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Abstract: A flexible and bioactive scaffold for adipose tissue engineering was fabricated and evalu-
ated by dual nozzle three-dimensional printing. A highly elastic poly (L-lactide-co-ε-caprolactone)
(PLCL) copolymer, which acted as the main scaffolding, and human adipose tissue derived decellu-
larized extracellular matrix (dECM) hydrogels were used as the printing inks to form the scaffolds.
To prepare the three-dimensional (3D) scaffolds, the PLCL co-polymer was printed with a hot melting
extruder system while retaining its physical character, similar to adipose tissue, which is beneficial
for regeneration. Moreover, to promote adipogenic differentiation and angiogenesis, adipose tissue-
derived dECM was used. To optimize the printability of the hydrogel inks, a mixture of collagen
type I and dECM hydrogels was used. Furthermore, we examined the adipose tissue formation and
angiogenesis of the PLCL/dECM complex scaffold. From in vivo experiments, it was observed that
the matured adipose-like tissue structures were abundant, and the number of matured capillaries was
remarkably higher in the hydrogel–PLCL group than in the PLCL-only group. Moreover, a higher
expression of M2 macrophages, which are known to be involved in the remodeling and regeneration
of tissues, was detected in the hydrogel–PLCL group by immunofluorescence analysis. Based on
these results, we suggest that our PLCL/dECM fabricated by a dual 3D printing system will be useful
for the treatment of large volume fat tissue regeneration.

Keywords: 3d printing; PLCL; decellularization; angiogenesis; dECM hydrogel; adipose tissue re-
generation

1. Introduction

Development of enhanced vascularized adipose tissue is a prospective issue for not
only adipose tissue but also soft tissue engineering in modern healthcare [1–4]. Adipose tis-
sue engineering has been studied and is required in soft tissue deficiency, such as traumatic
injuries, extensive burn defects, innate defects, and defects after cancer treatments. Most
of all, as the number of patients diagnosed with breast cancer increases, mammotomies
or lumpectomies are performed more often. Therefore, interest has increased in breast
regeneration to improve the quality of life of cancer patients. Adipose tissue is the largest
and ubiquitous tissue in the body; thus, unlike other organs or tissues, it can easily be
acquired [5–7]. Although autologous fat grafts have been regarded as an ideal way to
augment soft tissue lost because of fewer immunological rejections and complications,
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their problem is that the engrafted fat has a poor volume maintenance rate after surgery,
with a 40–60% volume loss because of ineffective integration with the mature adipose
tissue [8–11]. In the case of small defects, it may be efficient; however, not for large defects.

Various trials for adipose tissue regeneration have been conducted [10]. Many studies
with diverse materials have been performed to replace autografting, but the results were
not satisfactory [12,13]. Tissue engineering with scaffolds has potential for developing
and reconstructing adipose tissue. Scaffolds are one of fundamental components [11,14],
which contribute significantly to tissue engineering. A scaffold primarily supports a three-
dimensional (3D) structure implanted into host tissue [8]. To fabricate a 3D-constructed
scaffold, three-dimensional (3D) printing technology has been shown to be a promising
method due to its various abilities, including the creation of complex constructs and their
precise placement as well as a wide permissible range for materials. For effective tissue
engineering, a scaffold must be easy to handle, biocompatible, and biodegradable to help
cells to adhere, function, migrate, and proliferate well and to prevent inflammation [15].
In addition, the scaffold should have similar mechanical properties, especially the Young’s
modulus, as the original region into which it is to be implanted to avoid stress shielding and
implantation failure [16,17]. Synthetic and natural polymers such as PLA, PCL, collagen,
and fibrin have been used in adipose tissue engineering; however, mismatched mechanical
properties or unmatched degradation rates have been thresholds to overcome [18,19].
Poly (L-lactide-co-ε-caprolactone) (PLCL) is a co-polymer synthesized with L-lactide and
ε-caprolactone through ring-opening polymerization. The mechanical properties of the
PLCL co-polymer can be controlled by changing the monomer component [20]. It has
flexible, stretchable, and elastic properties and degrades slowly, which means that it not
only has more suitable properties than other synthetic polymers for soft tissue engineering,
but also overcomes the limitations of native hydrogels and provides a three-dimensional
spatial structure [21].

In regeneration for large defects, an efficient blood supply is absolutely necessary
to deliver oxygen and nutrients and to remove waste products. Fat injection can be a
good solution for a small defect; however, 3D-vascularized engineered tissue is a necessary
challenge for the regeneration of large-sized adipose tissue with implantable constructs [22].
Thick implants, especially the central part, require vascularization to be used in vivo [1];
moreover, O2 is diffused less than 100–200 µm through tissue [23]. There are various strate-
gies to enhance vascularization in tissue development, such as the pre-vascularization
technique, growth factor-based technique, cell-based technique, and scaffold- and material-
based techniques. Medical cost, initial angiogenesis, and functionality of the newly formed
blood vessels have been considered as important conditions for the recovery of a criti-
cal size defect. Various strategies have been tried to develop vascularized tissue; how-
ever, they still have problems in forming functional vascularized tissues or organs [24].
Most cells are generally found within 100–200 µm of the nearest capillary for survival,
and the maximum distance between capillaries is 200 µm. For these reasons, a highly
developed neo-vascularized system of large- and micro-size blood vessels is required for
tissue engineering [25–29].

