activities
of respiratory complexes, NADH-ubiquinone reductase (CI)
and ubiquinol-cytochrome c reductase (CIII) [27] and ATP

synthase (CV) complex [28] in chagasic murine hearts.
The functional effect of these perturbations was shown by
decreased mitochondrial respiration [29], and reduction in
myocardial and mitochondrial ATP levels [30] in chagasic
experimental models.

Imperatively, mitochondrial dysfunction also contributes
to increased oxidative stress. A low, but constant, production
of superoxide O•−

2 occurs in mitochondria. The rate of elec-
tron leakage and O•−

2 formation in mitochondria is closely
related to the coupling efficiency between the respiratory
chain and oxidative phosphorylation [31]. The CI and CIII
complexes are the main sites for electron leakage to O2

and O•−
2 generation in mitochondria [32, 33]. We have

shown a decline in complex I and complex III activities in
the myocardium was associated with excessive leakage of
electrons to molecular oxygen and sustained ROS production
in chagasic mice [27]. Further studies identified that CI
was not the main source of increased ROS in chagasic
hearts. Instead, defects of the myxothiazol-binding site in
CIII complex resulted in enhanced electron leakage towards
the Qo-center, and contributed to increased ROS generation
in chagasic cardiac mitochondria [34]. Thus, conditions
conducive to oxidative stress are presented in the Chagasic
heart.

3. Antioxidants

3.1. Overview. The overall level of cellular ROS and its
biological effects are determined by the relative rates of ROS
generation and the rate of reduction by antioxidants. The
principal enzymatic antioxidants are superoxide dismutase
(SOD), catalase (CAT), peroxiredoxin (Prx), and glutathione
peroxidase (GPx). These enzymes work in tandem to scav-
enge ROS. SOD exists in different isoforms, for example,
manganese SOD (MnSOD) in the mitochondrial matrix
and Cu- or Zn-SOD in the cytoplasm, mitochondria inter-
membrane space, and endothelial cell surface [35]. SOD
converts O•−

2 to H2O2 [36]. CAT, located in peroxisomes,
converts H2O2 to H2O and O2 [37]. Prx reduces peroxides,
including H2O2 and alkyl hydroperoxides [38]. The five
isoforms of GPx utilize glutathione (GSH), and reduce
H2O2 or lipid peroxides (ROOH) to H2O or alcohols
(ROH), respectively. The byproduct of this reaction, GSSG is
recycled by glutathione S reductase [38]. The nonenzymatic
antioxidants, for example, vitamin E (α-tocopherol) and
vitamin C (ascorbate), are abundant in aerobic organisms.
Vitamin E, active in membranes, functions to reduce peroxy
radicals. Vitamin C, a highly soluble antioxidant in plasma,
functions by reducing α-tocopherol-lipid peroxide radicals,
particularly formed in reaction with the low-density lipopro-
teins (LDL) [37].

3.2. Antioxidant Status in Chagasic Host. The myocardium
contains high concentrations of various nonenzymatic
antioxidants such as reduced glutathione (GSH) and vita-
mins A, C, and E, and enzymatic scavengers of ROS,
including GPx and Mn- and CuZn-SOD. GSH, GPx, and
MnSOD are shown to be most critical in cardiac antioxidant
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defenses, particularly in protecting the cardiomyocytes from
oxidative injury [39, 40]. We and others have evaluated
the antioxidant/oxidant balance in experimental models of
chagasic disease and human patients. Our experimental
studies showed that the host responds to acute T. cruzi
infection by upregulating glutathione antioxidant defense
constituted by GPx, GSR, and GSH. However, after the
initial burst, the glutathione defense was unresponsive to
chronic oxidative stress, and the cardiac levels of GSH and
MnSOD were significantly diminished in chagasic mice [41].
A decline in plasma levels of GSH, the GSH/GSSG ratio
[42, 43], and GPx activity [18], along with decreased MnSOD
activity in PBMCs of seropositive chagasic patients [42, 43]
is also noted. Decreased antioxidant levels (GPx and SOD)
were correlated with an increase in TNF-α and •NO levels
in human patients [18]. All of these observations suggest an
antioxidant response is not sufficiently activated to scavenge
the ROS during progressive chagasic disease.

