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The larva of Taeniidae species can infect a wide range of mammals, causing major
public health and food safety hazards worldwide. The Qinghai-Tibet Plateau (QTP), a
biodiversity hotspot, is home to many species of rodents, which act as the critical
intermediate hosts of many Taeniidae species. In this study, we identified two new larvae
of Taenia spp., named T. caixuepengi and T. tianguangfui, collected from the plateau
pika (Ochotona curzoniae) and the Qinghai vole (Neodon fuscus), respectively, in QTP,
and their mitochondrial genomes were sequenced and annotated. Phylogenetic trees
based on the mitochondrial genome showed that T. caixuepengi has the closest genetic
relationship with T. pisiformis, while T. tianguangfui was contained in a monophyletic
group with T. crassiceps, T. twitchelli, and T. martis. Biogeographic scenarios analysis
based on split time speculated that the speciation of T. caixuepengi (∼5.49 Mya) is due
to host switching caused by the evolution of its intermediate host. Although the reason
for T. tianguangfui (∼13.11 Mya) speciation is not clear, the analysis suggests that it
should be infective to a variety of other rodents following the evolutionary divergence
time of its intermediate host and the range of intermediate hosts of its genetically
close species. This study confirms the species diversity of Taeniidae in the QTP, and
speculates that the uplift of the QTP has not only a profound impact on the biodiversity
of plants and animals, but also that of parasites.

Keywords: mtDNA, Qinghai-Tibet Plateau, phylogeny, divergence time, Taenia spp.

INTRODUCTION

The most recent molecular phylogenetic analysis has suggested that the family Taeniidae
(Eucestoda: Cyclophyllidea) should be composed of four genera: Taenia, Echinococcus, Hydatigera,
and Versteria (Nakao et al., 2013). Among them, Taenia and Echinococcus species pose a serious
public health threat to humans and animals globally. Terrestrial mammals are crucial to the
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life cycle of taeniids. Most adult tapeworms parasitize the
intestines of carnivores while the intermediate hosts harbor the
larva stage that develops from ingested eggs, causing severe
health effects (Jia et al., 2012; Nakao et al., 2013; Lymbery, 2017;
Deplazes et al., 2019).

Before the new classification recommendation of Nakao
et al. (2013), two genera (Taenia and Echinococcus) were
generally accepted. Taenia was constituted by about 42 valid
species and three subspecies based on morphology (Hoberg
et al., 2000; Hoberg, 2006; Nakao et al., 2013). As for
Echinococcus, a total of 16 species and 13 subspecies were
described based on morphology, but most of these taxa were
subsequently invalidated following widespread application of
molecular genetic methods (Lymbery, 2017). It is difficult to
distinguish taeniid species according to their morphological
characteristics at different stages of their life cycle, even by
specialists (Flisser et al., 2005; Mathis and Deplazes, 2006;
Jia et al., 2012). Sometimes, morphological characteristics are
substantially influenced by the different intermediate host origins
(Lymbery, 1998).

Mitochondrial (mt) DNA sequence has been recognized
among the most suitable molecular markers of molecular
ecology, population genetics, evolutionary biology and biological
differentiation due to its high mutation rate and maternal
inheritance (Hebert and Gregory, 2005; Will et al., 2005;
Hajibabaei et al., 2007; Jia et al., 2012). In the last two decades,
comparative analyses of taeniid mtDNAs have been increasingly
applied in phylogenetic studies, for inferring evolutionary
relationship, new species identification, species reclassification,
phylogeography, genetic diversity, and tracing of evolutionary
origins of related and identical species (Xiao et al., 2005; Nakao
et al., 2007; Nakao et al., 2013; Terefe et al., 2014; Kinkar
et al., 2018). Among the taeniid family, mt genomes of 36
species and genotypes have been sequenced and are available
on GenBank1, providing valuable data support for phylogenetic
studies of Taeniidae.

The shrinkage and fragmentation of wildlife habitats due to
human activities can lead to increased contact between humans
or livestock and wildlife, which potentially increases the risk
of transmission of natural focal disease (Suzán et al., 2008).
Rodents, the largest (∼43% of all mammal species) and most
widely distributed group of mammals, act as major vectors of
human and domestic animal diseases (Singla et al., 2008; Wu
et al., 2018). The Qinghai-Tibet Plateau (QTP), one of the
biodiversity hotspots on earth, is habitat to a rich diversity of wild
rodent species (Zhou and Ma, 2002), as well as many rodent-
eating carnivores (Smith et al., 2019), creating the conditions
for various taeniid species to complete their life cycles. The
high altitude geographic isolation combined with the geological
complexity of the QTP increases the opportunities for genetic
variation and speciation, leading to the continuous discovery of
new species of rodents and Taeniidae (Xiao et al., 2005; Dahal
et al., 2017). However, few studies have involved the population
structure and biodiversity of taeniid species in QTP, except for
Echinococcus.

1https://www.ncbi.nlm.nih.gov/genbank/

As endangered or protected carnivores are difficult to sample,
we collected metacestode samples of rodents to investigate the
biodiversity and distribution of taeniid species in QTP. In
this study, two new mt genomes of the metacestode samples
were firstly sequenced and annotated. Through the phylogenetic
analysis of mt genomes with species in the four different
genera of taeniids, the validity of these two new Taenia
spp., named T. caixuepengi and T. tianguangfui larvae, were
confirmed and their phylogenetic relationship and evolutionary
origin were analyzed.

MATERIALS AND METHODS

Ethics Statement
All animals were handled in strict accordance with good
animal practice according to the Animal Ethics Procedures and
Guidelines of the People’s Republic of China, and the study
was approved by the Animal Ethics Committee of Lanzhou
Veterinary Research Institute, Chinese Academy of Agricultural
Sciences (No. LVRIAEC2012-007).

Parasite Materials
Plateau pikas (Ochotona curzoniae) and Qinghai voles (Neodon
fuscus) were trapped in Darlag county (33◦43′N; 99◦38′E; altitude
at 4,068 m) and Jiuzhi county (33◦19′N; 100◦32′E; altitude
at 3,832 m) of Qinghai province, the People’s Republic of
China in July 2013. Following ethical approval, all trapped
pikas and voles were dissected regarding the enterocoelia, chest
and cranial cavities. Many banded cysticerci were collected
in the enterocoelia of Plateau pika (Supplementary Figures
S1A,B) and numerous lenticular cysticerci were collected in
the enterocoelia and chest of Qinghai vole (Supplementary
Figures S1C,D). Detailed sample collection data can be found
in Supplementary Table S1. After detaching the lesions, the
cysticerci were put into 75% (v/v) ethanol for molecular and
morphological identification. Cysticerci from pikas and voles
were photographed by Thermo ScientificTM Apreo S SEM, and
their hooks were hand-drawn using Point 3D of Microsoft.

DNA Isolation, Amplification, and
Sequencing
Cysticercus DNA was extracted using a commercial kit as
instructed by the manufacturer (Blood and Tissue Kit,
Qiagen, Germany). The mt genomes of Taenia spp., whose
intermediate hosts include rodents, downloaded from GenBank
(Supplementary Table S3) were aligned by using MEGA 7.0.
Nine overlapping primers targeting the complete mt genome
were designed using Oligo 6.0 at relatively conserve regions
observed on alignment of the mt genome sequences. The
primer sequences (Supplementary Table S2) were synthesized
by Genewiz Biotech (Beijing, China). A standard 50 µl PCR
protocol was used to amplify the mtDNA fragments. PCR
products were purified directly from an agarose gel (1%) using an
Axy PrepTM DNA Gel Extraction Kit (AXVGEN, United States)
and then sent to the company Genewiz Biotech for sequencing.
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Mitochondrial Genome Annotation
These two mtDNAs were assembled manually, and annotated
preliminarily by Geseq2 with the reference of related species,
T. pisiformis and T. crassiceps, identified by the cox1 gene
alignment of Neighbor-Joining method in MEGA 7.0 (data not
shown). Putative tRNA genes were identified using ARWEN3

(Laslett and Canbäck, 2008). The positions of their open
reading frames and rRNA genes were also further checked and
modified based on alignment with the mt genomes annotation
of T. pisiformis and T. crassiceps, respectively. SnapGene (v3.2.1)
was used to translate the amino acid sequence of the protein-
coding genes with Echinoderm, Flatworm Mitochondrial genetic
code and map the annular diagram of the mt genomes.

Phylogenetic Analyses
To determine the phylogenetic status of these two Taenia spp.,
the phylogenetic trees were constructed using Bayesian methods
in MrBayes v3 with the tandem DNA sequences and amino acid
sequences of 12 encoding genes in their mt genomes and other 32
taeniid mt genome sequences downloaded from GenBank, while
the sequences of Schistosoma japonicum was used as outgroup
(Supplementary Table S2). For the amino acid data set, the
mixed model was applied (prset aamodelpr = mixed); two chains
(temp = 0.2) were run for 3,000,000 generations and sampled
every 1,000 generations (Rota-Stabelli et al., 2009). For the
nucleotide data set, Modeltest 3.7 maxX (Posada and Crandall,
1998) was used to estimate a suitable model for nucleotide
substitution; this was equivalent to GTR + I + G and settings
were nst = 6, rates = invgamma, ngammacat = 4. Four chains
(temp = 0.2) were run for 1,000,000 generations and sampled
every 1,000 generations. The first 25% of trees were omitted as
burn-in and the remaining trees were used to calculate Bayesian
posterior probabilities. The best Bayesian tree was then compiled
and processed by FigTree.v1.4.4.

Divergence Times Analysis
The phylogenetic trees were used as a reference for species
selection in divergence times analysis. Echinococcusmultilocularis
and E. shiquicus were also selected because the parasitism of their
larvae is also found in Plateau pika (O. curzoniae) (Wang et al.,
2018), besides E. multilocularis is the sister species of E. shiquicus
(Lymbery, 2017). Divergence times were calculated from the
concatenated CDS alignment of the 12 mitochondrial protein-
coding genes by BEAST2 (v2.6.2). The Strict Clock model was
chosen to ignore the rate differences between the branches in
the mode. The gamma category count was set to 4, and HKY
substitution model was selected with the empirical setting from
the frequencies in site model. Other settings, such as substitution
rate and shape, in the site model were evaluated in the analysis.
The calibrated Yule model was used as the tree prior. Time
calibration was calibrated with the previously estimated date
between T. saginata and T. asiatica (∼1.14 Mya) (Michelet and
Dauga, 2012; Wang et al., 2016). Samples from the posterior
were drawn every 1,000 steps over a total of 10,000,000 steps
per MCMC run. Other options were run on their default values.

2https://chlorobox.mpimp-golm.mpg.de/geseq.html
3http://130.235.46.10/ARWEN/

The convergence of likelihood values was determined by Tracer
(v1.7.1). Trees were annotated by TreeAnnotator (v2.1.2) using
maximum clade credibility tree and median heights settings
with 50% burn-in. The evolutionary divergence time of the
intermediate host, Qinghai vole (N. fuscus), was also calculated
with the concatenated CDS alignment of 13 mt protein-coding
genes of the rodents, and the species involved were selected from
our previous report (Li et al., 2019; Supplementary Table S3).
The time calibration was based on the divergence time ofMus and
Rattus (11–13 Mya) (Wang et al., 2020), and other parameters
were the same as above.

RESULTS

General Features of the Mitochondrial
Genome of Two Parasites
A total of 300 pika (125) and voles (175) were examined.
Overall, 7.3% were infected with cysticerci (see Supplementary
Table S1 for more details). Amplification and sequencing of a
fragment of the cox1 gene using the conserved JB3 and JB4.5
primers (Bowles et al., 1992) confirmed their identity. From both
study sites, cysticerci from pikas were the same new species,
named T. caixuepengi larva, meanwhile, the cysticerci from voles
were morphologically different from T. caixuepengi larva and
were named T. tianguangfui larva. Their complete mt genomes
were sequenced and spliced, and were 13,747 bp (GenBank
ID: MT882036) and 13,522 bp (GenBank ID: MT882037) in
length, respectively. Both contain 2 rRNA genes [the small (rrnS)
and large (rrnL) subunits of rRNA], 12 protein-encoding genes
(atp6, cytb, nad4L, cox1-3, and nad1-6) and 22 tRNA genes,
but lack atp8 gene, which are typical of cestode mt genomes
(Figure 1). The inferred gene boundaries and their lengths are
shown in Table 1.

In accordance with other mtDNAs of flatworms sequenced to
date (Jia et al., 2010; Liu et al., 2011), the nucleotide compositions
are mostly biased toward T, while least favored toward C. AT-
richness of mtDNAs in T. caixuepengi and T. tianguangfui are
71.96% (45.00% T, 26.97% A, 19.17% G, 8.87% C) and 73.48%
(46.35% T, 27.13% A, 18.61% G, 7.91% C), respectively.

Flatworms use an unusual mt code to exert protein
translation (Nakao et al., 2000; Telford et al., 2000). GTG
was used as an alternative initiation codon in cox3 and nad3
genes of T. caixuepengi and nad5 gene of T. tianguangfui.
Furthermore, the codon ATT was inferred as a more unusual
start codon of atp6 gene in T. caixuepengi. The termination
codon was mostly TAA, and the ending codon TGA was
deprecated (Table 1).

Morphological Description
By gross observation and measurement, T. caixuepengi larva
was translucent and stripped, 33-36 mm long, and contains
cystic fluid (Supplementary Figures S1A,B); T. tianguangfui
larva on the other hand was opaque, bean-shaped and about
4–10 mm in length (Supplementary Figures S1C,D). Scanning
electron microscope observation of their scoleces showed that
T. caixuepengi larva had four suckers, 16 large hooks and 18 small
hooks, the average length of which was about 250 and 100 µm,
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FIGURE 1 | The diagram of complete mitochondrial genome of Taenia tianguangfui (A) and Taenia caixuepengi (B). The protein-encoding genes are depicted in
plum, the tRNAs are depicted in green, the rRNAs are depicted in light green and the non-coding mitochondrial regions (NCRs including LNR and SNR) are depicted
in gray. The inferred gene boundaries of them are shown in Table 1.

respectively (Figures 2A–C); T. tianguangfui larva also had four
suction cups, and 31–33 large and small hooks of about 100 and
80 µm in length, respectively (Figures 2D–F).

Phylogenetic Relationships
Phylogenies inferred from both tandem amino acid sequences
and DNA sequences of the 12 mt protein-encoding genes
demonstrated T. caixuepengi in a monophyletic group
with T. pisiformis and T. laticollis, with the closest genetic
relative being T. pisiformis; T. tianguangfui was also found
in a monophyletic group with T. crassiceps, T. twitchelli,
and T. martis, and has a distant genetic relationship with
T. caixuepengi (Figure 3).

Divergence Times Analyses
The divergence time analysis based on mitochondrial protein-
coding genes suggested that T. saginata and T. asiatica should
diverge at 1.10 Mya (0.80–1.41, 95% highest probability density)
in the early Pleistocene period, which is consistent with the
previous reports based on genomic genes (Michelet and Dauga,
2012; Wang et al., 2016); T. caixuepengi should diverge from
T. pisiformis 5.49 Mya (3.87–7.19, 95% highest probability
density) in the initial Pliocene period, which is close to the
divergence time between E. shiquicus and E. multilocularis (4.12
Mya, 2.81–5.32, 95% highest probability density); T. tianguangfui
on the other hand, originated 13.11 Mya (9.36–17.18, 95% highest
probability density) in the middle Miocene period, which was
earlier than the differentiation of its intermediate host, N. fuscus
(4.98 Mya, 4.08–5.90, 95% highest probability density) (Figure 4
and Supplementary Figure S2).

DISCUSSION

The discovery of these two new parasites, T. caixuepengi and
T. tianguangfui, highlights the species diversity of the family
Taeniide, and further proved the true biodiversity characteristic
of the QTP. Given the lack of human intervention and the rich
diversity of wild host species, the present understanding of the
species diversity within this family in QTP is apparently just a
tip of the iceberg. This is not surprising, given the appreciable
cryptic diversity so far uncovered within the taeniid family in
Africa and northern latitudes (Lavikainen et al., 2011, 2013;
Terefe et al., 2014).

Morphological features traditionally used to distinguish the
cysticerci, including the number of hooks, the length of large
hooks and small hooks (Loos-Frank, 2000), are insufficient in
inferring evolutionary lineages. This is because homoplasy of
morphological characters can represent a serious obstacle in
taxonomic investigation (Scholz et al., 2020). Here the whole mt
genomes of both species were sequenced, and clearly different
from all available Taenia mt genome sequences, verifying the
validity of their species status. Their mt genomes were similar
as those of other sequenced tapeworms with respect to length,
nucleotide bias, and their tRNA, rRNA and protein-encoding
genes composition (Figure 1; Le et al., 2000; Nakao et al.,
2003; Jeon et al., 2005; Jeon et al., 2007). Furthermore, the
codon ATT was inferred as a more unusual start codon for
the atp6 gene of T. caixuepengi (Table 1), which is a common
start codon used by Caenorhabditis elegans and Ascaris suum
(Okimoto et al., 1990).

T. caixuepengi larva is so far undetected in other animals,
except plateau pika (O. curzoniae), meanwhile, no other
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TABLE 1 | Positions and gene lengths in the mitochondrial genomes of Taenia tianguangfui (Tt), T. caixuepengi (Tc).

Genes Positions (length, bp) Initiation and termination codons Anticodons

Tt Tc Tt Tc

trnG 1–65 (65) 1–68 (68) TCC

cox3 68–715 (648) 72–722 (651) ATG/TAG GTG/TAA

trnH 724–792 (69) 716–786 (71) GTG

Cytb 796–1,863 (1,068) 790–1,857 (1,068) ATG/TAG ATG/TAA

nad4L 1,865–2,125 (261) 1,857–2,117 (261) ATG/TAG ATG/TAA

nad4 2,092–3,348 (1,257) 2,084–3,337 (1,254) ATG/TAG ATG/TAA

trnQ 3,349–3,409 (61) 3,338–3,400 (63) TTG

trnF 3,409–3,472 (64) 3,400–3,463 (64) GAA

trnM 3,469–3,534 (66) 3,461–3,524 (64) CAT

atp6 3,535–4,053 (519) 3,531–4,043 (513) ATG/TAG ATT/TAA

nad2 4,058–4,930 (873) 4,045–4,917 (873) ATG/TAA ATG/TAG

trnV 4,947–5,011 (65) 4,922–4,983 (62) TAC

trnA 5,012–5,075 (64) 4,996–5,058 (63) TGC

trnD 5,085–5,149 (65) 5,067–5,128 (62) GTC

nad1 5,154–6,047 (894) 5,134–6,030 (897) ATG/TAA ATG/TAA

trnN 6,064–6,131 (68) 6,044–6,109 (66) GTT

trnP 6,141–6,205 (65) 6,118–6,180 (63) TGG

trnI 6,205–6,267 (63) 6,181–6,244 (64) GAT

trnK 6,273–6,338 (66) 6,246–6,309 (64) CTT

nad3 6,342–6,689 (348) 6,310–6,657 (348) ATG/TAA GTG/TAA

trnS 6,689–6,747 (59) 6,656–6,716 (61) GCT

trnW 6,755–6,820 (66) 6,716–6,778 (63) TCA

cox1 6,824–8,443 (1,620) 6,782–8,401 (1,620) ATG/TAA ATG/TAA

trnT 8,429–8,495 (67) 8,387–8,451 (65) TGT

rrnL 8,496–9,468 (973) 8,452–9,412 (961)

trnC 9,469–9,529 (61) 9,418–9,475 (58) GCA

rrnS 9,530–10,266 (737) 9,476–10,200 (725)

cox2 10,267–10,844 (578) 10,201–10,785 (585) ATG/TAA ATG/TAA

trnE 10,853–10,920 (68) 10,787–10,853 (67) TTC

nad6 10,923–11,375 (453) 10,855–11,307 (453) ATG/TAA ATG/TAG

trnY 11,379–11,441 (63) 11,314–11,376 (63) GTA

SNR 11,442–11,508 (67) 11,377–11,441 (65)

trnL 11,509–11,574 (66) 11,443–11,512 (70) TAG

trnS 11,604–11,661 (58) 11,550–11,609 (60) TGA

trnL 11,673–11,738 (66) 11,612–11,680 (69) TAA

trnR 11,744–11,802 (59) 11,680–11,734 (55) TCG

nad5 11,803–13,371 (1,569) 11,729–13,303 (1,575) GTG/TAA ATG/TAA

LNR 13,372–13,522 (151) 13,304–13,747 (444)

cysticerci have been found in plateau pika hitherto. Lagomorph
is the intermediate host of T. pisiformis and T. laticollis
(Valdmann et al., 2004; Hallal-Calleros et al., 2016). Although
similar in appearance and size to the vole, the plateau
pika belongs to Lagomorpha (Smith et al., 2019). The close
phylogenetic relatedness of these three Taenia species (Figure 3)
is further highlighted by their high preference for lagomorphs
as an intermediate host. Based on the divergence time and
phylogeographic analyses, the extent pikas (genus Ochotona)
originated on the QTP in the middle Miocene, ∼14 Mya (Wang
et al., 2020). However, the rapid speciation of many Ochotona
species, including O. curzoniae, occurred during the late Miocene

and early Pliocene period (Wang et al., 2020), which almost
coincided with the rapid uplift of the QTP (An et al., 2006; Li
et al., 2007; Shi et al., 2015). Coincidentally, the evolutionary
divergence time analysis in this study also suggests that both
T. caixuepengi and E. shiquicus had evolved in the early Pliocene
epoch, about 5.49 and 4.12 Mya, respectively (Figure 4). These
almost synchronous events may not have happened by chance.
Large-scale diversification of species is often provoked by abiotic
factors, such as changes in the living environment and food
supply (Benton, 2009). The uplift of the QTP from south to
north provided climatic opportunities and food supply for the
diversification of cold temperature-preferring pikas but led to
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FIGURE 2 | Scanning electron micrographs of scoleces and line drawing of hooks of Taenia tianguangfui larva (A–C) and Taenia caixuepengi larva (D–F).

FIGURE 3 | The phylogenetic relationship of Taenia tianguangfui and Taenia caixuepengi, with other 32 tapeworm species inferred from a Bayesian method based
on the concatenated amino acid (A) and CDS alignments (B) of mitochondrial 12 protein-encoding genes. The species’ name corresponding to the GenBank ID is
given in the Supplementary Table S2. The Echinococcus spp. are depicted in red, the Taenia spp. are depicted in blue, the Hydatigera spp. are depicted in yellow
and the only one Versteria species, Versteria mustelae, is depicted in green. The Schistosoma japonicum depicted in black was chosen as outgroup.

the extinction of other warm temperature-preferring rodents
(Wang et al., 2020).

For most free-living organisms, speciation is usually the result
of genetic drift or adaptive differentiation between geographically
separate populations (Turelli et al., 2001). For parasites, however,
it has long been thought that sympatric speciation of parasites

is common, mediated by ecological isolation caused by host
switching within the same geographic region (de Meeûs et al.,
1998; Paul, 2002; Huyse et al., 2005). Therefore, we speculate
that T. pisiformis in the QTP (Li et al., 2013) may share a
common ancestor with T. caixuepengi; the split of the pika
population caused the ecological isolation between their ancestral
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FIGURE 4 | Divergence times construction for Taenia tianguangfui and Taenia caixuepengi based on the concatenated CDS alignments of mitochondrial 12
protein-encoding genes. The number at the node represents the divergence time between two lineages. The blue bar represents interval of 95% highest probability
density, and the number in brackets represents the detailed time interval of 95% highest probability density of divergence time between two lineages. A time scale
shows the extent of the Miocene, Pliocene and Pleistocene period.

populations, which further resulted in the lack of gene flow
between them due to intermediate host switching, and the
eventual formation of two different species. It can also be
speculated that the differentiation pattern between E. shiquicus
and E. multilocularis is similar as that of T. caixuepengi and
T. pisiformis.

Our evolutionary divergence time analysis suggests that the
speciation of T. tianguangfui occurred in the middle Miocene
period (∼13.11 Mya) (Figure 4) when the QTP was undergoing
a slow uplift period (An et al., 2006). The timing of the
divergence ofN. fuscus evolved from∼4.98 Mya (Supplementary
Figure S2), which also coincided with the rapid uplift of the
QTP (An et al., 2006; Li et al., 2007; Shi et al., 2015). As the
species spread in the QTP and Himalaya (Pradhan et al., 2019),
the evolutionary origin of the Neodon spp., like the plateau
pika, may well be due to changes in climate and food supply
caused by the uplift of the QTP and Himalaya. The speciation
of T. tianguangfui was earlier than that of its intermediate
host, indicating that T. tianguangfui did not differentiate into
a new Taenia species in order to adapt to the intermediate
host, rather, it suggests that T. tianguangfui larva might not
be limited to N. fuscus. Taenia crassiceps and T. martis have
similar intermediate hosts range, infecting a variety of rodents,
even humans and other primates (Deplazes et al., 2019). Given
the close relationship between T. tianguangfui, T. crassiceps, and
T. martis, it also cannot be excluded that T. tianguangfui may be
infective to a variety of rodents other than N. fuscus, as well as

humans and other primates. So far, a clear understanding of their
evolutionary origin from these clues is elusive, thus, more data
and investigation are needed to provide further insight.

Adult worms of the T. tianguangfui and T. caixuepengi
have not yet been collected due to the difficulty in sampling
endangered or protected carnivores. However, nucleic acid from
feces of wolves, foxes and dogs found at the sampling sites
were examined, so far, no positive feces samples for these two
species have been found. Plateau pikas and voles are the primary
food source for wild canids across the QTP. Tibetan foxes are
the obligate predator of plateau pikas, as their remains (plateau
pikas) are often encountered in 99% of their feces (Smith et al.,
2019). Wild canids, especially the red fox and the Tibetan fox,
may well be important definitive hosts for T. tianguangfui and
T. caixuepengi.

Adult or larval samples of tapeworm are easily damaged in
the process of collection, freeze-thaw and processing, and the
morphological features are mostly unidentifiable (Lavikainen
et al., 2013). While mt genome data alone may not fully answer
the scientific questions surrounding their evolutionary origins,
it is the most cost-effective and accurate method. Recently,
although laborious and costly, there have been an increasing
whole genome sequencing and analyses for many tapeworm
species. This kind of investigation, not only is it important
to provide insights into their host adaptation and switching,
evolution mechanisms through gene groups amplification, hosts-
parasites interaction, immune regulation and nutrition, it also
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provides urgently needed resources for the identification of drug
target and diagnostic molecular markers (Wang et al., 2016;
International Helminth and Genomes Consortium, 2019). In
the future, a lot of genomic data will be needed to study this
fascinating group.

In conclusion, the mitochondrial genome sequence data
adequately confirm the validity of the two new Taenia species
named T. caixuepengi and T. tianguangfui, we have previously
reported. The phylogenetic trees and divergence times analyses
suggest that T. caixuepengi evolve from its closest relative,
T. pisiformis, in the initial Pliocene period (∼5.49 Mya), due
to the intermediate host switching caused by the rapid uplift of
the QTP; T. tianguangfui is probably parasitic in a wide variety
of rodents, and share a common ancestor with T. crassiceps,
T. twitchelli and T. martis, splitting in middle Miocene period
(∼13.11 Mya).
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