The extracellular matrix (ECM) is a widely used material for scaffolds because it is
composed of functional proteins, collagen, fibronectin, glycosaminoglycans (GAGs) and
proteoglycans, which means that it is a favorable condition, providing a suitable microen-
vironment for cells and tissues to maintain their morphology and to differentiate [30].
The decellularization procedure is the protocol that removes the cellular components
from the organs or tissues while maintaining the ECM components [31]. A complex mix-
ture of decellularized ECM (dECM) is usually made into mixed hydrogels with collagen,
hyaluronic acid, and fibroin for enhanced tissue regeneration [32]. In this regard, adipose
tissue-derived dECM (adECM) is a potential material for adipose tissue regeneration be-
cause it has been reported that the adECM promotes regeneration and repair by providing
a supportive microenvironment for adipogenic differentiation of induced cells [6,33] and
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by enhancing angiogenesis because it has growth factors related to neovascularization,
such as VEGF [7,34].

The aim of this study was to develop a vascularized adipose tissue with a PLCL/dECM
scaffold with the capability of cell recruitment and growth by providing the proper me-
chanical properties and microenvironment. The main focus of this study was to prepare a
construct using the dual nozzle 3D printing technique with an elastic synthetic polymer
and dECM hydrogel that induces angiogenesis and forms adipose tissue.

2. Results and Discussion
2.1. PLCL Characterization

For adipose tissue engineering, a flexible and bioactive scaffold was fabricated,
as shown in Figure 1. The PLCL co-polymer was synthesized by the ring-opening polymer-
ization of L-lactide and ε-caprolactone in the presence of Sn(Oct)2 with continuous stirring
under bulk conditions. A high conversion rate was expected under these conditions after
a predetermined optimum reaction time. The polymerizations were carried out at 150
◦C with a constant molar feed ratio (ƒL/ƒC) of 5:5. The distribution ratio of the PLCL
was calculated by taking the ratio between the integration area of the peaks of the lactyl
(Quartet, 5.160 ppm) and caproyl (Triplet, 4.051 ppm) units by 600 Hz 1H-NMR (Figure 2b).
The molar ratio of L-lactide and ε-caprolactone in the co-polymer was 4.8:5.2. The overall
yield of the PLCL co-polymer was 70%. Mn (number-average), Mw (weight-average),
and molecular weight distributions (polydispersity, PDI = Mw/Mn) were determined
by gel permeation chromatography (GPC) (Figure 2c). It was revealed that the Mn, Mw,
and PDI of the PLCL co-polymer were 1.50 × 105, 1.70 × 105, and 1.14, respectively [20].

2.2. Characterization of dECM Hydrogel for 3D Priting Ink

Various scaffolds, including the extracellular matrix (ECM), have been used for diverse
tissue or organ regeneration applications and medical strategies. The ECM produced by the
resident cells of each tissue and organ can serve as an ideal biomimetic microenvironment
for target cells which can accelerate tissue remodeling and healing in many organs [35–39].
Adipose tissue-derived ECM induces the migration and adipogenic differentiation of cells
to form fat [40].

To promote adipogenic differentiation and angiogenesis, adipose tissue-derived de-
cellularized extracellular matrix-based hydrogels were used to make a biocompatible ink.
To preserve the residual ECM and maximize the cellular material loss [41], we used a
modified method for adipose tissue with the physical, chemical, and enzymatic processes
described elsewhere resulting in the successful decellularization of the tissues [42]. The suc-
cessfully decellularized adECM powder was made into an ink with collagen type I for 3D
printing (Figure 3). The adECM powder was dissolved with 10 mg of pepsin in 3% (v/v)
acetic acid solution and neutralized with 10× Minimum Essential Media (MEM) and 5 N
NaOH solution to adjust pH. The collagen was diluted to 3 mg/mL and neutralized with
10× MEM media, distilled water, and 1 N NaOH solution. Finally, the 0.3% collagen and
3% adECM neutralized solutions were mixed well and incubated at 37 ◦C for 30 min for
gelation. Different adECM-to-collagen mass ratios were used, ranging from 1:3, 1:1, and 3:1
to determine the suitability of the ink in terms of printability and cell viability. Cell viability
results (Figure 4) showed that all composition ratios of the mixed hydrogel had no cell
toxicity and provided a proper environment for both adipose-derived stem cells (ADSCs)
and human umbilical vein endothelial cells (HUVECs), which was evident by the more
than 90% cell viability in each hydrogel. The collagen only, 1:1-adECM:collagen, and 1:3-
adECM:collagen had better cell viability results for ADSCs in that order, although there
was some difference, whereas the 1:3, 1:1, and 3:1-adECM:collagen had better cell viability
results for the HUVECs (Figure S1). The compressive moduli of the 1:3-adECM:collagen,
1:1-adECM:collagen, and 3:1-adECM:collagen were 16.95, 12.80, and 8.20 kPa, respectively.
In the printability test, the 1:3-adECM:collagen had the clearest printability compared to
the others; thus, the 1:3-adECM:collagen hydrogel was selected as the ink for fabrication
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of the 3D scaffold. The 3:1-adECM:collagen hydrogel tended to be too runny and would
spread during printing, so it was excluded from the printing test.

2.3. Characterization of the PLCL Scaffolds and the Hydrogel–PLCL Constructs

Porosity and pore size are significant factors for tissue regeneration. Proper scaf-
folds should have an excess of 50% porosity with at least a pore size of 100µM [43–45].
Porosity and pore size are directly related to their functionality for tissue engineering
applications. Moreover, openly porous and interconnected pores are essential conditions
for providing oxygen, nutrients, and cell migration, as well as proliferation for vasculariza-
tion and tissue formation. Generally, macropores are necessary to have enough space for
vascularization, cellular infiltration, tissue ingrowth, and waste product removal [46–51].

Figure 1. Schematic explanation of the research strategy. An elastic copolymer, PLCL, was syn-
thesized by ring-opening polymerization, and the hydrogel was made with decellularized adipose
tissue extracellular matrix (ECM) and collagen. Three-dimensional (3D) printing was performed with
the PLCL and hydrogel inks with a hot melting extruder and syringe, respectively. The 3D-printed
scaffolds were subcutaneously implanted in rats for the in vivo experiments.
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Figure 2. PLCL synthesis and characterization. (A) Scheme for the PLCL copolymer synthesis. (B) 600 MHz 1H-NMR
spectrum of the PLCL copolymer (50:50). (C) Gel permeation chromatography (GPC) curve of the PLCL copolymer.

Figure 3. Preparation scheme for the mixed hydrogel using adipose tissue-derived decellularized ECM (adECM) and
collagen. Human adipose tissue was decellularized by various processes and lyophilized. The resulting adECM was
crushed into a powder and made into a hydrogel ink with collagen type I for 3D printing. Gelation and 3D printing of the
hydrogel with various compositions of adECM and collagen was performed to optimize the printing condition. Bottom
picture shows the optimized hydrogel (adECM:Col = 1:3).
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Figure 4. (A) LIVE/DEAD assay. Cell viability test was performed to optimize the hydrogel composition. Adipose-
derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs) were seeded onto each of the hydrogels.
The confocal images above were obtained after a 7-day incubation of cells. Green and red fluorescence represents live
and dead cells, respectively. Scale bar = 50 µM. (B) Cell viability results of ADSCs. (C) Cell viability results of HUVEC.
(D) Compression modulus of each hydrogel. All samples were evaluated in triplicate, and the error bar indicates the SD.

Thus, the cellular behavior for new tissue reconstruction can be affected by the ma-
terial properties of the scaffold such as the porosity, pore size, and interconnectivity [52].
Angiogenesis means the growth of new blood vessels from vasculature existing originally;
thus, it is very important to supply oxygen and nutrients for tissue accumulation and
wound healing during long-term tissue regeneration [53]. Larger pore sizes of approx-
imately 160 to 270 µM facilitate angiogenesis throughout a scaffold, and many studies
have shown that average pore sizes larger than 300 µM provide a better condition for
vascularization [54–56].
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Figure 5 shows the Standard Triangle Language (STL) image files and printed scaffolds
by the 3D printer (In vivo premium, Rokit, Republic of Korea) for the PLCL-only scaffold
and hydrogel–PLCL construct, respectively. Each scaffold was printed quite accurately
when compared to the bird’s-eye view images of the STL files as intended. The PLCL
scaffolds were very flexible and stretchable, as shown in Figure S2. The morphology of the
PLCL-only scaffolds and the hydrogel–PLCL constructs were observed by scanning electron
microscopy (SEM). The open pores were highly interconnected and created surfaces on
both the outside and inside of the scaffolds. The interconnected pore channels in the PLCL-
only or hydrogel–PLCL scaffolds had a generally uniformed pore size of 920.75 ± 6.25 and
997.5 ± 122.1, while the mean rod thicknesses of the scaffolds were 404.47 ± 39.33 and
403.17 ± 41.83, respectively.

Figure 5. 3D-printed scaffold. Standard Triangle Language (STL) file image for 3D printing, macroscopic image, and SEM
images of the (A) PLCL-only scaffold and (B) Hydrogel–PLCL complex construct. The pore size and rod thickness
were measured.

To evaluate the ultimate tensile strength change of the PLCL polymer before and after
3D printing, the ultimate strength and its Young’s modulus were determined and plotted
as a graph (Figure 6). The PLCL copolymer is degraded by heat [57,58], which could
be confirmed by molecular weight changes and Young’s modulus loss after 3D print-
ing. The number (Mn) and average molecular weight (Mw) decreased from 150 kD to
114 kD and from 170 kD to 139 kD. The ultimate strength and Young’s modulus decreased
from 17.50 ± 5.43 MPa to 11.99 ± 2.52 MPa, and from 2.65 ± 0.39 MPa to 1.85 ± 0.64 MPa.
The compressive moduli of the PCL and PLCL were measured to confirm that their physical
properties matched those of human adipose tissue, to avoid stress shielding and implanta-
tion failure. The compressive moduli of the scaffolds were approximately 3.6 MPa for the
PCL, 122 kPa for the PLCL, and 40 kPa for adipose tissue. Tissue engineering scaffolds are
required to have both synthetic materials with adjustable mechanical properties and natural
materials with biomimetic properties. Synthetic polymers with a well-defined structure
and without immunological problems such as PLA, PCL, and PLGA are widely used as a
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biomedical scaffold which has a crucial role in tissue engineering [59]. Among them, PCL is
a representative material of tissue engineering [59–61]. PCL scaffolds used to be fabricated
for soft tissue engineering [62,63]; however, as shown in this result, PCL has a very high
modulus compared to native tissue. Meanwhile, in the case of the PLCL scaffold, it has
a modulus value much closer to adipose tissue than that of the PCL scaffold. This result
demonstrates that PLCL has a physical property that is more similar to adipose tissue,
which is beneficial for regeneration, compared to the PCL.

Figure 6. Evaluation of the molecular weight changes and mechanical properties. (A) The number (Mn, left) and weight
(Mw, right) average molecular weight changes of the PLCL copolymer after 3D printing. Analysis of the mechanical
properties of the PLCL copolymer before and after 3D printing, including the (B) ultimate strength (left) and Young’s
modulus (right). (C) Compressive modulus value of the PCL, PLCL scaffolds and adipose tissue was evaluate. All samples
were evaluated in triplicate, and the error bar indicates SD (* p < 0.01).
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2.4. In Vivo Studies

All animals for the in vivo experiments were treated in accordance with the standard
operating protocols of the Institutional Animal Care and Use Committee at the Korea
Institute of Science and Technology (KIST). All protocols were approved by the Institutional
Review Board of Animal Experiments at KIST (Approval Number Kist-2019-009). Four and
eight weeks after subcutaneous implantation, the scaffolds were harvested from the rats.
Figure 7 shows the macroscopic view of the implanted scaffolds by each time point and
group. Plenty more blood vessels were observed in the hydrogel–PLCL scaffold group
than in the PLCL-only group.

Figure 7. In vivo experiment. (A) Schematic image of the in vivo experiments. (B) Macroscopic images of the PLCL-only
scaffolds and hydrogel–PLCL complex constructs after 4 and 8 weeks, respectively.

Evaluation for the molecular weight change of the PLCL polymer in vivo was per-
formed for eight weeks. The results show that the tendency for the changes in the number
(Mn) and average molecular weights (Mw) gradually decreased or increased over the entire
experiment period. The PLCL-only scaffolds had Mn decreases of 57.58% and 58.12%,
and Mw increases of 200.67% and 219.03% at four and eight weeks after the subcutaneous
implants, respectively. The hydrogel–PLCL constructs had larger Mn decreases of 60.37%
and 83.41% and Mw increases of 153.48% and 94.46% at four and eight weeks, respectively
(Figure 8). The result of increasing Mw can be interpreted as the short chains were unsta-
ble and degraded rapidly compared to long chains. The polydispersity index (Mw/Mn)
increased gradually up to eight weeks post-implantation, indicating cleaved chains from



Int. J. Mol. Sci. 2021, 22, 2886 10 of 22

the polymer. The PLCL has both crystalline and amorphous phases; the amorphous
phase is more easily attacked by water compared to the crystalline regions [64]. Therefore,
the changes in the average molecular weight of both the scaffolds could be explained by
the following reason: the amorphous phases composed of CL, which is degraded faster
than the crystalline regions composed of LA, were degraded in an earlier stage in the body.

Figure 8. The number (Mn), average molecular weight (Mw), and polydispersity (PDI) value changes of the scaffolds from
the in vivo degradation study.

2.5. Histological Analysis with Hematoxylin and Eosin (H&E) and Masson’s Trichrome (MT)
Staining

For qualitative analysis, explanted scaffolds were made into 5 µM slides and stained
with hematoxylin and eosin (H&E) and Masson’s Trichrome (MT) for histological analysis.
Figure 9 shows the results of the staining of each group for each time point. As shown in
the figure, in the fourth week, both groups had little fat accumulation and tissue formation.
However, the difference is that tissue formation only occurred on the outside edge in the
PLCL-only group, whereas the tissue was coming into and moving out of the scaffold
in the hydrogel–PLCL group. In addition, fat accumulation and tissue formation were
observed more in the center of the hydrogel–PLCL scaffold compared to the PLCL-only
group, which means the hydrogel degradation behavior enhanced tissue formation [65,66].
Red blood cells and small blood vessels were observed in both groups. More significant
differences between the two groups were observed at week 8. In the case of the PLCL-only
group, a large amount of fat accumulation was observed on the outside of the scaffolds.
Red blood cells, veins, and arteries were also found, but not in the center of the scaffold.
There was no significant tissue or vessel formation in the center at eight weeks compared to
four weeks. On the other hand, in the hydrogel–PLCL group, there were obvious differences
such as the accumulation of fat, tissue formation, and vascularization. There was much
tissue and fat coming into the scaffold as well as moving out; especially, there was plenty
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of adipose tissue with blood vessels in the center of the scaffold. A number of mature veins
and arteries were found outside and inside of the scaffold, as well as lymphatic vessels.
Lymphatic vessels are crucial for the recirculation of tissue fluid balance and cells that enter
tissues from blood vessels [67]. An amount of sulfated GAG deposition was also observed
in the hydrogel–PLCL group by the blue color of Masson’s trichrome, and it was found
that the blood vessels, GAG, and tissue were formed between the scaffold both outside and
inside of the scaffold. These results show that the hydrogel–PLCL constructs enhanced the
tissue formation and promoted angiogenesis and vascularization.

Figure 9. Histological analysis of the scaffolds after specific time points. The specimens were stained
with hematoxylin and eosin (H&E) and Masson’s trichrome (MT). Scale bar = 50 µm.