4. Cytotoxicity of Oxidative Stress

4.1. Overview. ROS and •NO, when produced in physiolog-
ical quantities, play critical roles in normal developmental
processes, and control signal transduction mechanisms that
regulate cell proliferation, differentiation, and death [44, 45].
However, when ROS are produced in excess or for sustained
periods, they may exert toxic effects that damage cells and
tissues, thereby resulting in dysfunction of physiological
processes. ROS can rapidly oxidize proteins, lipids, and DNA.
Lipid peroxidation causes damage to membrane integrity
and loss of membrane protein function. Specifically, 4-
hydroxynonenal (HNE) and malonyldialdehyde (MDA) are
products of the peroxidation of membrane phospholipids
[46–48]. These oxidized lipids are also toxic because they are
highly reactive species that result in oxidative modification
of proteins [37]. For example, HNE reacts with Cys, His, or
Lys residues via a Michael addition that results in irreversible
alkylation and introduction of carbonyl groups into proteins
[49]. The direct oxidative attack by ROS on Arg, Lys, Pro,
and Thr residues can also derivatize the proteins and lead to
the formation of protein carbonyls [50, 51]. •NO reacts with
O•−

2 , to form peroxynitrite (ONOO–). Myeloperoxidase-
dependent oxidation of nitrite (NO−

2 ) results in formation
of nitrogen dioxide (NO2) and nitryl chloride (NO2Cl).
These reactive nitrogen species (RNS) result in protein
tyrosine nitration that is widely recognized as a hallmark
of nitrosative stress and inflammation [52]. Because of
oxidation or nitration, a functional impairment of pro-
teins occurs, and furthermore leads to protein turnover,
for example, degradation by proteases via the proteosome
[53]. DNA can be oxidized by a variety of mechanisms,
resulting in nucleotide damage, for example, formation of
8-oxoguanine lesions. As a result, DNA replication may be
inaccurate leading to mutations and transcription errors.
While mechanisms exist to repair these DNA lesions, the
level of DNA damage may exceed the capacity of the
cellular repair mechanisms. Furthermore, mtDNA is believed
to be particularly susceptible to sustained damage, since

mitochondria may lack appropriate DNA repair mechanisms
[54].

4.2. Oxidative Damage in Chagas Disease. Oxidative stress-
induced injuries are a common finding in chagasic
myocardium. T. cruzi has the potential to infect a wide
range of host tissues [55]. As discussed above, the inflam-
matory infiltrate in acutely infected host is mainly con-
stituted of phagocytic cells (e.g., macrophages) and neu-
trophils that produce ROS/RNS through oxidative burst [56],
iNOS-dependent •NO release [15], and myeloperoxidase-
dependent HOCl production [57]. Oxidative damage is
a consequence of the extent of oxidative stress and the
antioxidant capacity. A T. cruzi-infected host does respond
to inflammatory oxidative stress by an upregulation of
antioxidant response constituted of GPx, GSH, and GST
[41]. Yet, oxidative cellular damage, evidenced by increased
protein carbonyls, MDA, and GSSG levels, is widespread, and
associated with the presence of parasite foci and inflamma-
tory infiltrate in the heart, as well as in other muscle tissues in
acutely infected mice [58]. The acute oxidative damage, thus,
appears to be a bystander effect of inflammatory responses
elicited by T. cruzi, and occurs in all muscle tissues.

The immune control of acute parasitemia fails to provide
sterile immunity. The evolution of a chronic phase is
associated with mild-to-moderate diffused inflammation in
different tissues and organs. It would be an oversimplifica-
tion to suggest that cardiac pathology is merely an outcome
of infection and inflammation, or parasite persistence that
is sufficient to drive an ongoing host immune response
targeted against T. cruzi. An unvarying high degree of
oxidative damage persists mainly in the myocardium of
chronically infected mice, as evidenced by high levels of
MDA, protein carbonyl, and GSSG contents in the heart
compared to findings in the skeletal muscle and colon
tissue [58]. We propose the persistent activation of oxidative
injurious processes plays an important role in heart-specific
tissue damage in Chagas disease.

