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Abstract: New developments in the synthesis, resolution, and synthetic applications of chiral
1-phenylethylamine (α-PEA) reported in the last decade have been reviewed. In particular,
improvements in the synthesis of α-PEA and its derivatives and chiral resolution, as well as
their applications in the resolution of other compounds, were discussed. α-PEA was used as a
chiral auxiliary in the diastereoselective synthesis of medicinal substances and natural products.
Chiral ligands withα-PEA moieties were applied in asymmetric reactions, and effective modular chiral
organocatalysts were constructed with α-PEA fragments and used in important synthetic reactions.

Keywords: 1-phenylethylamines; resolution; chiral auxiliary; diastereoselectivity; chiral ligands;
modular organocatalysts; asymmetric synthesis; α-methylbenzylamine

1. Introduction

Chiral inducers and auxiliaries frequently play a key role in the practical synthesis of enantio-pure
products, often drugs or agrochemicals. Introduced by A. W. Ingersoll in 1937 [1], nowadays chiral
1-phenylethylamine (α-PEA) belongs to the ancillary compounds most often used for the synthesis
of enantiomeric products. This cheap primary amine, available in both enantiomeric forms, offers a
structural motif frequently applied in the synthesis of chiral building blocks, useful in divergent
asymmetric synthesis. Due to successful applications in various chiral recognition processes, α-PEA
can be considered a privileged chiral inducer and auxiliary. Its essential synthetic applications have
been included in several volumes of the encyclopedic Fieser and Fieser’s series on reagents for organic
synthesis [2]. The topic was specifically reviewed by E. Juaristi in 1989 [3], 1999 [4], and 2010 [5],
and briefly in 2012 by C. Kouklovsky and T. J. Wenzel [6]. However, the last decade has witnessed many
interesting advancements, and over eighty new original papers have supplemented the previous works.

2. Improvements in the Synthesis of α-PEA and Its Derivatives

The most straightforward synthetic procedure for the preparation of α-phenylethylamine uses
the reductive amination of acetophenones, and many variants of this reaction have been developed
(Scheme 1) [1,2].

An interesting improvement to the electrochemical synthesis of α-PEA is cathode activation by
introducing EDTA and pyrophosphato zinc complexes into the catholyte during the reduction of
acetophenone oxime [7].
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Scheme 1. General synthetic scheme for the preparation of chiral α-phenylethylamines.

Recently, a new enantioselective chemo-enzymatic method for the transformation of styrene
to (R)-α-PEA has been developed. It is based on the one-pot Pd/Cu-catalyzed Wacker oxidation of
styrene to acetophenone combined with its reductive amination. Ammonia was applied as a nitrogen
source, while d-glucose with glucose dehydrogenase (GDH) was used as a reductant. The catalysts
were separated through membrane filtration, giving almost quantitative styrene conversion and
99% enantiomeric excess of the amine. The entire process ultimately represents the asymmetric
hydroamination of styrene with ammonia (Scheme 2) [8].
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Scheme 2. General scheme of the asymmetric hydroamination of styrene through a combination of
Wacker oxidation and amine dehydrogenase (AmDH)-catalyzed reductive amination.

3. Chiral Resolution of α-PEA and Its Derivatives

Essentially, both enantiomers of α-PEA are easily attained by an effective resolution of the
racemate as diastereomeric salts with chiral acids, e.g., tartaric acid, O-functionalized natural
lactic acid, and others. Further, some direct stereoselective syntheses have been reported. Despite
many earlier successful resolutions, interesting observations concerning the enantioseparation
of rac-α-PEA through diastereomeric salt precipitation were noted by the Hirose group [9].
They demonstrated that the selectivity of the diastereomeric salt formation between rac-α-PEA
and N-(p-toluenesulfonyl)-(S)-phenylalanine dramatically changed from (S,S) to (R,S) with the use of
solvent compounds with a six-membered ring structure, namely tetrahydropyran (THP) or cyclohexene
as compared to 2-propanol. The X-ray analysis confirmed that THP was included in the (R,S) salt and
stabilized it without any hydrogen bonds [9].

A simple batch procedure was developed for the solvent-free kinetic resolution of racemic primary
amines by their acylation with equimolar amounts of isopropyl methoxyacetate. The process was
catalyzed by Candida Antarctica lipase B (Novozym 435 and sol-gel CALB). Rac-α-PEA was resolved
giving (S)-α-PEA and (R)-α-PEA-amide with good yields and ee ≥ 95%. The other nine structurally
different amines were resolved by this procedure with high yield and enantioselectivity [10].

Recently, for the synthesis of ring-substituted, optically active isomers of 1-phenylethylamines,
the chemo-enzymatic method has also been developed [11]. The method is particularly attractive because
of the commercial availability of the immobilized enzymes. Thus, for (S)-1-(4-chlorophenyl)ethylamine,
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a key intermediate for the synthesis of the corresponding acetamide (a herbicide), the resolution catalyzed
by the immobilized lipase (Novozym 435) was chosen (Scheme 3) [11].
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Scheme 3. The Novozym 435-catalyzed resolution of (R,S)-1-(4-chlorophenyl)ethylamine to synthesize
enantiomeric triazolopyrimidine herbicide.

Other separation procedures for α-PEA derivatives have been developed using enzymatic or
chemical combined with enzymatic methods. Thus, primary benzyl amines effectively underwent a
selective dynamic kinetic resolution (DRK) using palladium nanoparticles as a racemization catalyst,
and lipase-catalyzed acylation with methoxyacetate ester (Scheme 4) [12].
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Scheme 4. Selective dynamic kinetic resolution (DRK) of primary benzyl amines with palladium
nanoparticles as the racemization (dehydrogenation–hydrogenation) catalyst and lipase as the
methoxyacetylation catalysts.

Furthermore, new synthetic techniques were applied in the deracemization. The continuous flow
kinetic resolution of racemic α-PEA with CALB immobilized on acrylic resin (Novozyme 435) using
ethyl acetate as the acylating reagent with a short residence time (40 min) gave high enantiomeric
excesses. The non-acylated product was racemized (catalyzed dehydrogenation–hydrogenation) and
again used for the lipase-catalyzed acylation. The process is suitable for automatization and can be
scaled up for industrial purposes (Scheme 5) [13].
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Scheme 5. Kinetic resolution of rac-α-phenylethylamine under continuous flow conditions.

For the kinetic resolution of racemic amines, another new operational synthetic technique, namely
high-speed ball milling (HSBM), was used by Juaristi and coworkers [14]. The catalyzed by CALB
reaction afforded acylated products with high conversion and often excellent enantiopurity (ee > 99%).
A short reaction time was required (typically 90 min), either with 1,4-dioxane as an additive present
in a minute amount or using only the acylating agent. Several acylating agents and additives were
tested in the procedure, and the best outcomes resulted in isopropyl acetate as an acylating agent
(Scheme 6) [14].
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Scheme 6. Mechanoenzymatic resolution of rac-α-PEA using isopropyl acetate.

Further, CALB-catalyzed acylation and catalyzed by ruthenium complex racemization
(dehydrogenation–hydrogenation) was applied in the dynamic kinetic resolution (DKR) of rac-α-PEA
(Scheme 7). Here, as before (Schemes 4 and 5), the Ru catalyst causes dehydrogenation–hydrogenation,
thus racemizing the slowly acylated enantiomer and dynamically supplying the quickly reacting one.
The reaction conditions were optimized, and alkyl methoxyacetates as acyl donors at low catalyst
loadings were more effective (higher ees) than isopropyl acetate [15].
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Scheme 7. Kinetic resolution of rac-α-PEA.

The Poppe group carried out further optimization of the resolution of racemic primary amines
under batch and continuous-flow conditions [16]. Particularly, they tested yield and enantiomeric
excess of the N-acylation products obtained in the reactions catalyzed by immobilized lipase B
(CALB-CV-T2-150) with isopropyl esters of several 2-alkoxyacetic acids. For rac-α-PEA and three
other primary amines, the best results were attained using isopropyl 2-propoxyacetate. Under the
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optimized continuous-flow conditions, the amines underwent kinetic resolutions with high conversions
and nearly quantitative enantiomeric excesses. Moreover, for five additional amines (substituted
derivatives ofα-PEA), 2-propoxyacetate was the preferred acylating agent, leading to the corresponding
(R)-propoxyacetamides with very high ee (Scheme 8) [16].
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In conclusion, the recently reported enzymatic methods for the kinetic resolution of racemic
α-PEA revealed 2-alkoxyacetate esters as particularly useful acylating reagents. The lipase-catalyzed
N-acylation gave the corresponding products with high conversion and excellent enantiopurity
(ee > 99%).

4. Application of Enantiomeric α-PEA in Chiral Resolution

Since both antipodes of α-PEA are so easily available and inexpensive, these compounds were
often used to resolve various racemic derivatives. In particular, enantioresolution by crystallization
of diastereomeric salt with enantiomeric α-PEA still enjoys much interest. This operationally simple
and high-yielding methodology has been exploited and optimized for the preparation of numerous
optically active acids.

Easy crystallization of the less soluble diastereomeric salt formed between (R)-N-benzyl-α-PEA
and racemic 2-chloromandelic acid was used for its resolution. The structure of the grown crystals
was examined in detail by X-ray analyses. Preferential host-guest interactions, stabilizing the salt
of lower solubility, were interpreted by a “lock-and-key” packing and CH/π interactions within
the hydrophobic moieties. The authors recommended improving the amine chiral discrimination
properties by introducing a larger aromatic system to the resolving agent [17].

Racemic 2-methoxy-2-(1-naphthyl)propionic acid (MNPA) underwent efficient enantio-resolution
with (R)-α-PEA, giving enantiopure (R)-MNPA. Thus, the precipitated crystalline salt of (R)-α-PEA
and (R)-enriched-MNPA was separated, and then the acid was liberated (41%, 95% ee). This scalemic
product was dissolved in aqueous ethanol and treated again with (R)-α-PEA to give the corresponding
salt. This salt, after acidification, afforded 29% of (R)-MNPA (>99% ee). A mother liquor from the
first crystallization was evaporated, and (S)-MNPA (95% ee) was finally isolated by a sequential
crystallization. The X-ray analysis uncovered four independent hydrogen bonds and one CH/π

interaction stabilizing the first precipitated diastereomeric salt (Scheme 9) [18].
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Scheme 9. Experimental procedure for the separation of enantiomers of MNPA.

Furthermore, racemic 5-oxo-1-phenylpyrazolidine-3-carboxylic acid was resolved into
enantiomers. The racemate was treated with a half equivalent of (R)-α-PEA, giving mostly (R,R)-salt
precipitated from the solution. The remaining part, enriched in the (S)-acid, was worked up with
(S)-α-PEA, as shown in Scheme 10 [19].
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Scheme 10. (R)- and (S)-α-PEA resolution of 5-oxo-1-phenylpyrazolidine-3-carboxylic acid.

Investigation of the resolution of racemicα-hydroxy-(o-chlorophenyl)methyl]phosphinic acid with
(R)-α-PEA via diastereomeric salt formation revealed that the (R,R)-salt precipitation from 2-propanol
was an efficient resolving method for obtaining a single enantiomer of phosphinic acid. Resolving
rac-phosphinic acid with (S)-α-PEA in EtOH by the same procedure gave access to (S)-acid in 32%
yield (Scheme 11) [20].
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The optical resolution of rac-trans-2,2-dichloro-3-methylcyclopropanecarboxylic acid was reported
by Kovalenko and Kulinkovich [21]. Thus, the racemic acid in acetone treated with (R)-α-PEA
precipitated the diastereomericaly enriched (1S,3R)-(R)-salt, which after two recrystallizations from
90% aqueous acetone and subsequent treatment with dilute sulfuric acid gave the levorotary enantiomer
(1S,3R)-acid in 23% yield. The remaining mother liquor and (S)-α-PEA gave the respective salt, that after
acidification gave (1R,3S)-acid in 29% yield (Scheme 12) [21].
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Similarly, enantiomers of trans-norborn-5-ene-2,3-dicarboxylic acid mono-methyl ester were
separated by crystallization of the respective salts with (R)- and (S)-α-PEA (Scheme 13) [22]. Both simple
procedures produced interesting chiral building blocks for further synthesis.
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Scheme 13. Separation of enantiomers of trans-norborn-5-ene-2,3-dicarboxylic acid mono-methyl ester
into enantiomers.

Volochnyuk and coworkers reported a multigram synthesis of D3-symmetric tris-homocubane-4-
carboxylic acid. Its optical resolution was achieved through the recrystallization of salt with (R)-α-PEA.
The absolute configuration (R) of pure (+)-enantiomeric form was assigned by X-ray crystal structure
analysis (Scheme 14) [23].

In 2019, Zhao and coworkers published the synthesis of natural Iotrochamide B, earlier isolated
from the marine sponge Iotrochota sp. A key intermediate in the synthesis was (S)-6-bromo-tryptophan
obtained from the corresponding racemic N-acetyltryptophan by its resolution with (S)-α-PEA
(Scheme 15) [24].
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Scheme 15. Optical resolution of rac-6-bromo-N-acetyltryptophan, intermediate in the synthesis of
Iotrochamide B.

An interesting resolution ofα-amino acids has been developed using reagents derived fromα-PEA.
Thus, the group of Soloshonok reported that chirally modified ketone reacts with racemic α-amino
acids (rac-α-AAs) in nearly quantitative yield, giving two major and two minor diastereomeric nickel
complexes. Thus, the complexes (RC,RN,RC)-A (major) along with (RC,SN,RC, minor) coming from (R)
α-amino acids, and (RC,SN,SC)-B (major) along with (RC,RN,SC, minor) derived from α-amino acids
of (S) configuration were formed in nearly equal amounts and excellent yield. The major complexes
A and B were easily separated and gave the corresponding pure enantiomers of the amino acids.
The resolving agent’s recovery and recycling make the complete separation process very attractive
(Scheme 16) [25].Molecules 2020, 25, x FOR PEER REVIEW 9 of 36 

 

 

Scheme 16. Reactions of the ligand derived from (R)-α-PEA with racemic α-amino acids. 

The same group designed and synthesized a similar ligand to convert natural (S)-α-amino acids 

into the unnatural (R)-enantiomers. They prepared (S)-α-PEA-derived benzophenone forming the 

respective Schiff bases with various (S)-α-amino acids. After Ni(II) complexation, epimerization at 

the amino acid stereogenic center occurred. The formation of the new diastereomeric complex took 

place in a thermodynamically controlled manner. Later, the pure diastereomeric complex was 

hydrolyzed, and the chiral benzophenone and resulting (R)-amino acid were isolated by cation 

exchange chromatography (Scheme 17) [26]. 

 

Scheme 17. Conversion of (S)-amino acids to (R)-amino acids. 

An interesting option for the resolution of a racemic mixture of host molecules is the formation 

of the respective inclusion complexes with an enantiomeric guest, here α-PEA. This idea was applied 

by the group of Kaku and Tsunoda to carry out the optical resolution of rac-

tetrahydroxytetraphenylene (THTP) to afford (S,S)-THTP in good yield and high ee (Scheme 18). They 

also obtained (R,R)-THTP using (R)-α-PEA. The thermal analyses (TGA and DSC) suggested that the 

S,S-S complex was a less stable clathrate than the S,S-R complex [27]. 

Scheme 16. Reactions of the ligand derived from (R)-α-PEA with racemic α-amino acids.

The same group designed and synthesized a similar ligand to convert natural (S)-α-amino acids
into the unnatural (R)-enantiomers. They prepared (S)-α-PEA-derived benzophenone forming the
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respective Schiff bases with various (S)-α-amino acids. After Ni(II) complexation, epimerization
at the amino acid stereogenic center occurred. The formation of the new diastereomeric complex
took place in a thermodynamically controlled manner. Later, the pure diastereomeric complex was
hydrolyzed, and the chiral benzophenone and resulting (R)-amino acid were isolated by cation
exchange chromatography (Scheme 17) [26].
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Scheme 17. Conversion of (S)-amino acids to (R)-amino acids.

An interesting option for the resolution of a racemic mixture of host molecules is the formation of
the respective inclusion complexes with an enantiomeric guest, here α-PEA. This idea was applied by
the group of Kaku and Tsunoda to carry out the optical resolution of rac-tetrahydroxytetraphenylene
(THTP) to afford (S,S)-THTP in good yield and high ee (Scheme 18). They also obtained (R,R)-THTP
using (R)-α-PEA. The thermal analyses (TGA and DSC) suggested that the S,S-S complex was a less
stable clathrate than the S,S-R complex [27].Molecules 2020, 25, x FOR PEER REVIEW 10 of 36 
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Scheme 18. Enantiomeric enrichment of (S,S)-(−)-THTP using (S)- α-PEA.

When diastereomeric α-phenylethylammonium salts do not differ enough, the simple resolution
of racemic acid is impossible. In that case, the corresponding diastereomeric amides can be
successfully used. This strategy has been applied for the highly effective resolution of racemic
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1,4-benzodioxane-2-carboxylic acid by precipitation of the less soluble amide diastereomer of unlike
configuration (>98% de) (Scheme 19) [28].
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Scheme 19. Resolution of racemic 1,4-benzodioxane-2-carboxylic acid via diastereomeric phenylethylamides.

The determination of the enantiomeric purity of various chiral compounds can be achieved
by applying chiral derivatizing agents (CDAs). The Bull group developed α-PEA-containing
chiral boronic acid as a CDA to determine the enantiomeric purity of vic-diols [29]. Recently,
de Ferra and coworkers [30] described a similar procedure for the determination of enantiomeric excess
of α-glycerophosphocholine with a CDA prepared according to Anslyn’s procedure (Scheme 20) [31].
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Highly demanded chiral fluoro-compounds find application as chiral solvating agents (CSAs) in 1H
and 19F NMR. Cavalluzzi and collaborators obtained (−)-(R)-2-(pentafluorophenoxy)-2-(phenyl-d5)acetic
acid (Scheme 21a) of (98% ee) by resolution of a racemate with (−)-(R)-α-PEA. The obtained chiral
CSA was successfully used for the direct 1H NMR determination of enantiomeric excess of chiral
quinoline-containing antimalarial drugs, namely mefloquine, chloroquine, and hydroxychloroquine [32].

Similarly, Béni’s group resolved α-(nonafluoro-tert-butoxy)carboxylic acid using enantiomeric
(S)-α-PEA (Scheme 21b) [33]. The enantioenriched fluoro-derivatized CSA gave 19F NMR chemical shift
differences (∆δ) 0.006–0.028 ppm in CDCl3 and 0.010 and 0.014 ppm in apolar C6D6 with biologically
active amines [33].
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(a) the resolution of (rac)-2-(pentafluorophenoxy)-2-(phenyl-d5)acetic acid, (b) the resolution of
(rac)-α-(nonafluoro-tert-butoxy)carboxylic acid.

A different synthetic approach was used for the resolution of racemic salicylaldehydes containing
an isobornyl substituent. The aldehydes were converted with (R)-α-PEA into the corresponding
Schiff bases, and the diastereomeric imines were separated by fractional crystallization from pentane.
Diastereomers were hydrolyzed, giving enantioenriched aldehydes along with the recovered chiral
auxiliary (Scheme 22) [34].

Vorontsova and coworkers elaborated a procedure for the synthesis of ligands based on
4-acyl-13-bromo-5-hydroxy[2.2]paracyclophane. The enantiomers of planar chiral ketones were
reacted with (S)-α-PEA in the catalytic presence of Et2SnCl2, giving nearly quantitative amounts of an
equimolar mixture of two diastereomeric Schiff bases. Their separation and hydrolysis furnished an
enantiomer (for the acetyl-derivative) (Rp) ([α]20

D + 363.3, toluene) in 79% yield and (Sp), ([α]20
D − 361.5,

toluene), with 67% yield (Scheme 23) [35].
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5. Enantiomeric Enrichment of α-PEA and Its Derivatives—Self-Disproportionation of
Enantiomers (SDE)

When partially non-racemic samples are crystallized or undergo chromatography, often enantiomeric
molecules act vs. the aggregate of both enantiomers (racemate) as diastereomers. In effect, under totally
achiral external conditions, the scalemic samples are additionally enantioenriched. This process is known
as the self-disproportionation of enantiomers (SDE) [36]. The SDE effect has also been observed for
the amides of α-PEA. Thus, the medium-pressure liquid chromatography of non-racemic acetamide
derivatives showed clear splitting into two separate fractions, both corresponding to the acetamide. For the
material of the less polar fraction, significant enantiomeric enrichment was observed. Simultaneously,
the more polar fraction material had the ee value considerably reduced [37–39]. The SDE effects were
also described in achiral column chromatography of a series of N-fluoroacetylated α-PEA-amides [40].
The SDE consequences, potential problems, and prospective applications have recently been reviewed
and discussed [41].
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6. α-PEA as a Chiral Auxiliary in Diastereoselective Synthesis

6.1. Synthesis of Compounds with Biological Activity

The synthesis of compounds with the prospective biological activity in the pure enantiomeric form
is of particular interest in medicinal chemistry. Quite often, only one specific stereoisomer is responsible
for the therapeutic effect, whereas the other can cause harmful side effects. In this context, a wide
variety of compounds have been synthesized using α-PEA as a chiral auxiliary or a building block.

In line with this general goal, an economically viable strategy for the synthesis of (+)-Rivastigmine
and (+)-calcimimetic NPS R-568 has been devised by Rao and collaborators (Scheme 24) [42]. The method
was based on the reductive amination of 3′-hydroxyacetophenone with (S)-α-PEA or (R)-α-PEA in the
presence of titanium(IV)isopropoxide and NaBH4. The α-PEA moieties were cleaved in regioselective
hydrogenation of the bis amines to yield the required chiral amines with excellent enantioselectivity.
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Scheme 24. Syntheses of Rivastigmine and NPS R-568.

Nair and coworkers explored the acetate aldol reaction designed for the stereoselective synthesis
of (S) and (R)-Fluoxetine [43]. This compound in racemic form is a potent, selective serotonin reuptake
inhibitor, whereas the separated enantiomeric forms have different therapeutic effects. The synthesis
started from the acetate aldol reaction of N-acetyl-(S)-4-isopropyl-1-[(R)-1-phenylethyl]imidazolidin-2-one.
The product was converted into (S)-3-hydroxy-N-methyl-3-phenyl propanamide. After reduction and
aromatic substitution on 4-fluorobenzotrifluoride, (S)-fluoxetine was obtained in enantiopure form and
excellent yield. (R)-Fluoxetine was obtained in a similar procedure (Scheme 25). With (R) or (S)-α-PEA
moiety, the aldol reaction gave a high yield and anti-aldol selectivity. Interestingly, the configuration of
α-PEA did not influence the product’s stereochemistry as both enantiomers of this group afforded similar
yields and the same selectivity. Moreover, the placement of benzylamine or tert-butylamine moieties
instead of α-PEA resulted in yield and selectivity deterioration. The authors ascribed the influence of
α-PEA to the stereoelectronic effects, enhancing the enolate reactivity [43].

The total synthesis of trans-quinolizidine derivatives, namely (+)-myrtine and cis-2,4,6-trisubstituted
piperidone alkaloid (+)-241D, was described by Hurvois and coworkers [44]. The first step was performed
according to the procedure reported earlier by Pawłowska and Czarnocki [45] (see below), and here
α-PEA allowed an efficient 1–3 stereoinduction. Then, the key intermediate was transformed by different
steps, giving (+)-myrtine and alkaloid(+)-241D with a total yield of 68 and 38%, respectively (Scheme 26).
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Scheme 26. General scheme for the synthesis of (+)-myrtine and (+) alkaloid 241D.

The Czarnocki group developed the synthesis of (+)-lortalamine, starting with (S)-α-PEA as a
chiral auxiliary [45]. The method was based on the preparation of N-[(S)-α-phenylethyl]-4-piperidone
(Scheme 27), a procedure advanced earlier by Kuehne et al. [46]. The corresponding nucleophilic
substitution (ammonium salt + amine) results in a ring opening–ring closure sequence, leading to the
key chiral intermediate.Molecules 2020, 25, x FOR PEER REVIEW 15 of 36 
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α-PEA is also used as an important chiral auxiliary in the synthesis of (R)-ramatroban [47].
This sulfonamide was developed to treat allergic rhinitis and asthma and could have a therapeutic
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effect on coronary artery diseases. The amination was performed using ω-transaminases (ω-TA).
Correspondingly, the most important synthetic step is theω-TA-catalyzed transformation of the ketone
to enantiopure (R)-2,3,4,9-tetrahydro-1H-carbazol-3-amine. In this reaction, (R)-α-PEA was used as
an amine donor. In that case, only the desired product was obtained, whereas with 2-propylamine,
various unwanted side products were formed (Scheme 28).
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Scheme 28. Synthesis of the enantiopure (R)-2,3,4,9-tetrahydro-1H-carbazol-3-amine, a key intermediate
for the preparation of (R)-ramatroban.

A practical asymmetric synthesis of Sitagliptin, an approved drug for treating type 2 diabetes
mellitus, was elaborated by the Kozlowski and Bandichhor groups [48]. The adopted approach used
α-PEA as a chiral auxiliary, allowing for stereoinduction in the reductive amination (Scheme 29).
This strategy offers a very simple diastereoselective and efficient procedure.Molecules 2020, 25, x FOR PEER REVIEW 16 of 36 
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Scheme 29. Synthetic route to Sitagliptin.

In 2017, Brenna described the procedure for the synthesis of both enantiomers of
1-(m-hydroxyphenyl)ethylamine, an important intermediate for the preparation of valuable active
pharmaceuticals [49]. The procedure was based on using (R)- or (S)-α-PEA-imines as chiral building
blocks. The trichlorosilane reduction of the imines followed by selective hydrogenolysis under batch
as well as flow conditions gave the desired product with almost complete stereochemical induction
and high yields (Scheme 30). This product is a key intermediate in the synthesis of compounds
with pharmaceutical properties. The same group also reported applying a similar method for the
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preparation of the intermediate for the other biologically important compounds, such as Rasagiline
and Tamsulosin [50]. In that case, the cyclopentadienone-based iron complexes were used to catalyze
the diastereoselective hydrogenation of enantiopure α-PEA-imines successfully.
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Scheme 30. Reductive amination in the synthesis of a key intermediate for the synthesis of compounds
with biological activity.

Natural pyrrolizidine alkaloids consist of two fused five-membered rings with a nitrogen atom
at the bridgehead (Scheme 31). Many of them have interesting biological activities. Davies and
coworkers have developed an effective method for the synthesis of a collection of pyrrolizidine
alkaloids, starting with the preparation of (−)-(1R,7aS)-absouline [51]. The method is based on
the diastereoselective conjugate addition of lithium (S)-N-benzyl-N-(α-methylbenzyl)amide to an
enantiopure α,β-unsaturated ester derived from L-proline (Scheme 31). Later, the same strategy was
applied for the synthesis of (−)-isoretronecanol and (−)-trachelantamidine [52] (Scheme 31). Following
the elaborated synthetic methodology, this research group obtained the next compounds of this
class [53,54] (Scheme 30).
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6.2. Synthesis of Imides

Generally, the most often used chiral auxiliaries rely on their cyclic structure (e.g., Evans’
oxazolidinones, Oppolzer’s sultams, or SAMP/RAMP compounds) that limit the presence of different
conformers that could diminish the selectivity. For example, see Scheme 25, [43]. However, acyclic
chiral auxiliaries are also of interest. Their flexibility may allow for the reactions to be hampered by the
stiffness of the established cyclic auxiliaries.

Hernández-Rodríguez, looking for a new acyclic auxiliary, described interesting
diastereoselectivity in the α-alkylation of chiral propionimide [55]. The reaction of (S)-α-PEA as with
propionyl anhydride and then benzoyl chloride gave a chiral auxiliary. The obtained compound was
used in the alkylation of the prochiral fragment to form, diastereoselectively, the respective chiral imide
(Scheme 32). The selectivity was due to the chelate structure with the carbonyl of the auxiliary and the
allylic 1,3-strain of the amide that froze the conformation between the stereocenter of the auxiliary and
the nitrogen.
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6.3. α-PEA and Its Derivatives in the Diastereoselective Cyclization Reaction

Synthesis of chiral heterocyclic compounds via cyclization constitutes an important part of
organic chemistry. Stereoselective cyclizations are often key reactions in the synthesis of natural
products. α-PEA and its derivatives have recently been used as chiral auxiliaries in the corresponding
diastereoselective reactions. These processes were applied to obtain piperidin-2-ones, lactams,
imidazole, and indole derivatives, the compounds expected to exhibit biological activities. Thus,
in 2014, Terán and coworkers described an effective procedure for the synthesis of cyclic α-amino
acids, specifically 4-substituted piperidine-2-carboxylic acid and its derivatives with pharmacological
activity [56]. The procedure was based on ring-closing metathesis (RCM) to build the α,β-unsaturated
piperidin-2-ones derived from (S)-α-PEA (Scheme 33).

Another strategy for the synthesis of cyclic compounds is using the Pomeranz–Fritsch–Bobbitt
and the Petasis reactions. The Rozwadowska group used this method for the preparation of
(+)-6,7-dimethoxy1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid (90% ee) [57]. In the first step,
dimethoxyacetaldehyde reacted with chiral amines such as (S)-α-PEA, followed by a NaBH4 reduction
at reflux to give the appropriate acetate in 90% yield. Then, these compounds were transformed into
the appropriate acid (Scheme 34) [57].

Other important compounds synthesized by cyclization are chiral tetrahydro-3-benzazepines.
These derivatives interact with σ1 receptors, which play a key role in controlling the activity of various
ion-channels and neurotransmitter systems. Therefore, the synthesized compounds are prospective
psychoactive drugs. In their synthesis, the important first step required enantiomerically pure
(R)-α-PEA as a chiral auxiliary for the formation of diastereomeric lactams in 80:20 dr (Scheme 35) [58].
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3-Substituted-3-hydroxy-2-oxindoles are key intermediates for the synthesis of furoindolines
and pyrroloindole-based natural products [59]. Their synthesis was based on the application of an
α-PEA-containing chiral auxiliary. The acetate aldol reaction, which was developed earlier by the same
group [43], when run with N-substituted isatin, afforded the corresponding adducts with high yields
and diastereoselectivity (Scheme 36) [59].
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Recently, chiral 1,3-oxazolidin-2-ones have been devised as an efficient chiral auxiliary to
synthesize carboxylic compounds [60]. Consequently, (R)- or (S)-α-PEA fragment was used for
the diastereoselective induction in the 4-oxazolin-2-one scaffold at the C-4 and C-5 stereocenters
(Scheme 37).
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6.4. Asymmetric Aminocarbonylation of Iodoalkenes

The palladium-catalyzed aminocarbonylation of alkenyl iodides enjoys interest as an important
method for the introduction of new carbonyl functionality in organic compounds. Kollár’s group
described the stereochemistry of products obtained in the asymmetric aminocarbonylation of
iodoalkenes [61]. They presented the reaction of chiral iodoalkenes with α-PEA in the presence
of Pd catalyst. All possible epimers were synthesized and fully characterized. However, very low
(mostly negligible) diastereoselectivities were observed (Scheme 38).Molecules 2020, 25, x FOR PEER REVIEW 20 of 36 
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Multicomponent amino alkylations are preferentially used to build two new bonds in one step.
Primary amines reacting with carbonyl derivatives (aldehydes or ketones) form reactive Schiff bases,
to which, in turn, various nucleophiles can be added.
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The Kabachik–Fields condensation of aldimines is one of the most commonly used reactions
to prepare α-aminophosphonate derivatives. Recently, a solvent-free method for the synthesis
of optically active α-aminophosphonates has been described [62]. The authors used microwave
(MW)-assisted Kabachnik–Fields condensations of (S)-α-PEA (A), paraformaldehyde (B), and various
R2P(O)H (C) reagents. Depending upon the A/B/C molar ratio (1:1:1 or 1:2:2) of substrates, either
(S)-diphenyl-α-phenylethylaminomethylphosphine oxide or (S)-bis(diphenylphosphinoylmethyl)-
α-phenylethylamine was obtained as a product (Scheme 39). The products were isolated in 97% and
92% yields, respectively. After deoxygenation with phenylsilane, the optically active bis-phosphine
was converted to chiral platinum(II) complexes, including an unusual tetradentate structure [62].
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Since the preparation of single stereoisomers of aminoalkylation products is of considerable
synthetic importance, there is still much interest in new gentle and direct approaches, including
applying the Mannich reaction and Betti synthesis. Palmieri described a short synthesis of
benzo[f]chromen-3-amine derivatives using a three-component aromatic Betti-type reaction [63].
The enantiomerically pure products were obtained fromβ-naphthol, chiralα-PEA, andα,β-unsaturated
aldehydes (Scheme 40) [63].
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Another three-component Mannich-type synthesis was developed for the simple preparation
of enantiomerically pure 3-indolylglycines (Scheme 41). Despite the medium diastereoselectivity
of the Mannich reaction (80/20 dr), the pure diastereomer was easily separated, and the selective
N-debenzylation was performed with triethylammonium formate catalyzed by Pd/C, resulting in the
enantiomerically pure (S)-indolylglycine [64].
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6.6. Novel Derivatives of α-PEA. Synthesis of Enantiomeric Guanidines and Guanidinium Salts

Guanidines and guanidinium salts are often used in organic synthesis (strong bases, catalysts,
or ionic liquids) and also constitute a part of natural compounds (L-arginine, polycyclic marine
alkaloids). Jäger and coworkers described the new efficient synthesis of chiral guanidines and
guanidinium salts based on optically active α-PEA (Scheme 42) [65]. Unfortunately, the attempted
catalytic use of the obtained guanidine and guanidinium iodide in asymmetric transformations
(Morita–Baylis–Hillman, Michael, and epoxidation reactions) did not result in a noteworthy
stereoinduction [65].
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6.7. Novel Derivatives of α-PEA. Synthesis of Enantiomeric Derivative of Imidazole N-Oxides

Chiral amines, including α-PEA, are often used as a starting material for the synthesis of novel,
optically active heterocyclic systems. The products are designed as the prospective chiral ligands.
For this purpose, an efficient method for preparing enantiomeric imidazole N-oxides was developed by
Mlostoń and coworkers [66]. Chiral acetylacetate amide was prepared by the reaction of acetylketene
with (S)-α-PEA. Subsequent nitrosation of β-oxoamide led to the intermediate being transformed into
enantiomerically pure 3-oxidoimidazole-4-carboxamides with good yield (Scheme 43).

Molecules 2020, 25, x FOR PEER REVIEW 21 of 36 

 

Another three-component Mannich-type synthesis was developed for the simple preparation of 

enantiomerically pure 3-indolylglycines (Scheme 41). Despite the medium diastereoselectivity of the 

Mannich reaction (80/20 dr), the pure diastereomer was easily separated, and the selective N-

debenzylation was performed with triethylammonium formate catalyzed by Pd/C, resulting in the 

enantiomerically pure (S)-indolylglycine [64]. 

 

Scheme 41. Three-component Mannich-type reaction gave the (R,S)-diastereomer, transformed by 

selective N-debenzylation to enantiopure (S)-indolylglycine. 

6.6. Novel Derivatives of α-PEA. Synthesis of Enantiomeric Guanidines and Guanidinium Salts  

Guanidines and guanidinium salts are often used in organic synthesis (strong bases, catalysts, 

or ionic liquids) and also constitute a part of natural compounds (L-arginine, polycyclic marine 

alkaloids). Jäger and coworkers described the new efficient synthesis of chiral guanidines and 

guanidinium salts based on optically active α-PEA (Scheme 42) [65]. Unfortunately, the attempted 

catalytic use of the obtained guanidine and guanidinium iodide in asymmetric transformations 

(Morita–Baylis–Hillman, Michael, and epoxidation reactions) did not result in a noteworthy 

stereoinduction [65]. 

 

Scheme 42. Synthesis of chiral (S,S,S)-tris-(1-phenylethyl)guanidine and guanidinium salts from (S)-

α-PEA. 

6.7. Novel Derivatives of α-PEA. Synthesis of Enantiomeric Derivative of Imidazole N-Oxides 

Chiral amines, including α-PEA, are often used as a starting material for the synthesis of novel, 

optically active heterocyclic systems. The products are designed as the prospective chiral ligands. For 

this purpose, an efficient method for preparing enantiomeric imidazole N-oxides was developed by 

Mlostoń and coworkers [66]. Chiral acetylacetate amide was prepared by the reaction of acetylketene 

with (S)-α-PEA. Subsequent nitrosation of β-oxoamide led to the intermediate being transformed into 

enantiomerically pure 3-oxidoimidazole-4-carboxamides with good yield (Scheme 43). 

 

Scheme 43. Synthesis of imidazole N-oxides. Scheme 43. Synthesis of imidazole N-oxides.

6.8. α-PEA in the Strecker Reaction

An interesting study on the stereochemistry of the synthesis of new 2-amino-2-C-D-
glycosyl-acetonitriles was carried out using the Strecker reaction. The products are important
building blocks for synthetic carbohydrate chemistry. Various C-glycosyl aldehydes were reacted
with (R)- or (S)-α-PEA to afford the respective Schiff bases. The thiourea-catalyzed reaction with
a cyanide donor occurred at re-face in both cases, and the nucleophilic addition of HCN gave
predominantly R-configured C-glycosyl aminoacetonitriles. Higher diastereoselection was observed
for (S)-α-PEA-imine than for the (R)-α-PEA analog. The origin of this difference remains obscure
(Scheme 44) [67].
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6.9. Synthesis of Chiral Amino Alcohols and Diamines from α-PEA

Enantiomerically pure β-amino alcohols and diamines are important chiral building blocks
and catalysts in asymmetric reactions. Recently, the synthesis of chiral 2-pyridinyl- and 6-(2,2′-
bipyridinyl)-β-amino alcohols was reported [68]. The products were formed by ring opening of the
corresponding 2-oxiranyl-compounds with chiral α-PEA and in the catalytic presence of scandium(III)
trifluoromethanesulfonate (Scheme 45). The enantiomerically pure pyridine-β-amino alcohols were tested
as chiral ligands in the zinc-catalyzed asymmetric aldol reaction with up to 55% ee outcome [68]. These
compounds were further transformed into the respective diamines in a sequence of reactions involving
the ring opening of the intermediate aziridines with HN3. Moreover, the enantiomerically pure β-amino
alcohols were transformed into cyclic sulfamidates, and these compounds were reacted with sodium
azide. After the Staudinger reduction, a series of diastereomeric vic-diamines with different stereo- and
regiochemistry was obtained (Scheme 45) [69].
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6.10. Removal of α-PEA Used as Chiral Auxiliary

Simple acidic extraction (aqueous 2M HCl or 10% H2SO4) allowed for recovery of chiral α-PEA
after its use in optical resolution via diastereomeric salt formation, cf. Scheme 9. However, when α-PEA
was employed as a chiral auxiliary, its liberation usually required splitting the corresponding chemical
bonds. If an imide connection (a Schiff base) was applied, then again aqueous HCl was mostly enough
for the α-PEA recovery. In some cases, the hydrolysis must be facilitated by the addition of NaHSO3

and thus the formed bisulfite allows for the removal of the carbonyl partner from the equilibrium, cf.
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Scheme 23. The cleavage of α-PEA-amides was usually carried out by hydrolysis in 6N HCl at 90 ◦C,
cf. Scheme 29. For the splitting of the whole α-(methyl)benzyl moiety, catalyzed direct hydrogenolysis
(Pd/C, H2, e.g., see, Scheme 30) or hydrogen-transfer debenzylation (see, Scheme 41) was used.

7. Synthesis and Application of Chiral Ligands with α-PEA Fragments in Asymmetric Reactions

7.1. Enantioselective Arylation of N-Heteroaryl Aldimines and Hydrogenation Catalyzed by Ligands with
PEA Fragments

An efficient stereoselective synthesis of chiral secondary amines attracts much interest because of
the products’ potential pharmaceutical use. Recently, Zhou and coworkers described copper-catalyzed
enantioselective arylation [70]. The catalytic reaction of N-azaaryl aldimines with arylboroxines was
carried out in the presence of the prepared chiral phosphorus ligands with chiral α-PEA fragments.
The best catalytic effects (up to 95% yield and 90% ee) were observed for the modular ligands with
α-PEA moieties (Scheme 46).
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Other groups have synthesized a library of modular ligands with chiral α-PEA and phosphine-
phosphoramidite fragments [71]. For the ligand synthesis, see below Scheme 50. The described dia- and
enantioselective Ir-catalyzed hydrogenation of 3-alkyl-2-arylquinolines gave the product with a high yield
and up to 94% ee (Scheme 47).Molecules 2020, 25, x FOR PEER REVIEW 24 of 36 
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7.2. Catalyzed Enantioselective Addition of Organo-Zinc to Aldehydes

The asymmetric addition of organo-zinc compounds to ketones or aldehydes leads to important
chiral building blocks. Particularly, the catalytic transfer of the phenyl entity to aromatic aldehydes
has attracted attention. For this purpose, new chiral tertiary aminonaphthol ligands were obtained
in the reaction of 2-naphthol, (S)-α-PEA, and substituted benzaldehydes [72]. The ligands were
screened in the Zn(II)-catalyzed asymmetric phenyl transfer from phenylboronic acid to the carbonyl
of p-chlorobenzaldehyde. The reaction was run in toluene, in the presence of poly(ethylene
glycol) dimethyl ether (DiMPG, 10 mol%). The arylation product was formed with high yield
and enantioselectivity (up to 91%, 94% ee) (Scheme 48).
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Scheme 48. The asymmetric phenyl transfer reaction using various chiral aminonaphthol ligands.

A series of chiral 1,3-aminonaphthols was synthesized using a Betti-type reaction between mono-
or dihydroxy naphthalenes, aldehydes, and (S)-α-PEA [73]. Thus, the obtained modular ligands were
applied in the enantioselective addition of Et2Zn and alkynyl-Zn to ferrocencarbaldehyde (Scheme 49).
All the ligands with (S)-α-PEA fragments gave the R isomer of the product with good yield and
enantioselectivity [73].Molecules 2020, 25, x FOR PEER REVIEW 25 of 36 
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Scheme 49. Addition of diethylzinc and alkynyl-Zn-reagents to aldehydes.

Asami and coworkers synthesized a library of thirteen 1,4-amino alcohols, which were checked in
the enantioselective addition of diethylzinc to benzaldehydes [74]. In all cases, 1-phenyl-1-propanol
(S configuration) was obtained in high yield and enantioselectivity, regardless of the configuration at
the second center of the ligand (Scheme 50).
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7.3. Asymmetric Hydrogenation Reactions

Similar 1,4-amino alcohol ligands derived from (S)-α-PEA were prepared by a one-pot ortho-lithiation
followed by a reaction with the carbonyls. Xiang-Ping Hu and coworkers used chiral amino alcohols as
effective catalysts in the Ru-catalyzed asymmetric transfer hydrogenation of aromatic alkyl ketones [75].
The authors concluded that the amino alcohols’ structure influenced the conversion and enantioselectivity,
and the less sterically demanding ligand gave higher enantioselectivity (Scheme 51).

Molecules 2020, 25, x FOR PEER REVIEW 26 of 36 

 

7.3. Asymmetric Hydrogenation Reactions  

Similar 1,4-amino alcohol ligands derived from (S)-α-PEA were prepared by a one-pot ortho-

lithiation followed by a reaction with the carbonyls. Xiang-Ping Hu and coworkers used chiral amino 

alcohols as effective catalysts in the Ru-catalyzed asymmetric transfer hydrogenation of aromatic 

alkyl ketones [75]. The authors concluded that the amino alcohols’ structure influenced the 

conversion and enantioselectivity, and the less sterically demanding ligand gave higher 

enantioselectivity (Scheme 51). 

 

Scheme 51. Ru-catalyzed asymmetric transfer hydrogenation of acetophenone. 

Catalytic hydrogenation is one of the most powerful and practical ways to access chiral 

compounds. Bidentate phosphorus ligands were used as efficient catalysts in this type of reaction. 

The Xiao-Mao Zhou group transformed enantiomeric α-PEA to prepare a series of chiral phosphine-

aminophosphine ligands (Scheme 52) [76]. They used these ligands in the Rh-catalyzed asymmetric 

hydrogenation of olefins. Many different ligands were tested, and various functionalized olefins were 

transformed into the products with almost complete conversion and high enantioselectivity (Scheme 52). 

 

 

Scheme 52. Rh-catalyzed asymmetric hydrogenation of olefins. 

Scheme 51. Ru-catalyzed asymmetric transfer hydrogenation of acetophenone.



Molecules 2020, 25, 4907 26 of 35

Catalytic hydrogenation is one of the most powerful and practical ways to access chiral compounds.
Bidentate phosphorus ligands were used as efficient catalysts in this type of reaction. The Xiao-Mao
Zhou group transformed enantiomeric α-PEA to prepare a series of chiral phosphine-aminophosphine
ligands (Scheme 52) [76]. They used these ligands in the Rh-catalyzed asymmetric hydrogenation of
olefins. Many different ligands were tested, and various functionalized olefins were transformed into
the products with almost complete conversion and high enantioselectivity (Scheme 52).

 

Scheme 52. 

 

Scheme 52. Rh-catalyzed asymmetric hydrogenation of olefins.

The same group reported another class of phosphine-phosphoramide chiral ligands with a
3,3′-substituted chiral binaphthyl fragment. These compounds were successfully tested in the
catalytic reaction of asymmetric hydrogenation. Thus, ethyl (Z)-β-phenyl-β-(acetylamino)acrylate in
methanol was reacted with gaseous hydrogen in the catalytic presence of Rh complexed with the new
ligands. (S)-β-phenyl-β-(acetylamino)propanoate was obtained with excellent substrate conversion
and enantioselectivity (Scheme 53) [77].
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7.4. Deprotonations of Bicyclic Amino Ketones

Asymmetric deprotonation combined with the aldol reaction allows for the enantioselective
formation of a new C-C bond. Nodzewska and coworkers described a simple procedure for the
synthesis of N-benzhydryl-derivatives of α-PEA via direct N-alkylation [78]. The lithium amides of
this chiral secondary amine were used in the asymmetric deprotonation of tropinone analogs, followed
by the aldol reaction with aldehydes giving products in high diastereomeric purities and enantiomeric
excesses of 77 to 96% (Scheme 54) [78].
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7.5. Polymerization of Rac-Lactide

Chiral ligands with α-PEA fragments have been synthesized and used to synthesize four novel
chiral zinc and aluminum complexes. Their structures were confirmed by X-ray diffraction analyses.
All complexes were active catalysts for the stereoselective polymerization of rac-lactide to isotactic
polylactide, and the product was obtained in up to 97% yield (Scheme 55) [79].Molecules 2020, 25, x FOR PEER REVIEW 28 of 36 
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8. α-PEA and Its Derivatives in Organocatalysis

8.1. Direct Use of α-PEA as an Organocatalyst

In some cases, small chiral molecules, as enantiomeric α-PEA itself, exhibited interesting catalytic
properties. In the last decade, three organocatalytic reactions of this type have been reported.
Specifically, the intramolecular tandem Michael–Henry reaction [80], α-fluorination of ketones [81],
and Wittig rearrangement of ketones [82] were effectively carried out with α-PEA as an organocatalyst.

The first organocatalyzed reaction was the enantioselective formal [3 + 2] cyclization
between 2,3-butanedione and conjugated nitroolefins in the presence of α-PEA (20 mol%).
The reaction led to good yield and substantial diastereoselectivity of enantiomerically enriched
2-hydroxy-3-nitrocyclopentanones (Scheme 56) [80].
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The second example refers to the enantioselective synthesis of both enantiomers of
cis-1-Boc-3-fluoropiperidin-4-ol by fluorination catalyzed through chiral primary amines. The reaction
catalyzed by commercially available amines, including α-PEA, resulted in similar enantioselectivity
levels as attained with epi-9-aminoquinine. The piperidinols readily crystallized to the enantiopure
material (Scheme 57). The products are important building blocks for the synthesis of pharmacologically
active compounds [81].
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The third case involves the organocatalytic effect of α-PEA in sigmatropic [2,3]-Wittig
rearrangement of allyloxyketones described in 2019 by the Šebesta group. Catalytic studies were
carried out on many substrates, and numerous products were obtained in good yields and high
enantiomeric excesses (Scheme 58) [82].
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8.2. Enantioselective Aldol Addition

The products of direct asymmetric aldol reactions are molecular fragments of important molecules,
often required by the pharmaceutical industry. This application creates persisting interest in the
development of appropriate organocatalysts, thus avoiding metal catalysts, which are difficult
to remove.

Thus, Yadav and Singh described the synthesis of trans-4-hydroxy-(S)-prolinamide with α-PEA
fragments [83]. These organocatalysts were used with good results in the model aldol reaction between
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cyclohexanone and p-nirobenzaldehyde. The corresponding product was formed with almost complete
conversion and high enantioselectivity up to 97% ee for the anti diastereoisomer (Scheme 59).
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The next class of compounds devised as catalysts for the aldol reaction was chiral
tetraoxacalix[2]arene[2]triazines. These organocatalysts based on chiral α-PEA were tested in the
asymmetric aldol reaction of ketones with various aldehydes [84]. The adducts were obtained in
71–92% yields with good to excellent enantioselectivities (78–99%) (Scheme 60).Molecules 2020, 25, x FOR PEER REVIEW 30 of 36 
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8.3. Enantioselective Micheal Addition

An interesting example of the enantioselective Michael reaction was recently described for chiral
α-PEA-containing organocatalysts. The work published concerned the catalytic performance of chiral
bifunctional thioureas N-substituted with methyl or trifluoromethyl groups in the Baylis–Hillman
and Michael reactions [85]. In the presence of organocatalysts containing α-PEA fragments, the
addition of isobutyraldehyde to N-phenylmaleimide gave the respective product with high yield and
ee (Scheme 61). Noticeably, the observed asymmetric induction was governed by the configuration of
the 1,2-diaminocyclohexane part.
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9. Summary and Outlook

Despite the commercial availability of enantiomeric α-PEA, new advancements in its preparation
and resolution were recorded. The lipase-catalyzed dynamic kinetic resolution was efficient with
α-alkoxyacetic acid esters, and new synthetic techniques were used for these processes. Further,
the effective resolution of other acidic compounds was carried out with enantiomeric α-PEA. For the
amides of α-PEA, a self-disproportionation of enantiomers was documented. The use of α-PEA as a
chiral auxiliary was mostly directed to the synthesis of medicinal substances and natural products,
including 5-, 6-, and 7-membered chiral nitrogen heterocycles. It is noteworthy that even if the observed
reaction diastereoselectivity was poor or medium, the α-PEA stereodifferentiating properties allowed
simple separation of diastereomers by crystallization or chromatography. Particularly promising were
numerous catalytic applications of modular chiral ligands and organocatalysts with α-PEA moieties.

Thus, the last decade witnessed successful syntheses using α-PEA-based chiral auxiliaries and
encouraging outcomes of catalytic experiments. These recently achieved results stimulate further
research, and rapid development in this field is anticipated.
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