2.6. Macrophage Infiltration Analysis

Immunofluorescence staining with CD68 and CD206 was performed to investigate
macrophage infiltration, as shown in Figure 10a. CD68 and CD206 were stained with a red
and green color, respectively. In addition, DAPI was stained as a blue color. CD68 is a pan-
monocyte/macrophage marker, and CD206 is an M2 macrophage marker. Macrophages
are an important factor to detect early inflammatory responses in tissue engineering [68,69].
Macrophage differentiation is affected by the cytokine environment. M1 macrophages
produce the pro-inflammatory cytokines, phagocytize microbes, and induce an immune
response. These factors predominantly have an effect in inflammation, tissue injuries,
and apoptosis [70–72]. Activated M2 macrophages are alternatively associated with tissue
remodeling and angiogenesis by downregulating inflammation and eliminating tissue
wastes and apoptotic bodies. Additionally, they also produce polyamines to induce colla-
gen accumulation [73–76]. Significant amounts of CD68+ and CD206+ cells were found
in the hydrogel–PLCL constructs. For quantitative analysis, the macrophage infiltration
area (µm2) for the CD68+ and CD206+ cells were calculated to identify the M1 and M2
macrophages, and the area ratio of CD206+/CD68+ cells (µm2/µm2) was also calcu-
lated. The calculated values were plotted as a graph (Figure 10b). The area ratio of the
CD206+/68+ cells (µm2/µm2) for the PLCL-only group was 0.61 ± 0.29 and 0.52 ± 0.16
for four weeks and eight weeks, respectively, and that of the hydrogel–PLCL group was
0.82 ± 0.21 and 0.80 ± 0.16, respectively. Intriguingly, the ratio of the CD206+/CD68+
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cells was significantly higher in the hydrogel–PLCL group compared with that in the
PLCL-only group, which might reflect the macrophages in the former moving toward the
tissue regeneration state [76,77].

Figure 10. (A) Immunofluorescence images stained with CD68 and CD206 for investigation of
macrophage infiltration. The images were obtained by confocal microscopy after 4 and 8 weeks
in vivo (* p < 0.01). Scale bar = 50 µm. (B) Quantitative analysis of the macrophage infiltration area
for identification of the M1 and M2 macrophages.



Int. J. Mol. Sci. 2021, 22, 2886 13 of 22

2.7. Analysis of Angiogenesis and Vascularization in the Scaffolds

To confirm the endothelial lineage differentiation in the hydrogel–PLCL construct, the
expression of von Willebrand factor (vWF) and α-smooth muscle actin (α-SMA) was stud-
ied by immunofluorescent staining at four and eight weeks after implantation. vWF and
α-SMA are well-known specific endothelial markers. vWF is used to detect panendothelial
cells, and α-SMA targets pericytes and mature vessels surrounded with actin-positive
vascular smooth cells. vWF staining is observed for both immature and mature ves-
sels; however, α-SMA is observed for mature vessels [78–81]. The confocal image in
Figure 11 shows that the formation of matured blood vessels gradually increased in the
hydrogel–PLCL group from the fourth to the eighth week. Early angiogenesis at four
weeks occurred in both the PLCL-only scaffolds and hydrogel–PLCL constructs. vWF and
α-SMA densities of each scaffold were analyzed by immunofluorescence staining. A few
small, immature vessels were detected. However, there was no significant formation
of mature capillaries in the PLCL-only group at eight weeks, while matured capillaries
did form in the hydrogel–PLCL constructs (Figure S3). The density of the capillaries
increased from 4218.7 ± 1787.1 µm2 to 4400.1 ± 696.8 µm2, and 6156.6 ± 2357.4 µm2 to
14736.3 ± 1955.0 µm2 for the PLCL-only scaffolds and the hydrogel–PLCL constructs, re-
spectively. Moreover, the arterial density detected by α-SMA staining was also higher in
the hydrogel–PLCL constructs at 7603.2 ± 2109.4 µm2 compared to the PLCL-only scaf-
folds at 2913.7 ± 1620.6 µm2. The immunofluorescent staining showed that the adECM
hydrogel in the hydrogel–PLCL constructs promoted the recruitment of endothelial cells
and their differentiation.

2.8. Quantitative Analysis by Real-Time Polymerase Chain Reaction

Figure 12 shows the gene expression data at 8 weeks for both scaffolds. The PLCL-
only scaffold had a higher gene expression for peroxisome proliferator-activated receptor
γ (PPARγ); however, there was no significant statistical difference between the groups.
In contrast, C/EBPαwas expressed much higher in the hydrogel–PLCL construct group
compared to the PLCL-only group. The relative gene expression analysis of lipoprotein lipase
(LPL), PPARγ, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and CCAAT/enhancer
binding protein β (C/EBPα) was performed at eight weeks after implantation. Markers
related to adipogenic differentiation were identified at the mRNA level, and the expression
levels of all genes were normalized relative to that of the GAPDH level. Lipoprotein lipase
(LPL) is a very early marker of adipogenic differentiation induced by cell–cell contact.
Peroxisome proliferator-activated receptor γ (PPARγ) is mediated by CCAAT/enhancer
binding protein β (C/EBPβ), and C/EBPα is also mediated by C/EBPβ. PPARγ is cross-
regulated with C/EBPβ, but C/EBPα cooperates with PPARγ, inducing the transcription of
adipocyte genes which leads to the creation and maintenance of the adipocyte phenotype.
C/EBPα is known as a terminal differentiation marker and works in a synergistic manner
with PPARγ. Therefore, LPL is expressed at a very early stage of adipogenic differentiation,
and PPARγ is gradually expressed in the intermediate stage; then, C/EBPα has a critical
role in the late stage of differentiation [82]. As shown by the results in this study, the PLCL-
only group was in the intermediate stage of adipogenic differentiation. Furthermore,
it means that the hydrogel–PLCL construct group was favorable for the promotion of
adipose tissue regeneration by leading to full adipogenic lineage differentiation.
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Figure 11. Analysis of vessel formation in the specimens after 4 and 8 weeks in vivo. (A) Immunoflu-
orescence image of the PLCL-only group and hydrogel–PLCL complex construct 4 and 8 weeks after
subcutaneous implantation. (B) von Willebrand factor (vWF) and α-smooth muscle actin (α-SMA)
density of the specimens 4 and 8 weeks after subcutaneous implantation (stained area µm2/total
area mm2) (* p < 0.01, ** p < 0.0001). Scale bar = 50 µm.

Figure 12. Analysis of quantitative real-time polymerase chain reaction results. Relative mRNA expression of LPL, PPARγ
and C/EBPα in the PLCL-only scaffolds and the hydrogel–PLCL complex constructs (* p < 0.01).
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3. Materials and Methods
3.1. Materials

L-Lactide (Purac Biochem, Gorinchem, Netherlands) and ε-Caprolactone (Sigma
Aldrich, St. Louis, MO, USA) were used as received. As an initiator, 1-dodecanol (Sigma
Aldrich, St. Louis, MO, USA) was used, and tin (II) 2-ethylhexanoate (Sigma Aldrich,
St. Louis, MO, USA) was used as a catalyst. All chemicals and solvents were of analytical
grade and were used as received.

3.2. Synthesis and Characterization of PLCL

PLCL co-polymer was synthesized by the ring-opening polymerization of L-lactide
(100 mmol) and ε-caprolactone (100 mmol), which was catalyzed by Sn(Oct)2, as described
elsewhere [20,83]. Briefly, the reaction mixture containing the monomers, catalyst and
initiator diluted in dried toluene was poured into a 50 mL glass ampoule. The ampoule
was completely sealed under a vacuum after purging three times with nitrogen and then
polymerized at 150 ◦C for 24 h (Figure 2a). After the reaction, the product was dissolved
in chloroform and filtered through an 8 µm pore filter paper. Then, the polymer was
precipitated into an excess of methanol, filtered, and dried under a vacuum over 3 days.

To identify the distribution ratio of the PLCL copolymer, nuclear magnetic reso-
nance (NMR) spectroscopy was performed on a 600 MHz 1H-NMR spectrometer (Agilent,
Santa Clara, CA, USA) with deuterated chloroform (CDCl3, Aldrich, St. Louis, MO, USA)
solutions. Spectra were obtained with 1% (w/v) solutions in chloroform with 0.03% (v/v)
tetramethylsilane as the standard. The distribution ratio was calculated from the NMR
spectra. The number and weight of the molecular weights were determined using gel
permeation chromatography (GPC, Viscotek TDA 302, Malvern Instruments Ltd, Worces-
tershire, United Kingdom) calibrated with polystyrene. Chloroform was used as a mobile
phase at a flow rate of 1.0 mL/min.

3.3. Preparation of the Decellularized Extracellular Matrix (dECM)-Based Ink

The decellularization process for adipose tissue was performed by following the
method published elsewhere with a small modification [42]. Adipose tissue was obtained
from Seoul National University. The adipose tissue was chopped into fine pieces first
and decellularized in 0.5% sodium dodecyl sulfate (SDS) solution for 48 h. The 0.5% SDS
solution was replaced every 12 h. After that, the tissue was removed from the 0.5% SDS
solution and treated with isopropyl alcohol to eliminate the lipids for 48 h, changing the
solution every 12 h. The decellularized and dilapidated tissues were then washed with PBS
and treated with a solution of 0.1% peracetic acid in 4% ethanol for 4 h. Finally, the tissues
were washed with PBS for 72 h and lyophilized. The lyophilized tissues were crushed into
a fine powder with a cryomiller (FreezerMill, SPEX Sample Prep., Metuchen, NJ, USA).
The adECM powder was stored in a −80 ◦C freezer until the gelation protocol.

The adECM powder was sterilized with a supercritical carbon dioxide system at
200 bar for 1 h [84]. The sterilized adECM powder was taken as required and dissolved
with 10 mg of pepsin (P7125, Sigma, St. Louis, MO, USA) in 3% (v/v) acetic acid (Sigma,
St. Louis, MO, USA) solution using a mixing rotator at 4 ◦C for 48 h. The adECM solution
had an acidic pH, so it was neutralized with sterile 10× MEM (11430-030, Gibco, Waltham,
MA, USA) and sterile 5 N NaOH solution to adjust the pH.

Rat tail collagen I (354236, Corning, St. Louis, MO, USA) was diluted to 3 mg/mL
and neutralized with sterile 10× MEM media, sterile distilled water, and sterile 1 N NaOH
solution, while the temperature was kept below 10 ◦C to avoid gelation. After adding the
calculated volume of all components which were neutralized separately, the 0.3% collagen
and 3% adECM solutions were mixed well. To optimize the biological and mechanical
conditions, adECM and collagen solutions were mixed at 3:1, 1:1, and 1:3 (v/v) ratios.

The mechanical properties of the hydrogels with different adECM-to-collagen ratios
were measured by unconfined compression tests (n = 3). A cylinder mold with a 6 mm
diameter was prepared to make regular-shaped hydrogels. The mixtures of the hydrogels
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were poured into the mold. After allowing 30 min for gelation, uniformed cylindrical
hydrogels were finally prepared and compressed using a 10 kN load cell at the rate of
mm/min (Instron 5900, Norwood, MA, USA). The compressive modulus was determined
as the force per unit area applied to the hydrogels during compression and calculated as
the slope of the initial straight line in the stress–strain curve.

The cell viability measurements for the various adECM and collagen ratios were per-
formed with live/dead cell viability assay kits (L3224, Thermo Fisher scientific, Waltham,
MA, USA) (n = 3). First, 200 µL of the mixed hydrogels were poured into a 96-well
plate and incubated at 37 ◦C in a humidified atmosphere containing 5% (v/v) CO2 for
30 min for gelation. ADSCs and HUVECs were then seeded onto each of the hydrogels
(1.5 × 104 cells/well). Later, on days 1, 4 and 7, Calcein AM 5 µL and Ethidium homod-
imer (EthD-1, 20 µL) were mixed in 10 mL of PBS and spread onto the mixed hydrogel.
Calcein AM (green)- and EthD-1 (red)-stained live and dead cells, respectively. The stained
cells were observed and counted manually using confocal microscopy to calculate the
percentage of live and dead cells (Zeiss 520, Jena, Germany).

3.4. Fabrication of the PLCL Scaffolds and the Hydrogel–PLCL Constructs

Figure 1 shows a schematic illustration of all steps for our experiments. The PLCL-
only scaffolds and hydrogel–PLCL scaffolds were fabricated with a dual-nozzle 3D printer
(In vivo premium, Rokit, Seoul, Republic of Korea). The PLCL was extruded from a hot-
melting extruder nozzle using a pneumatic air compressor with high pressure for the PLCL,
which is very elastic [85].

The hydrogel–PLCL constructs were fabricated with the dual-nozzle system. The hy-
drogel solution containing the collagen and adECM was printed with a 10 mL syringe
while maintaining temperatures below 10 ◦C to avoid gelation before printing. The PLCL
was printed with the same method that was used for the PLCL-only scaffold. The hydrogel
solution and PLCL were printed alternately at 37 ◦C in a humidified atmosphere condition
to prevent the hydrogel solution from drying out before gelation. Both the PLCL-only and
hydrogel–PLCL complex scaffolds were placed under a UV light for 15 min for sterilization
before the in vivo experiments.

3.5. Scanning Electron Microscopy (SEM) Analysis

The surface morphology of the constructs was examined by scanning electron mi-
croscopy (SEM) (Phenom-world, Eindhoven, Netherlands). The top surface and cross-
section of the samples were observed. The samples were coated for 60 s with gold using a
sputter-coater (Bal-tec SCD 005, Baltac prä parathion, Niesgrau, Germany).

3.6. Mechanical Tests

The mechanical properties of the PLCL scaffold were measured by unconfined com-
pression tests (n = 3). Uniformed scaffolds with a constant shape and size were fabricated
with the PLCL co-polymer and PCL polymer. Human adipose tissue was cut into a cylin-
drical shape with a stamping mold to compare the compression modulus with the PCL and
PLCL scaffolds. Adipose tissue and the PCL and PLCL scaffolds were prepared and com-
pressed using a 10 kN load cell at a rate of 1 mm/min (Instron 5900, Instron®, Norwood,
MA, USA). The compressive modulus was determined as the force per unit area applied to
the hydrogels during compression and calculated as the slope of the initial straight line in
the stress–strain curve.

To evaluate the ultimate tensile strength, raw PLCL (before printing) and printed
PLCL were made into thin films. The films were mounted on a universal testing machine
and subjected to tensile testing at a crosshead speed of 1 mm/min. Means and standard
deviations were expressed in MPa, and the Young’s modulus was calculated as the slope
of the initial straight line in the stress–strain curve.
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3.7. In Vivo Experiments

SD rats (7-week-old, male; Dae-han biolink co., Ltd, the Republic of Korea) were
randomly allocated into two groups: PLCL-only group (n = 4) and PLCL with hydrogel
(adECM:collagen = 1:3) group (n = 4). All equipment for the surgery was sterilized with an
autoclave in advance. Sterilized constructs were individually implanted into the bilateral
dorsal subcutis pouches of the rats to evaluate the ability of adipose tissue regeneration
and vascularization. The rats were temporarily anesthetized with ethyl ether. Gentamicin
(Gibco, Waltham, MA, USA) was used as antibiotics (dose, 80 mg kg−1) after surgery.
The constructs were harvested at 4 and 8 weeks after implantation.

The molecular weight changes during the in vivo study were analyzed by collecting
samples after specific time points. The samples were chopped and dissolved in CHCl3 and
then purified in methanol. The resulting samples were dried for 3 days at 60 ◦C, after which
the samples were dissolved in CHCl3 to evaluate their molecular weight.

3.8. Evaluation of Adipose Tissue Regeneration with Histological Analysis

The constructs were fixed in 10% (v/v) buffered formalin (HT110116, Sigma, St. Louis,
MO, USA) for 24 h, dehydrated in a graded ethanol series, embedded, and then made into
paraffin blocks for histological analysis. Each sample was sectioned by a microtome at a
5 µm thickness. The sectioned samples (n = 4) were stained with hematoxylin and eosin
(H&E) and Masson’s trichrome (MT) to examine the tissue morphology and collagen com-
position. The samples were examined under light microscopy (Nikon, Tokyo, Japan) [86].

3.9. Macrophage and Angiogenesis Assessment of the Constructs

To evaluate the immune response by macrophage infiltration 4 and 8 weeks after
implantation, the sample section was blocked and incubated with mouse monoclonal anti-
cluster of differentiation 68 (CD 68, 1:100, ab955, Abcam, Cambridge, United Kingdom) for
both M1 and M2 macrophages, and CD 206 (1:100, SC-34577, Santa Cruz Biotechnology,
Inc., Dallas, TX, USA) for M2 macrophages, overnight.

To examine angiogenesis, rabbit anti-human von Willebrand factor antibody (vWF,
1:400, ab6994, Abcam, Cambridge, United Kingdom) and monoclonal mouse anti-human
α-smooth muscle actin antibody (α-SMA, 1:200, ab7817, Abcam, Cambridge, United King-
dom) were used as primary antibodies to stain endothelial cells (ECs) and vascular smooth
muscle cells (SMCs). After an overnight incubation at 4 ◦C, the samples were incubated
with Alexa Fluor 488 goat anti-rabbit IgG (1:1000, A11034, Life Technologies, Carlsbad,
CA, USA) and Alexa Fluor 594 goat Anti-mouse IgG (1:1000, A11062, Life Technologies,
Carlsbad, CA, USA) for 1 h at RT. Cell nuclei were observed by staining with 4’, 6-diamidino-
2-phenylindole (DAPI, Molecular Probes) for up to 5 min. Slides were observed under
a confocal microscope (Zeiss 520, Jena, Germany) [83,84,86,87]. The area (µm2) of the
DAPI+, CD68+, and CD206 staining was measured with the Image J program to estimate
the immune response in the scaffolds by the ratio of macrophages per whole cell. The value
of the CD206+/CD68+ indicates the ratio of the M2 macrophages/all macrophages in the
scaffolds which enhance angiogenesis and tissue regeneration.

3.10. Adipose Tissue mRNA Expression Analysis by RT-PCR

The RNA of the cells from each of the samples was isolated and purified using
the RNeasy®mini kit (Qiagen, Hilden, Germany), following the manufacturer’s instruc-
tions, to quantify the gene expression. RNA extraction was measured using Nanodrop
(Nanodrop®ND-1000, Thermo Fisher Scientific, Waltham, MA, USA), after which reverse
transcription for RNA was performed with the Omniscript®System (Qiagen, Hilden, Ger-
many). RNA samples were incubated in a dry bath (WiseTherm®HB-R, DAIHAN Scientific,
Seoul, Republic of Korea) at 37 ◦C for 60 min. The real-time PCR was performed with the
Power SYBR®Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) using the
7500 Real-Time PCR system (ABI prism 7500, Applied Biosystems, Foster City, CA, USA).
The oligonucleotide primers for lipoprotein lipase (LPL), peroxisome proliferator-activated
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receptor gamma (PPARγ), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
CCAAT/enhancer binding protein alpha (C/EBPα) were designed based on references
or published gene sequences (NCBI) [88,89]. GAPDH primers were used for the control
genes, and the other genes were normalized by GAPDH. Relative gene expression levels
were analyzed using the 2−∆∆CT method.

3.11. Statistical Analysis

The samples were assessed at least in triplicate, and all results are expressed as the
mean ± standard deviation values. All statistical analyses were performed by Student’s
t-tests, and statistical significance was set at * p < 0.01 or ** p < 0.0001 for all results.

4. Conclusions

We have developed adipose tissue-derived dECM hydrogel based PLCL constructs
to develop vascularized adipose tissue. The 3D printing technique was used for scaffold
fabrication, which could fabricate patient-specific scaffold for later clinical application.
It was confirmed that the highly elastic PLCL co-polymer used in this study has more
approximate physical properties as native adipose tissue compared to the other polymers.
Furthermore, we revealed that adECM hydrogel promotes adipose tissue reconstruction
by encouraging neovascularization and tissue formation. A high level of PPARγ gene
expression was observed in the PLCL-only group; however, histological and immunological
staining analysis revealed that the tissue formation and vessel formation were markedly
poor compared to that of the hydrogel–PLCL construct group. Indeed, C/EBPα, the late-
stage marker, was expressed much more in the hydrogel–PLCL construct group, with
significantly different values. Our results demonstrated that the hydrogel–PLCL constructs
promoted efficient adipogenic differentiation with a developed vascularized structure.
Consequently, we have demonstrated the feasibility of a therapeutic method for large-
sized adipose tissue regeneration by developing vascularized tissue with the 3D-printed
hydrogel–PLCL scaffold. Therefore, it could be a good alternative for adipose tissue
engineering, and we expect that it is applicable to not only adipose tissue but also to other
soft tissue regeneration.
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7/22/6/2886/s1, Figure S1: Cell viability test was performed to optimize the hydrogel composition.
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ples were evaluated in triplicate, and the error bar indicates the SD. Scale bar = 50 µm; Figure S2:
Flexible and stretchable test for the 3D-printed PLCL scaffold. The scaffold bent easily and recovered
to its original shape after printing; Figure S3: Confocal images of the in vivo experiments for immune
response: DNA, vWF, a-SMA, and merged images at 4 and 8 weeks after subcutaneous implantation;
8w, 20× confocal. Scale bar = 50 µm; Video S1: Flexibility test for the 3D-printed PLCL scaffold;
Video S2: Stretchability test for the 3D-printed PLCL scaffold.
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