Several observations led us to consider that ROS in
chronic chagasic heart are primarily produced by dys-
functional mitochondria. It is well known that ROS are
generated at several subcellular sites [59] and particularly in
mitochondria [60]. In effect, ∼2% of the O2 consumed by
mitochondria is converted to O•−

2 due to spontaneous elec-
tron leaks from the respiratory chain [61]. Activated skeletal
and intestinal muscles intermittently require mitochondria
as an energy source, while cardiomyocytes are constantly
dependent upon mitochondrial functions for their energy
requirement for maintaining the contractile and other
metabolic activities. According to energy demand, a ∼30%
cell volume of cardiomyocytes is provided by mitochondria,
while in other tissues mitochondria constitute only 3–6% of
cell volume [62]. Thus, maximal O2 consumption, as would
be expected based upon the number of mitochondria in the
heart, would produce substantial O•−

2 in the heart through
electron leakage from the respiratory chain. Thus, it can
be inferred that even in normal conditions, heart tissue is
maximally exposed to ROS of mitochondrial origin. Besides
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this, inefficient functioning of the respiratory complexes,
as documented in chagasic hearts [27], would result in an
inadequate coupling of the respiratory chain with oxidative
phosphorylation and an excessive release of electrons to
molecular oxygen, leading to an increased mitochondrial
ROS production. We have recently found that the rate of
mitochondrial O•−

2 generation was substantially increased in
cardiac tissue of infected mice [34], and associated with the
oxidation of several subunits of the respiratory complexes
[41]. The active-site thiol and heme proteins within respira-
tory complexes are particularly vulnerable to ROS [63]. The
oxidative modification/degradation of heme proteins of the
complexes release iron, the catalyst of the Fenton reaction,
resulting in the formation/release of •OH radicals [64–66].
Taken together, these observations suggest that, under disease
conditions, mitochondria are vulnerable to oxidative stress,
as well as to becoming the site of an increasing order of ROS
production. We, thus, propose that the acute inflammatory
oxidative stress-induced mitochondrial injuries initiate a
feedback cycle of ROS production and oxidative overload
that causes sustained oxidative damage in the myocardium.
A compromise in mitochondrial antioxidant enzyme activity
(MnSOD) in chagasic myocardium would further exacerbate
the mitochondrial ROS toxicity. The foregoing studies have
pointed to the pathologic significance of oxidative responses
in Chagasic cardiomyopathy.

It is important to note that a high degree of oxidative
stress is detected in the peripheral blood of chagasic mice
[58]. The demonstration of a strong positive correlation
in the heart-versus-blood levels of oxidative stress markers
(MDA and GSSG), and antioxidants (SOD, MnSOD, and
catalase), and the mitochondrial inhibition of respiratory
complexes in chronically infected mice have made it apparent
that peripheral blood will be useful for understanding the
role of mitochondrial decay and oxidative stress in the
initiation and progression of human chagasic disease.

Subsequently, observations of increased plasma levels of
GSSG and MDA and a decline in GPx activity in seropositive
humans [18, 42] have led to the suggestion that chaga-
sic patients are indeed exposed to an antioxidant/oxidant
imbalance. As in experimental studies, multiple mechanisms
are likely to contribute to increased oxidative stress-induced
damage in chagasic patients. Plasma levels of inflammatory
cytokines, •NO [18] and myeloperoxidase activity [17] are
increased in seropositive subjects which seems to imply that
the cytotoxic effects of free radicals released by immune cells
would contribute to oxidative pathology in chagasic patients.
The increase in plasma MDA levels in chagasic patients
may also be due to oxidatively modified lipids released
as a consequence of cellular injuries, most likely, that are
incurred in the cardiac tissue. This notion is supported by the
observation of intense myocardial oxidative modifications
[41] associated with the detection of oxidatively modified
lipids and proteins in the serum [58] of mice infected by
T. cruzi. Additionally, SOD and glutathione (GPx-GSH-GR)
antioxidant defenses, utilized by mammalian cells to cope
with free radicals [67], are found to be compromised in
chagasic patients [18, 42]. These observations support the
idea that glutathione antioxidant defenses, despite being

active, may only be partially effective in balancing the oxidant
level in chagasic patients.

5. Antioxidant Adjunct Therapy

Interventions that reduce the generation or the effects of
ROS may exert beneficial effects in preventing or arresting
oxidative damage. Several therapeutic interventions, for
example, a vitamin E-like antioxidant, an SOD mimetic
[68, 69], and an ONOO– decomposition catalyst [70] have
been examined for their beneficial effects against ROS
in different systems. Phenyl-N-tert-butylnitrone (PBN), a
nitrone-based compound, is a potent antioxidant. PBN has
been shown to trap or scavenge a wide variety of free radical
species, including biologically relevant O•−

2 and hydroxyl
•OH radicals; to increase endogenous antioxidant levels; and
to inhibit free radical generation [71]. In addition, PBN
has been shown to inhibit the expression of a variety of
inflammation-associated gene products [72].

In a recent study, we have shown that PBN treatment
of infected mice prevented an oxidative stress-mediated
loss in mitochondrial membrane integrity; preserved redox
potential coupled with mitochondrial gene expression,
and improved respiratory complex activities in infected
myocardium [30]. Importantly, the PBN-mediated normal-
ization of respiratory complex activities led to the inhibition
of a feedback cycle of electron transport chain inefficiency,
increased ROS production, and energy homeostasis in acute
chagasic hearts [30]. Others have shown a decline in
oxidative stress in human chagasic patients given Vitamin A
[73]. We propose that antioxidants capable of modulating
or delaying the onset of oxidative insult and mitochondrial
deficiencies in the myocardium would prove to be useful in
preserving cardiac functions in Chagas disease.

6. Ischemic Injury and ROS

Approximately 10% of chronic chagasic patients exhibit
signs of ischemic disease [74, 75]. The abnormalities during
isovolemic contraction and the early relaxation phase, in
general ascribed to asynchronous onset of contraction, are
noted in chagasic patients, and are similar to that seen in
patients with conventional ischemic heart disease of other
etiologies [76]. Others have suggested the alterations in
the coronary microcirculation contribute to ischemic tissue
damage in chronic chagasic patients [75, 77–80]. Myocardial
hypoperfusion owing to an affected microvasculature has
also been noted in chagasic heart regions with normal or
mildly impaired wall motion [75, 80].

Hypoxia is a critical outcome of ischemia. In hypoxic
tissues, low availability of oxygen results in electron accu-
mulation in highly reduced respiratory complexes that lead
to severely compromised respiration and ATP synthesis [81–
83]. Ischemia also influences mitochondrial function via
change in calcium flux [84], cyt c depletion (reviewed
in [85]), and decline in intrinsic level of MnSOD—the
mtROS scavenger [86]. The inefficient scavenging of mtROS
during hypoxia is complemented by increased production
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of ROS at reperfusion [87]. Mitochondrial loss of cyt c
is considered to potentate ROS production at reperfusion
because (a) cyt c is a catalytic scavenger for mitochondrial
O•−

2 , and (b) loss of cyt c results in highly reduced state of
respiratory complexes I, II, and III, thus, favoring electron
release to molecular oxygen and O•−

2 production [88, 89].
These observations suggest that mitochondrial inhibition
of respiration and ATP synthesis resulting from hypoxia,
coupled with an increase in O•−

2 formation and ROS-induced
injurious effects during reperfusion, potentially contribute to
the contractile dysfunction and cell death in Chagasic hearts,
to be confirmed in future studies.

7. Summary

Sustained ROS generation of inflammatory and mito-
chondrial origin, coupled with an inadequate antioxidant
response, result in the inefficient scavenging of ROS in
the heart, and lead to long-term oxidative stress, and
subsequently, to oxidative damage of the cardiac cellular
components during chagasic disease. The alterations in
biomarkers of oxidant and antioxidant status and in res-
piratory complex activities in the heart and blood/plasma
of infected host appear to have same pathologic tendencies,
which led to the suggestion that peripheral blood would be
a useful tissue for investigating the pathologic importance
of impaired mitochondrial function and oxidant/antioxidant
status in chagasic disease development. Further studies
should examine the pathological relevance of oxidative stress
in clinical severity of chronic heart disease in Chagasic
patients.
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