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Abstract

Background: The exonization of transposable elements (TEs) has proven to be a significant mechanism for the
creation of novel exons. Existing knowledge of the retention patterns of TE exons in mRNAs were mainly
established by the analysis of Expressed Sequence Tag (EST) data and microarray data.

Results: This study seeks to validate and extend previous studies on the expression of TE exons by an integrative
statistical analysis of high throughput RNA sequencing data. We collected 26 RNA-seq datasets spanning multiple
tissues and cancer types. The exon-level digital expressions (indicating retention rates in mRNAs) were quantified by
a double normalized measure, called the rescaled RPKM (Reads Per Kilobase of exon model per Million mapped
reads). We analyzed the distribution profiles and the variability (across samples and between tissue/disease groups)
of TE exon expressions, and compared them with those of other constitutive or cassette exons. We inferred the
effects of four genomic factors, including the location, length, cognate TE family and TE nucleotide proportion (RTE,
see Methods section) of a TE exon, on the exons’ expression level and expression variability. We also investigated
the biological implications of an assembly of highly-expressed TE exons.

Conclusion: Our analysis confirmed prior studies from the following four aspects. First, with relatively high
expression variability, most TE exons in mMRNAs, especially those without exact counterparts in the UCSC RefSeq
(Reference Sequence) gene tables, demonstrate low but still detectable expression levels in most tissue samples.
Second, the TE exons in coding DNA sequences (CDSs) are less highly expressed than those in 3" (5') untranslated
regions (UTRs). Third, the exons derived from chronologically ancient repeat elements, such as MIRs, tend to be
highly expressed in comparison with those derived from younger TEs. Fourth, the previously observed negative
relationship between the lengths of exons and the inclusion levels in transcripts is also true for exonized TEs.
Furthermore, our study resulted in several novel findings. They include: (1) for the TE exons with non-zero
expression and as shown in most of the studied biological samples, a high TE nucleotide proportion leads to their
lower retention rates in MRNASs; (2) the considered genomic features (i.e. a continuous variable such as the exon
length or a category indicator such as 3'UTR) influence the expression level and the expression variability (CV) of TE
exons in an inverse manner; (3) not only the exons derived from Alu elements but also the exons from the TEs of
other families were preferentially established in zinc finger (ZNF) genes.
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Background

Recent years have witnessed the emergence of a few high
throughput technologies, i.e. Affymetrix exon array and
RNA-seq platforms, for generating large-scale exon-level
gene expression profiling. While array-based data have
been widely employed to study transcript splicing [1-3],
there are inherent limitations of this technique, such as
the potential cross-hybridization of the probes of one
exon to the transcript of another exon, and the incom-
plete probe coverage [3,4]. Especially, because the probe
design for a gene is based on the exons included in one
or multiple manually annotated or computationally pre-
dicted gene models [5], many infrequently used exons
are never represented by any probe, and therefore their
expression levels cannot be measured accordingly. This
problem can be circumvented by RNA-seq technology,
which provides hypothesis-free single nucleotide reso-
lution of gene expression so that, theoretically, any ex-
pressed sequence can be detected and quantified, given
appropriate computational/statistical methods and suffi-
cient sequencing depth. RNA sequencing based gene ex-
pression data have become the major information source
for detecting alternative splicing (AS), alternative cleavage,
polyadenylation (APA) events, gene fusions, and splicing
eQTLs (expression Quantitative Trait Loci) [4,6-11].

Transposable elements (TEs) constitute approximately
44% of the human genome. In disease biology, the im-
portance of TEs is highlighted by the potential associ-
ation with genetic instability, one of the principal
hallmarks and causative factors in cancer [12-15]. A re-
cent study showed that Estrogen Receptor a (ERa),
which is involved in human breast cancer, preferentially
targets mammalian interspersed repeats (MIRs) transpo-
sons [16]. The exonization of mutated TE sequences has
proven to be a significant mechanism for the creation of
novel exons [17-20]. In the TranspoGene database, 1423
human exonized TEs (TE exons), involved in ~1700
RefSeq genes, have been collected [21]. Most TE exons
are alternatively spliced during the post-transcriptional
modification of RNAs [22]. Nevertheless, they are not
infrequent in mature transcripts [4,21,23]. Past studies
have suggested the diverse roles of TE alternative spli-
cing in gene regulation [24-27]. Many human genetic
diseases have been ascribed to TE exonization [28-30].
Analysis of single nucleotide polymorphisms (SNPs) also
revealed that exonization of TEs can be population-
specific, implying that exonizations may enhance diver-
gence and lead to speciation [20].

The retention and splicing of a TE exon has been
found related to multiple genomic factors, such as the
TE category and exon length [21,31]. These published
results were mainly established by the analysis of EST and
microarray data using descriptive statistical methods,
where other factors cannot be considered simultaneously
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when inferring the effect of a specific one. In this work,
we extended the previous studies by an integrative statis-
tical analysis of multiple RNA sequencing data. In particu-
lar, we not only studied the digital expression levels of TE
exons but also addressed the variability quantities of TE
exon expressions across different biological samples and
groups. Our findings provide advanced insights into the
establishment level of TE exons and their roles in the evo-
lution of human genome.

Results

We collected 26 published RNA-seq datasets spanning
multiple tissues and cancer types [9,32-36]. Each of them
has at least 30 million Illumina sequence reads of 33-75
bp and is from a genetically or pathologically specific
sample. An exception is the dataset for liver tissue,
which was generated by combining six subsets of differ-
ent individuals. The gene- and exon-level digital expres-
sion is inferred by the approach presented in the
Methods section. The details of sample collection and
reads mapping are summarized in Table 1.

Expression of TE exons and the comparison with
constitutive and cassette exons

By integrating the UCSC RefSeq annotation for human
genome version 19 (hgl9) [37] and the human TE exon
information collected in the TranspoGene database [21],
we established four exon classes (C1-C4). C1 contains
207498 non-TE-derived constitutive exons. C2 contains
42457 non-TE-derived cassette exons. C3 contains 215
annotated TE-derived exons. C4 contains 1191 previ-
ously un-annotated TE-derived exons. We regarded an
exon as a “TE-derived” or “non-TE-derived” exon if it is
present in or absent from the TranspoGene human
exonized TEs table. We categorized a non-TE-derived
exon as a “cassette” or “constitutive” exon if it is included
or isn’t included in the UCSC known Alt table [21]. We la-
beled a TE exon to be “annotated” or “un-annotated” if it
has or doesn’t have an exact counterpart with the same
coordinates (i.e. the starting and ending positions in the
genome) in the UCSC RefGene table. Furthermore, we
simulated a fictional exon class (C5), which consists of
1191 intronic sequences immediately downstream of the
C4 exons with the lengths equal to the corresponding C4
exons. For each class, we calculated the sample-specific ra-
tios of un-expressed exons, and the mean and standard
deviation of expression levels for the exons with minimum
post-transcriptional retention (i.e., at least one read was
mapped on the genomic region). The expression level was
quantified by a double normalized measure (see Methods
section), called the rescaled RPKM. This measure can well
represent the inclusion level, which can’t be directly evalu-
ated by the primary RPKM, of an exon in the transcripts
coded by the host gene. Before the computation, we
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Table 1 Summary of the analyzed samples and datasets®

Sample ID Sample description Platform Mapped reads Filtered reads Resources

BT20 ER- breast cancer cell line P/50 137897876 118362274 GEQO: GSE27003; Sun et al,, 2011 [35]
MDAMB231 ER- breast cancer cell line P/50 96483262 80759008 Same as above

MDAMB468 ER- breast cancer cell line P/50 123622490 104468212 Same as above

MCF7 ER + breast cancer cell line P/50 129592066 107422464 Same as above

BT474 ER + breast cancer cell line P/50 131597078 110877774 Same as above

T47D ER + breast cancer cell line P/50 119708904 99784684 Same as above

ZR751 ER + breast cancer cell line P/50 107891488 90362316 Same as above

MCF10A Normal breast cell line P/50 125148556 108184998 Same as above

LNCaP Prostate cancer cell line S/35 38953595 27126677 GEO: GSE29155; Kim et al,, 2011 [33]
PreC Normal prostate cell line P/35 27825207 22366081 Same as above

LCL-1° Lymphocyte cell lines P/36,38 64168681 54301769 GEO: GSE25030; Montgomery et al., 2010 [34]
LCL-2 Lymphocyte cell lines P/36,38 71571009 60017609 Same as above

OV-1-p° Ovarian cancer cell line p/42 75756477 69739708 SRA: ERPO00710 [36]

OV-1-re Ovarian cancer cell line p/42 95813480 89853848 Same as above

OV-2-i Ovarian cancer cell line p/42 90793509 84057374 Same as above

OV-2-se Ovarian cancer cell line p/42 100491160 93088808 Same as above

OV-3-pr Ovarian cancer cell line p/42 72611523 66647818 Same as above

OV-3-re Ovarian cancer cell line p/42 89393849 84067652 Same as above

prAd_1¢ Prostate adenocarcinoma S/33 32495059 23386861 GEO: GSE24283; Nacu et al, 2011 [9]
prAd_2 Prostate adenocarcinoma S/33 34663805 24398162 Same as above

prAd_3 Prostate adenocarcinoma S/33 66976637 48613865 Same as above

prNorm_1 Normal prostate tissue S/50,75 37201269 30394802 Same as above

prNorm_2 Normal prostate tissue S/50 37451643 30392995 Same as above

prNorm_3 Normal prostate tissue S/33 33511439 25294452 Same as above

Brain Brain tissue S/50 48741218 42660318 Same as above

Liver Liver tissue S/35 31258238 26253587 GEQ: GSE17274; Blekhman et al,, 2010 [32]

$The letters and numbers in the third column represent sequencing types, single read (S) or paired-end reads (P), and read lengths, respectively. We excluded the
non-primary hits when counting the mapped reads (fourth column). The numbers of unambiguously mapped reads are listed in the column of filtered reads.
#LCL-1 and -2 are Coriell human lymphocyte lines NA12892 and NA19238.

b_1, -2 and -3 indicate the IDs of the cell lines. —pr, -re, -fi, and -se indicate the clinical history. They represent “present”,

relapse”, respectively.
€1, -2 and -3 are the IDs of prostate adenocarcinoma (or normal prostate tissue) samples.
%The data sets of 12 liver samples (replicates) were combined before we mapped reads to the human genome and the computationally identified exon-exon junctions.

filtered out the exons in the “un-expressed” genes whose
RPKMs were below a sample-specific cutoff. The cutoffs
were determined by the RPKMs of 500 fictional genes,
each of which is composed of 4—-40 simulated exons in
C5. Hereafter, we conducted all statistical analysis on the
exons in the “expressed” genes and abbreviated the class
names of C1 and C2 as “constitutive exons” and “cassette
exons”, respectively.

As shown in Table 2, the decreasing trend of the ex-
pression levels and the increasing trend of the un-
expressed exon ratios, in the order of C1, C2, C3, C4
and C5, are apparent and consistent across the 26 sam-
ples. We herein conducted a set of stepwise statistical
tests. That is, we determined the significance levels of
four comparisons, i.e. C1 versus C2, C2 versus C3, C3

" ou

relapse”, “first relapse” and “second

versus C4 and C4 versus C5, by performing a Mann—
Whitney test (for the first three comparisons of inde-
pendent groups) or a Wilcoxon signed-rank test (for C4
versus C5, a comparison of paired groups). The corre-
sponding p-values are listed in the columns 4, 7, 10 and
13 of Table 2, respectively. As expected, cassette exons
(C2) are less expressed compared to constitutive exons
(C1) (p << 4.33e-26). Annotated TE exons (C3) contain
both constitutive exons (30%) and non-constitutive
exons (70%), but the expression levels on average are
less than half of the cassette exons’ (C2) expression.
Typically, 17-60% of the exons in this class are un-
expressed with respect to different samples. The max-
imum p-value for C3 versus C2 comparisons is 1.82e-14.
The expressions level of C3 exons is significant higher
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Table 2 Statistical analysis on the digital expressions of the exons in different classes

Sample Constitutive exons Cassette exons Annotated TE exons Un-annotated TE exons
R M p R M R M p R M p

BT20 0.03 0.98 1.72E-36 0.07 091 3.11E-29 0.26 038 4.28E-20 0.51 0.07 7 743E-20
MDAMB231 0.05 0.98 1.89E-49 0.09 0.9 4.67E-28 033 042 2.20E-19 0.6 0.07 7.65E-16
MDAMB463 0.04 0.99 4.64E-69 0.08 09 9.92E-33 0.28 036 8.99E-23 0.58 0.07 3.54E-12
MCF7 0.03 0.99 891E-64 0.07 0.89 1.75E-34 03 031 254E-12 048 0.07 145E-20
BT474 0.03 0.99 381E-62 0.08 09 431E-34 0.36 035 6.87E-13 0.53 0.07 1.22E-12
T47D 0.04 0.98 4.33E-26 0.08 092 5.72E-34 0.2 035 3.00E-31 0.58 0.06 7.08E-16
ZR751 0.04 0.99 7.93E-58 0.08 09 1.06E-31 0.29 03 326E-19 06 0.07 6.88E-10
MCF10A 0.04 0.99 2.00E-72 0.09 0.89 2.26E-31 0.28 0.36 8.59E-26 0.6 0.06 4.63E-14
LNCaP 0.09 0.99 4.16E-91 0.16 0.88 6.58E-23 039 038 2.99E-21 0.7 0.08 4.12E-05
PreC 0.08 0.99 1.18E-121 0.15 0.86 7.20E-28 049 033 2.55E-11 0.7 0.08 6.84E-05
LCLs 0.02 0.99 2.92E-136 0.06 0.86 9.98E-35 0.18 03 3.05E-24 045 0.06 1.00E-15
OV-1-pr 0.02 0.98 9.29E-50 0.05 091 4.59E-43 023 0.29 3.65E-15 0.39 0.08 1.17E-07
OV-1-re 0.03 1 2.53E-188 0.06 0.84 1.32E-36 0.17 03 6.77E-19 039 0.08 3.36E-06
OV-2-fi 0.02 0.99 1.29E-153 0.05 0.86 3.86E-35 0.17 0.34 6.15E-16 0.29 0.11 8.54E-07
OV-2-se 0.02 0.99 843E-77 0.04 0.89 6.42E-46 02 03 2.13E-13 0.31 0.09 4.55E-07
OV-3-pr 0.03 0.99 201E-162 0.07 0.84 7.23E-42 035 023 2.60E-08 047 0.1 1.19E-01
OV-3-re 0.02 0.99 2.39E-109 0.05 0.87 1.84E-40 0.17 0.27 1.51E-16 04 0.08 4.65E-07
prAd_1 0.14 1 1.24E-256 0.25 0.71 1.82E-14 057 0.28 243E-12 0.81 0.05 242E-01
prAd_2 0.12 1.01 7.82E-292 022 0.72 6.88E-17 06 03 7.12E-10 0.79 0.05 2.50E-01
prAd_3 0.07 1.02 0.00E + 00 0.16 0.71 3.15E-19 046 0.27 7.33E-13 0.7 0.05 1.83E-02
prNorm_1 0.07 0.99 7.83E-170 0.13 0.83 249E-34 042 03 135617 0.68 0.06 223E-06
prNorm_2 0.07 0.99 141E-172 0.12 0.83 233E-26 04 033 1.39E-14 065 0.07 2.01E-05
prNorm_3 0.13 1.01 5A47E-288 0.23 0.74 7.63E-16 0.55 0.35 349E-12 0.78 0.06 7.63E-02
Brain 0.04 0.99 6.99E-183 0.09 0.84 5.03E-26 031 031 1.70E-13 0.54 0.08 1.30E-09
Liver 0.08 1 8.84E-124 0.15 0.85 5.08E-28 052 0.26 1.19E-06 0.68 0.09 1.67E-01

R: the proportion of exons with no reads mapped to the genomic regions in the alignment among the entire set of exons in the corresponding categories. M: the
average of the rescaled RPKMs. p: the p-values for stepwise comparisons (see Results section for details).

than that of the previously un-annotated TE exons (C4)
with the maximum p-value less than 1.19e-6. Consider-
ing that ETS databases represent a main information re-
source for gene annotation, it seems certain that
frequently-expressed TE exons are more likely included
in populous transcripts than the less-expressed ones (we
assume that the inclusion of a transcript in RefSeq table
indicates its popularity). However, our main interest is
whether, as a whole, the un-annotated TE exons have
minimum expressions in most samples. The statistical
analysis indicates that the expression signals of these TE
exons are detectable. In the comparison between the un-
annotated TE exons (C4) and the simulated exons (C5),
20 of the 26 samples have a p-value less than 0.01, indi-
cating that the un-annotated TE exons (C4) are
expressed at modestly higher and significant levels in
most tissues. Here, the C5 expression represents our
best estimate of background levels of sequences that

may come from DNA contamination or the presence of
unprocessed nuclear RNAs.

We visualized the sample-specific distribution of exon
expression levels in each class (C1-C5) by the histograms
of logl0 transformed rescaled RPKMs. Based on the
visualization (mainly on the profiles for C4. See Figure 1,
Additional files 1 and 2), we divided the 26 samples into
three clusters with respect to the relative levels of ex-
pression. Of the 26 samples, 16 (62%) are in the first
cluster (G1). They include seven breast cancer lines
(BT20, MDAMB231, MDAMB468, MCF7, BT474,
T47D, ZR751); one normal breast cell line (MCF10A);
one prostate cancer cell line (LNCaP); one normal pros-
tate cell line (PrEC); two lymphocyte cell lines (LCL-1, 2);
two normal prostate tissue samples (prNorm-1, 2);
one brain tissue sample, and the combined liver sam-
ple. As demonstrated in Figure 1, the representative plot
for cluster G1, a part of un-annotated TE exons have



Zhang et al. BMC Genomics 2013, 14:584
http://www.biomedcentral.com/1471-2164/14/584

Page 5 of 14

Constitutive exons

0.2 03 04
|

Jm I

[ I I I 1

log10(Rescaled RPKM)

Proportion (N = 111709)

0.0 0.1

Annotated TE exons

Un-Annotated TE exons

Cassette Exons

Proportion (N = 12698 )

| | | T |
log10(Rescaled RPKM)

Simulated Exons

log10(Rescaled RPKM)

of each plot represents the proportion of un-expressed exons.

~~ _ ~~ —~ .
[o0) [e0] ] [ce)

¥ o @ ® © |
- N © < _| ©® o
n o n e 1 —
z - z | Z < |
~ ~ ~ O
§ < - § 8- § o]
B . = O SN
£ © © T N _]
g g - g
n o [ | o ) o ]

o T T T T T 171 © T 1111711 © 71 T 1

log10(Rescaled RPKM)

Figure 1 Histograms for the digital expression levels of TE exons in sample BT20 (representing cluster G1). The black bar on the left side
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apparent expression signals in these samples and the dis-
tribution profiles are distinguishable from the counter-
parts of the simulated exons. The second cluster (G2)
includes all the three prostate adenocarcinoma samples
(prAd-1, 2, 3) and one normal prostate sample (prNorm-3),
where the expression signals of un-annotate TE exons are
very weak (Additional file 1). The last cluster (G3) in-
cludes six samples (OV-1-pr, OV-1-re, OV-2-fi, OV-2-se,
OV-3-pr, and OV-3-re) of three ovarian tumor cell lines at
different pathological stages, where the expression signals
of un-annotated TE exons are strong. However, the reads
mapped on the sequences of the simulated exons are nu-
merous (Additional file 2), indicating substantial existence
of pre-RNAs in those samples.

In light of the apparent association between the
expression-based sample grouping (G1, G2 and G3) and
the tissue/disease type-based classification, a tissue spe-
cific mechanism in gene expression possibly underlies
the differences among G1, G2 and G3 in the profiles of

the retention rates of TE exons. However, this observa-
tion is subject to the potential statistical confusion
caused by the tissue (disease) type effects (if existed) and
the experiment-related batch effects in the analyzed
data. Moreover, the speculated tissue (disease) type ef-
fects warrant further validation with additional data.
Other explanations to the observed association are also
explored in the Discussion section.

Cross-sample variability of the TE exon expressions

The statistical analysis presented above suggested the high
variability of TE exon retention in transcripts. This per-
ception can be further strengthened by comparing the
cross-sample variability of the rescaled RPKMs for exons
in different classes (C1-C4). Firstly, we calculated the coef-
ficients of variance (CVs) for the exons whose host genes
were expressed in at least half of the samples. The results
showed that the CVs of TE exons were abnormally high
with most values falling in the interval 50% — 400%
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(Figure 2). In contrast, although the un-expressed ratios of
cassette exons were at least one time higher than those of
constitutive exons (Table 2), the CV distribution profiles
of both exon classes were largely in the same shape. