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Abstract

A preference for fairness may originate from prosocial or strategic motivations: we may wish to improve others’ well-being
or avoid the repercussions of selfish behavior. Here, we used functional magnetic resonance imaging to identify neural
patterns that dissociate these two motivations. Participants played both the ultimatum and dictator game (UG–DG) as
proposers. Because responders can reject the offer in the UG, but not the DG, offers and neural patterns between the games
should differ for strategic players but not prosocial players. Using multivariate pattern analysis, we found that the decoding
accuracy of neural patterns associated with UG and DG decisions correlated significantly with differences in offers between
games in regions associated with theory of mind (ToM), such as the temporoparietal junction, and cognitive control, such as
the dorsolateral prefrontal cortex and inferior frontal cortex. We conclude that individual differences in prosocial behavior
may be driven by variations in the degree to which self-control and ToM processes are engaged during decision-making
such that the extent to which these processes are engaged is indicative of either selfish or prosocial motivations.
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Introduction

Our social life abounds with situations in which there is a con-
flict between selfish urges and the welfare of others. An example
would be whether to donate a recently received windfall to
charity or spend it on a new phone. Whereas highly prosocial
individuals such as Martin Luther King or Mother Theresa may
devote their life to improve the condition of the oppressed or
the less fortunate, others tend to focus on maximizing their
own gains and in some cases even exploit others. These large
differences in how individuals weigh their own benefits against
another person’s welfare are crucially important in understand-
ing social decision-making that enables cooperation on a soci-
etal level. Yet, until now the underlying psychological and neural
mechanisms of these individual differences in prosociality have
remained largely elusive.

A common framework to study the trade-off between proso-
ciality and selfishness is the ultimatum game (UG) (Güth et al.,

1982). In the UG a proposer can decide how to divide a sum of
money, and a recipient can subsequently accept or reject this
proposal. In case the recipient accepts the offer, the money is dis-
tributed as proposed, whereas nobody receives anything in case
the responder rejects the offer. Previous research shows that the
majority of proposers split the money about equally and offer
on average 40% of the initial endowment (Oosterbeek et al., 2004;
Henrich et al., 2005). In order to explain why proposers deviate
from purely selfish behavior, two competing mechanisms have
been proposed. Proposers may decide to share because they care
for the welfare of their opponent and may thus be driven by
prosocial or fairness concerns (Thaler, 1988; Oosterbeek et al.,
2004). Alternatively, proposers may give high offers to reduce the
chance of rejection and strategically maximize their financial
gains, reflecting essentially selfish motives (Forsythe et al., 1994;
Fehr and Schmidt, 1999).

To test which of these mechanisms dominates, the UG can
be used in combination with the dictator game (DG), in which
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the responders cannot reject the offers. Hence, there is no pun-
ishment threat in place to prevent selfish behavior. As a con-
sequence, the proposers’ decisions in the DG are considered a
straightforward reflection of their social preferences, as they
are uncontaminated by strategic considerations. Critically, pro-
posers motivated by prosocial fairness concerns should offer
equally in both games as the importance of welfare of the
opponent is unchanged across games, while selfish proposers
are expected to strategically split their endowment equally in
the UG to reduce the chance of rejection and give low offers in
the DG.

Accumulative evidence from previous studies indicated that
while the average offers in the DG are significantly lower than
in the UG, they still remain well above what would be expected
by standard economic theory (Kahneman et al., 1986; Forsythe
et al., 1994). These findings suggest that some proposers indeed
change the size of their offer quite drastically between games,
while others offer similar amounts in both games. Thus, based
on high vs low differences in offers between games, we can
distinguish between those who are essentially selfish and only
strategically increase their offer when punishment is possible,
whom we characterize as selfish players, and those who do not,
characterized as prosocial players.

Previous neuroimaging research on the proposers’ motiva-
tions in the UG and DG has focused particularly on social norm
compliance, converging on the crucial involvement of the dorso-
lateral prefrontal cortex (dlPFC) and cognitive control in strategic
fairness in the UG (Yamagishi et al., 2016; Strang et al., 2014;
Spitzer et al., 2007; Steinbeis et al., 2012). The experimental evi-
dence from these studies generally suggests that in order to act
prosocially in the UG, proposers need to control selfish impulses,
which is reflected in increased dlPFC activity.

Other studies, however, have challenged this central role of
cognitive control in prosocial behavior. Evidence comes from two
meta-analyses indicating that prosocial choices and cooperation
across various different economic games, such as the trust game,
public goods game and DG are more frequent when cognitive
control is reduced, such as when one is under time pressure
(Rand et al., 2015; Rand, 2016) and when primed to trust ones
intuitions (Rand et al., 2012; Lotz, 2015). Furthermore, it has been
shown that when cognitive control is interfered with, for exam-
ple, by concurrently performing an N-back task, proposers made
more generous offers in the DG (Schulz et al., 2014). Collectively,
these results suggest that, at least under some conditions, self-
control may not be necessary to act prosocially, and reduced self-
control may even promote prosocial behavior.

In a largely separate literature, it is widely accepted that
theory of mind (ToM) is a strong determinant of prosocial sharing
(e.g. Eisenberg and Miller, 1987; Batson et al., 1991; Penner et al.,
2005; Pavey et al., 2012; Edele et al., 2013; Artinger et al., 2014).
For example, when proposers were instructed to imagine being
in the position of a responder, they offered significantly higher
amounts of money (Hoffman et al., 2000).

Thus, there seems to be a disconnect between behavioral
research on the proposers in the UG, emphasizing the role of ToM
in prosocial behavior, and the neuroimaging literature on the
proposers motivations and behavior, focusing on the role of self-
control in social norm compliance. These neuroimaging studies
do not discuss the relevance of ToM and do not report activity
in the neural network underlying ToM: a widely distributed
network of brain regions including the temporoparietal junction
(TPJ), the precuneus, the medial prefrontal cortex (MPFC), the
angular gyrus and the temporal lobes (Gallagher and Frith, 2003;
Ciaramidaro et al., 2007; Schurz et al., 2014).

Here, we try to bridge this disconnect by specifically testing
for differences in the ToM network in participants playing the
UG. Specifically, we combined a mixed UG–DG paradigm with
functional magnetic resonance imaging (fMRI) to identify neural
patterns that dissociate selfish from more prosocial individuals,
using multivariate pattern analysis (MVPA), which may be more
sensitive to pick up more subtle differences in psychological
processes such as empathy and ToM (Kriegeskorte et al., 2006;
Norman et al., 2006).

Methods

Participants

The reported analyses are based on 31 participants (22 females;
age 18–44 years; M = 24.2, s.d.= 6.2) from two separate studies.
The reason for running two studies was driven by funding issues.
We ran out of funding half-way through the data collection and
once we obtained additional funding continued with the data
collection. The first sample of participants consisted of a student
sample (N = 19, 13 females; age 18–44 years; M = 23.3, s.d.= 7.0)
from now on referred to as Study 1. The second sample also
consisted of a student sample but from a different university
(N = 12, 9 females; age 22–31 years; M = 26.2, s.d.= 2.7) from now
on referred to as Study 2. No significant differences in demo-
graphics were identified between samples. All participants were
right-handed with normal or corrected to normal vision and
no record of neurological or psychiatric diseases. The studies
were approved by the university ethics committees and were
conducted according to the Declaration of Helsinki.

FMRI acquisition

For Study 1, the functional magnetic resonance images were
obtained using a 3 T Siemens Allegra MRI system. Functional
scans were acquired by a T2∗-weighted gradient-echo, echo-
planar pulse sequence in ascending interleaved order (3.5 mm
slice thickness, 3.5 × 3.5 mm in-plane resolution, 64 × 64 voxels
per slice, flip angle = 90◦, FOV = 224). Echo time (TE) was 30 ms
and repetition time (TR) was 2000 ms. A T1-weighted image was
acquired for anatomical reference (1.0 × 1.0 × 1.0 mm resolution,
192 sagittal slices, flip angle = 9◦, TE = 2.6 ms, TR = 2250 ms).
For Study 2, the functional magnetic resonance images were
collected using a 3 T Siemens Verio MRI system. Functional
scans were acquired by a T2∗-weighted gradient-echo, echo-
planar pulse sequence in descending interleaved order (3.0 mm
slice thickness, 3.0 × 3.0 mm in-plane resolution, 64 × 64 voxels
per slice, flip angle = 75◦). TE was 30 ns and TR was 2030 ms.
A T1-weighted image was acquired for anatomical reference
(1.0 × 0.5 × 0.5 mm resolution, 192 sagittal slices, flip angle = 9◦,
TE = 2.26 ms, TR = 1900 ms).

Experimental task and procedures

Participants played a mixed UG/DG in the MRI scanner. On 24
trials, participants received e20 and had to decide how to split
the endowment between themselves and an opponent. On each
trial they were presented with a picture of the opponent before
and during the decision process, in order to ensure that partici-
pants knew they were playing against a different human player
on each trial. The pictures used in the study were obtained from
the NimStim face database (Tottenham et al., 2009). We selected
faces which were categorized as neutral and most representative



S. P. H. Speer and M. A. S. Boksem 1199

Fig. 1. The timing of the UG task. The experiment starts with a waiting period of 8 s, followed by a decision phase of 6 s in which all the information relevant to the

decision-maker is present and ends with the response phase of 8 s in which participants could indicate their choice. For the fMRI analysis, the period 6 s prior to the

button press was used.

of our participant population in terms of age and ethnicity. This
was done to minimize the effect of the difference in faces on
offers made in the games. Further choosing a representative
sample of pictures was intended to increase the credibility of
our cover story that participants played against previous partic-
ipants. On half of the trials, the opponents were able to reject
the offer, which would result in both the participant and oppo-
nent receiving nothing (UG). On the other half of the trials, the
opponents were passive recipients and could not reject the offer
(DG). The critical difference between these conditions is that in
the UG trials, the participant can be punished for unfair offers,
whereas in the DG trials no punishment is possible. In the non-
social control condition (24 trials), participants played against
a computer algorithm, allegedly programmed to mimic human
behavior. Again, half of the trials in the control condition were
UG trials and the other half DG trials. Practice trials were imple-
mented to in order to familiarize the participants with the task.
In addition, participants were told that they were playing against
participants who had previously participated in the study. As
mentioned above, pictures of opponents were chosen with the
aim of maximizing representativeness of the sample used in
order to increase credibility of the story.

The trials started with a screen that presented a picture of
the opponent and their power to reject the offer or not (UG or
DG). Subsequently, the response options appeared, 0 to 14e in
steps of two, and participants could indicate their choice. Lastly,
a wait screen appeared for 8 s (see Figure 1).

fMRI analysis

Pre-processing.. All fMRI data underwent the standard FSL (5.0)
pre-processing pipeline. Anatomical scans were reoriented
to the FSL standard orientation and skull-stripped. The
functional data was motion corrected to the mean image using
FSL’s MCFLIRT and coregistered to the anatomical scan and
normalized to the standard MNI brain using boundary-based
registration (FSL FLIRT and FNIRT). Subsequently, Gaussian high-
pass filtering with 100 s FWHM was applied.

To obtain neural activation patterns for multivariate analysis,
individual time series were modeled using a double γ hemo-
dynamic response function (HRF) in a single-trial GLM design
using FSL’s FEAT. Specifically, one GLM fitted a HRF for each
trial, following the least-squares all approach (Mumford et al.,
2012), using the 6 s prior to the keypress in each trial, resulting
in 48 (12 trials ∗ 4 conditions) parameter estimates of sustained
activations for each participant. Specifically, there were 12 trials
of UG and DG in the social condition (human opponent) and
12 trials of both games in the non-social condition (computer

opponent). The resulting β-values were converted to t-values
(Misaki et al., 2010), resulting in a whole-brain pattern of t-
values for each trial. The duration of the epoch we used for
our fMRI analysis was 6 s, and onset times were determined by
counting back 6 s from the point in time when the participant
had indicated his choice. This window was used as it provides
all the necessary information to make the decision and is free of
brain activity related to motor responses. Average background
signal and white matter signal were entered as regressors of
no interest. All regressors were convolved with the canonical
HRF. In order to test whether differences between games can be
decoded from the brain, we applied a classification analysis to
the whole-brain activity patterns estimated from our single-trial
GLM. Classification analyses were conducted with the PyMVPA
toolbox (Hanke et al., 2009) and custom Python scripts, which are
available on figshare 10.25397/eur.11294645.

Relating classification accuracy to behavior in the ToM and cognitive
control network. . First, we investigated whether neural patterns
in regions associated with ToM and cognitive control processes
distinguish between prosocial and selfish players. In order to do
so, we obtained a ToM–brain–activation mask and a cognitive
control-brain activation mask by conducting a meta-analysis via
Neurosynth (Wager et al., 2011, see Supplementary Appendix 1).
The masks were derived from a meta-analysis of previous stud-
ies reporting brain regions that are consistently active in articles
that include the term ‘ToM’ and ‘cognitive control’ in the abstract
(N = 181 and 598, respectively; see Figures 2 and 3). Using this
large-scale automated meta-analysis increases confidence that
neural activation in these regions indeed reflect engagement
on the hypothesized processes while reducing problems with
reverse inference (Poldrack, 2006).

We extracted the activation patterns within the ToM and cog-
nitive control mask in native space, corresponding to one deci-
sion phase each, which were labeled according to their experi-
mental condition, either UG trial or DG. Only activation patterns
for the social condition (human opponents) were selected for
this analysis. Subsequently, for each activation pattern, each
voxel was standardized such that they have zero mean and
unit variance. Lastly, we applied univariate feature selection,
in which the 1000 voxels with the highest F-value resulting
from an ANOVA on the contrasts of interest (UG vs DG) were
selected from within the masks. Subsequently, a multivariate
pattern classification using a support vector machine (C = 1) was
applied to the selected voxels (Cox and Savoy, 2003; Mitchell
et al., 2004). To account for possible effects of the size of the
masks, 1000 voxels were selected for both masks. In order to
avoid overfitting and inflated prediction accuracy (Vul et al.,

10.25397/eur.11294645
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Fig. 2. The ToM mask obtained from the meta-analysis on neurosynth showing clusters in the precuneus left and right TPJ, temporal pole and the MPFC.

Fig. 3. The cognitive control mask obtained from the meta-analysis on neurosynth showing clusters in the left and right dlPFC and the PCC.

2009), the three steps (feature scaling, feature selection and
classification) were implemented using 6-fold cross validation.

To explore how differences in neural patterns between con-
ditions (UG vs DG) across participants relate to differences in
behavior, we correlated the classification accuracies for each
participant, derived from the above classification analysis, with
the average difference in offers between games of each partici-
pant, while controlling for cohort effects. This partial correlation
with a dummy variable for the cohort was used to account for
possible variance introduced by the difference between the two
samples and scanners used. The same analysis was conducted
for activation patterns for the non-social condition in order to
test whether possible effects are specific to the social condition
or generalize across all trials.

Relating classification accuracy to behavior in individual regions
in the ToM and cognitive control network. . Next, we explored
whether neural patterns in individual regions within the ToM
and cognitive control networks differentiate between prosocial
and selfish players using the same masks as above. Individual
clusters within the masks were extracted and converted to each
subject’s native space (see Supplementary Appendix 1). We then
extracted the activation patterns within these Region of Interest
(ROIs). As before, only activation patterns for the social condition
(human opponents) were selected for this analysis. Apart from
the feature selection, which in this analysis was done by means
of selecting individual ROIs, we applied the same analysis pro-
cedure as above.

Localizing other areas that discriminate between prosocial and
selfish players. . To explore whether activity patterns in regions
outside of the ToM and cognitive control networks correlated
with individual differences in behavior, a classification search-
light approach was used. More specifically, we investigated
where in the brain average UG and DG offers between subjects

correlate with classification accuracy between UG and DG
trials. To this end, we employed a spherical searchlight of 3-
voxel radius. For this analysis, the individual t-stat maps were
smoothed (fwhm = 8) to render the output of the searchlight
more clustered and more interpretable. At each location, for all
voxels included in the current sphere, the searchlight performed
a classification of game type using a support vector classifier
implemented with 6-fold cross validation. This was done for
all subjects, resulting in 31 classification maps, where each
voxel represents the classification accuracy of local UG vs
DG patterns. Subsequently, to test whether within-subject
classification accuracy between UG and DG correlates with
individual differences in behavior, we calculated at each voxel
a Pearson’s correlation between the classification accuracy
and mean difference in offers between UG and DG trials
while partialing out the group membership to the two cohorts
(Study 1 and Study 2). We estimated statistical significance by
permutation testing. Specifically, we shuffled the differences
in behavior 5000 times and obtained null correlation maps and
derived the empirical p value at each voxel from the voxel’s own
null distribution.

Results

Behavioral results

Social trials. . On average, participants made higher offers in
the UG than in the DG, but this difference varied substantially
between subjects (UG–DG; M = 8.65, s.d. = 3.27; see Figure 4): some
participants offered much more in the UG, while other subjects
made very similar offers in both games. The lowest mean offer
observed on a UG trial for a participant was e8.5 which excludes
the possibility that low differences in offers between games
could be due to low offers in both games (see Supplementary
Appendix 2, Figure S1). From now on we refer to participants with
a low difference in offers between games as prosocial players
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Fig. 4. Differences in offers (UG–DG) between games for Human trials across

participants in both studies.

Fig. 5. Bar graph illustrating the difference in offers in the DG between prosocial

and selfish proposers (median split, for illustrative purposes only) on human and

computer trials.

(as they give high offers in both games), whereas participants
that exhibited high difference in offers between games as selfish
players (as they only strategically offer high amounts when
punishment is possible but give low offers otherwise).

As this study contained data from two different samples
using different scanners, we tested whether there were differ-
ences in behavior between the two samples using a two-sample
t-test and found that the differences in offers between games
was significantly higher in the second sample as compared to
the first sample (t(df = 29) = −4.41, P < 0.001), which, in addition
to the different scanning parameters used in the two studies,
necessitated using partial correlation for our fMRI analyses.

Behavioral results for social vs non-social trials. . Here, we
investigated whether participants give high offers out of social
motivations (compliance with social norms or prosocial behav-
ior) or whether they are driven by a more general response to any
type of social or non-social punishment threat. If the underlying
decision-making processes are indeed social, we would expect
prosocial participants to exhibit larger differences in offers
between the social and non-social condition as compared to
the more strategic players. To test this, a multiple regression
analysis was performed to predict offers in the DG based on the
type of opponent (human vs computer) as a dummy variable, the
mean difference in offer between games as continuous regressor
(indicating the extent to which participants are prosocial or self-
ish) and the interaction between these two variables. Only DG

trials were used as differences between motivations (social
vs non-social and fair vs selfish) which should be expressed
particularly on these trials. The regression model was found
to be significant (F(2.58) = 67.78, P < 0.001), with an R2 of
0.882. Participants gave higher offers in the social condition
than in the non-social condition (b = 3.725, SE = 0.66, t = 5.63,
P ≤ 0.001), and DG offers decreased with higher difference
in offers between games (more selfish participants offered
less; b = −0.461, SE = 0.07, t = −6.585, P ≤ 0.001). Importantly, a
significant interaction effect was found between the difference
in offers (prosocial vs selfish players) and type of opponent
(human vs computer), b = −0.358, SE = 0.099, t = −3.618, P ≤ 0.001:
in the social condition participants made significantly higher
DG offers than in the non-social condition and that this effect
was stronger for prosocial players as compared to selfish players
(see Figure 5).

fMRI results

Classification accuracy of game type correlates with prosociality in
the ToM and cognitive control networks. . For the social trials,
we found that classification accuracy in the cognitive control
network significantly correlated with the difference in offers
between games (r = 0.48, P < 0.01). Further, classification accuracy
on patterns from the ToM network also significantly correlated
with difference in offers (r = 0.37, P < 0.05). This suggests that
neural patterns in both the cognitive control network and the
ToM network differentiate between prosocial and selfish players
(see Figure 6). For the non-social trials, no significant correlation
was found for the ToM network (r = 0.18, P = 0.34) or the cognitive
control network (r = 0.30, P = 0.09).

Classification accuracy correlates with prosociality in specific regions
within the cognitive control and ToM network. .

ToM network. . When correlating the individual differences in
offers between games with the classification accuracy from the
support vector classifiers, we found a strong positive partial
correlation in the left TPJ (r = 0.5, P < 0.005, Padjusted = 0.03, FDR
corrected for multiple tests at P = 0.05) (see Figure 7). Thus, neural
patterns in the left TPJ differ more strongly between games
for selfish players than for prosocial players. We repeated this
analysis for the non-social condition and found that there were
no significant correlations between the classification accuracy
and differences in offers between games in any of the ROIs.
Hence, the effects observed are specific to the social condition,
which suggests that the differences in neural patterns observed
indeed reflect social processes.

Cognitive control network. . Within the cognitive control network,
the analysis on the social trials showed that difference in offers
correlated significantly with classification accuracy in the left
dlPFC (r = 0.44, P = 0.01, Padjusted = 0.03, FDR corrected at P = 0.05),
the right dlPFC (r = 0.41, P = 0.02, Padjusted = 0.04, FDR corrected at
P = 0.05) and the posterior cingulate cortex (PCC; r = 0.46, P = 0.008,
Padjusted = 0.03, FDR corrected at P = 0.05) (see Figure 7). For the
non-social trials, no significant correlations were found for any
of the regions extracted from the cognitive control network.
These findings indicate that neural patterns in the bilateral
dlPFC and the PCC differentiate between prosocial and selfish
players and that this effect is specific to the social condition.
This suggests that prosocial, as opposed to selfish participants,
does not need cognitive control to overcome selfish impulses
and gives high offers in the social condition as they empathize
with their human opponents, resulting different patterns in the
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Fig. 6. Correlation between classification accuracy and difference in offer (UG–DG) for neural patterns in the cognitive control network (red) and the ToM network

(green).

Fig. 7. Correlation between classification of game type accuracy in the right dlPFC, left TPJ, PCC and left dlPFC and average difference in offer (UG–DG) between games

across participants while controlling for difference in cohorts.

cognitive control regions. However, in the non-social condition,
ToM processes are not engaged, so cognitive control processes
are similarly engaged for prosocial and selfish players resulting
in no difference in patterns.

As the size of the ROIs (number of voxels) varied within
and between the two networks, we also tested whether
differences in the size of the ROIs between the two masks
might have had an effect on the correlation between difference
in offer and classification accuracy. We computed the corre-

lation between these two measures and found no significant
correlation (r = −0.25, P = 0.21). In addition, no significant
correlation was found between classification accuracy and the
size in voxels of the ROIs used (r = −0.04, P = 0.84).

Behavioral–neural classification searchlight. . The searchlight
analysis conducted on trials from the social condition revealed
that classification accuracy for decoding neural patterns
associated with UG and DG trials correlated significantly with



S. P. H. Speer and M. A. S. Boksem 1203

Fig. 9. The classification searchlight analysis reveals clusters in the left TPJ (left), MPFC (middle) and right MTG and IFG (right) exhibiting significant correlation between

difference in offers between UG and DG and classification accuracy on game type.

individual differences in offer size between games in the left TPJ,
the right TPJ, the left middle temporal gyrus (MTG), the MPFC
and the left inferior frontal gyrus (IFG) (see Figure 8). For
selfish players, the support vector machines were better at
dissociating game type in these regions (only clusters with size
of >15 voxels are reported here, see Figure 9; for all significant
clusters, see Supplementary Appendix 3, Table S7). The fact
that some of the regions (R TPJ and MPFC) were found to
show significant correlation using the searchlight approach
but not in the previous ROI analysis may be due to the higher
specificity of the searchlight approach. Whereas in the ROI
analysis uninformative voxels may have been included, the
searchlight assesses differences in patterns in highly localized
neighborhoods of a very small number of voxels. The effects
observed here may be specific to only specific parts of these
regions, which may also explain the small size of the clusters.
In addition, a significant cluster in the right occipital cortex was
found, which most likely is due to the different colors (red and
blue) used to demarcate an UG or DG trial during the decision
phase.

We repeated the analysis for the non-social condition and
found no significant correlations in any other region (for
significant clusters see Supplementary Appendix 3, Table S8).
Comparing the correlations between classification accuracy and
behavior in the social and non-social condition in these regions
directly after performing a Fisher z transformation, we found
that the correlations are indeed significantly higher in the social
condition in all reported areas.

Discussion

In order to investigate whether prosocial vs selfish motivations
can be decoded from neural activation patterns, we conducted
an experiment in which participants played the UG and DG
against humans and computers while in an MRI scanner. Our
behavioral results indicate that there are large individual differ-
ences in offers between the UG and DG, demonstrating that there
is strong heterogeneity in motivations.

In the literature, both ToM and the cognitive control pro-
cesses have been proposed to underlie individual differences
in prosociality in economic exchanges. Therefore, we wanted
to test whether the relationship between differences in neural
patterns and behavior can be attributed to either the cognitive
control or the ToM network specifically or whether both net-
works contribute to the individual differences in prosociality. To
this end, we identified brain regions associated with ToM and
cognitive control using large-scale automated meta-analysis, to
increase our confidence that the selected regions indeed rep-
resent the hypothesized psychological mechanisms and thus
reducing reverse inference problems (Poldrack, 2006).

Our classification analysis on the obtained ToM and cognitive
control networks revealed that classification accuracy correlated
significantly with difference in offers between games in both
of these networks. These results indicate that neural patterns
in regions in the ToM network (particularly in the TPJ) as well
as in the cognitive control network (particularly in the dlPFC
and PCC) appear to dissociate between prosocial and selfish
players, suggesting that more selfish players engage these pro-
cesses differently between games, while more prosocial players
employ ToM and cognitive control similarly in both UG and DG.
A whole-brain classification searchlight confirmed a significant
correlation, specifically in the social condition, between neural
activation patterns and classification accuracy in the bilateral
TPJ but also in the MPFC and in the left MTG; all areas associated
with ToM (for meta-analysis see Schurz et al., 2014; Young et al.,
2010a).

Neuroimaging research has identified the ToM network as
the basic system that facilitates social understanding (Saxe and
Wexler, 2005; Schurz et al., 2014; Young et al., 2010b). In this
network, the TPJ has not only been consistently associated with
reorienting of attention and perspective taking (Gallagher and
Frith, 2003; Krall et al., 2015) but also with appreciating differ-
ences between one’s own and others’ perspectives in cases of
conflict between those perspectives (Van Overwalle and Baetens,
2009a, 2009b; Hétu et al., 2012). Downregulating the TPJ using
TMS impaired participants’ ability to take into account another
person’s intention in moral judgements (Young et al., 2010a).
Similarly, neuroimaging research has found the MTG to be pref-
erentially activated for inferring others’ beliefs (Zaitchik et al.,
2010; Bruneau et al., 2012). A meta-analysis of 40 imaging studies
also found the MPFC to be a core area in social mentalizing
responsible for inferring others’ dispositions in order to make
accurate predictions of their next moves (see review Van Over-
walle and Baetens, 2009, Schurz et al., 2014). In addition, Krause
and colleagues (2012) have found that for more empathic indi-
viduals, deep rTMS stimulation of the MPFC disrupted affective
ToM performance, confirming the prominence of the MPFC in
mentalizing processes.

In the UG and DG, the TPJ, MTG and MPFC may thus be
involved in orienting the proposer’s attention to the responder
and understanding her intentions and desires for both proso-
cial and strategic reasons. Our findings suggest that prosocial
participants may have been more inclined to consider the wel-
fare of their opponents and utilizing ToM processes equally in
both games. In contrast, selfish players may have selectively
and strategically engaged ToM to infer the expectations of their
opponents in the UG to avoid financial punishment, whereas
the opponents’ desires were irrelevant in the DG rendering infer-
ences about their expectations redundant.

However, our findings also emphasize the involvement of
cognitive control processes in social decisions. We found higher
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Fig. 8. The correlations between classification accuracy and the average difference in offers (UG–DG) between games in the MPFC (blue), the left TPJ (black), the left

MTG (yellow), the left IFG (purple) and the right TPJ (pink).

classification accuracy in the dlPFC, PCC and IFG when decoding
game type for selfish players than for prosocial players. The
dlPFC has been frequently implicated in cognitive control to
overcome impulsive behavior (Dalwani et al., 2011; Weygandt
et al., 2015), whereas the IFG and PCC have been consistently
associated with the inhibition of predominant responses (Wager
et al., 2005; Verbruggen and Logan, 2008; Sharp et al., 2010; Stokes
et al., 2011).

This suggests that prosocial participants, concerned with the
welfare of their opponents, intuitively gave fair offers in both the
UG and DG and did not require cognitive control or response
inhibition during the decision process. Selfish players, in con-

trast, needed to exert cognitive control in order to overcome
the selfish motivation of giving a low offer in the UG, which
was necessary to avoid punishment and to maximize financial
gains. Further, to inhibit this predominant selfish response and
make a more generous offer, response inhibition was crucial.
However, in the DG, where no punishment for selfishness was
expected, the selfish player could rely on his intuitions and
give low offers to maximize his monetary reward, thus not
requiring cognitive control and response inhibition processes.
Collectively, our findings highlight the importance of both self-
control processes, reflected by activity patterns in the dlPFC, the
IFG and the PCC, and the crucial involvement of empathy and
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ToM, represented by neural patterns in the TPJ, MPFC and the
MTG.

To validate that our findings are indeed of a social nature and
are not driven by more general processes related to response
inhibition, avoidance of punishment or reward sensitivity, we
ran several manipulation checks contrasting the social condi-
tion (human opponents) against our control condition in which
participants were playing against a computer algorithm. We
found that in the social condition, participants gave significantly
higher offers than in the control condition, and this effect was
significantly stronger for prosocial players as compared to play-
ers with more selfish motivations. This implies that particularly
the prosocial participants care about the welfare of their human
opponents; as for them the increase due to the social context
is strongest. Furthermore, a supplementary univariate analysis
showed that there was higher activation in the social condition
than in the control condition in the MPFC, precuneus and left TPJ,
which have all have been associated with empathy and perspec-
tive taking, as mentioned above (see Supplementary Appendix
4, Table S9 for list of significant clusters). In addition, when
running our classification analysis on the ToM and cognitive
control network, as well as on individual ROIs within those net-
works, no significant correlations were found between behavior
and classification accuracy for the non-social condition. Collec-
tively, these results provide evidence that participants indeed
empathized with their human opponents and took their desires
into consideration.

In the literature on individual differences in prosocial behav-
ior during economic decision-making, there has been a discon-
nect between behavioral research promoting the role of ToM
and empathy and most of the neuroimaging research focusing
on self-control in social norm compliance. On the one hand,
it has been shown that empathy is the strongest predictor of
prosocial sharing (Edele et al., 2013). Further, prosocial partici-
pants have been found to hold more accurate beliefs about their
opponents’ offers in the UG and DG, unless these beliefs become
instrumental to maximizing financial gains, in which case the
selfish players perform equally well (Artinger et al., 2014). On the
other hand, neuroscientific evidence converges on the crucial
involvement of cognitive control of the impulsive pursuit of self-
interest (Strang et al., 2014; Spitzer et al., 2007, Steinbeis et al.,
2012). Further, Spitzer et al. (2007) showed that increased activity
in the dlPFC, assumed to reflect cognitive control, was associated
with higher offers in the UG.

Our findings bridge these two streams of research by high-
lighting the importance of both ToM and cognitive control pro-
cesses. We propose that individual differences in the tendency
to engage ToM may determine whether or not a person acts
prosocially or selfishly. Based on this assumption, a person who
intuitively considers the welfare of the opponent will not require
cognitive control to make fair offers regardless of whether a
punishment threat is in place or not. In contrast, an individual
who is less inclined to empathize may use ToM strategically
to avoid punishment and may thus require cognitive control to
overcome intuitive selfish impulses. Some individuals may have
a natural tendency to empathize, whereas others use empathy
more strategically. In economic exchanges such as the UG and
DG, this tendency for empathy may determine whether players
are prosocial or follow strategic motives.

Due to the fact that multivariate neural patterns do not
provide information about the strength of activation but only
indicate that information is encoded differently in these regions,
we cannot exclude the possibility that the effect goes in the
opposite direction: prosocial proposers may have exerted cogni-
tive control and response inhibition in both games and strategic

players which may have only done so in the UG and not in
the DG, which would have also resulted in higher differences in
patterns in the cognitive control network for selfish players. This
interpretation would suggest that all participants are intuitively
selfish and that the prosocial proposers overcome their selfish
impulses in both games to make a fair offer. Although possible,
this alternative explanation seems less compelling as it does
not offer any explanation for why a prosocial participant would
decide to exert cognitive control to make a high offer and not
just selfishly make a low offer in the DG.

The same reasoning applies to our findings regarding the
ToM network. Potentially, prosocial individual did not engage a
ToM processes in either of the games, and selfish individuals
only did so in the UG, resulting in the pattern of effects we
observed. This interpretation would explain why selfish par-
ticipants give high offers in the UG, but it does not offer an
explanation as to why prosocial players decided to give high
offers in any of the games. In sum, while unlikely, we cannot
rule out the alternative explanations with complete confidence;
our results clearly demonstrate that not only cognitive control
processes but also ToM processes differentiate between selfish
and strategic players.

To conclude, we were able to dissociate prosocial from selfish
players based on multivariate neural patterns during decision-
making. Taking advantage of the higher sensitivity of multivari-
ate techniques and meta-analytically defined networks associ-
ated with ToM and cognitive control, our study is the first to
suggest that individual differences in prosociality are associated
with differences in how cognitive control and ToM processes are
engaged in the decision-making process. Our study bridges the
disconnect between previous neuroimaging research focusing
on the role of cognitive control and behavioral research promot-
ing the importance of ToM in prosocial behavior. Highlighting
the involvement of ToM processes in prosocial decisions, it thus
contributes to a deeper understanding of the underlying neural
mechanisms of human prosocial behavior. Our results suggest
that in order to promote prosocial behavior in social and eco-
nomic exchanges, not only fostering cognitive control capacities
but also increasing the propensity to empathize and engage ToM
processes is required.
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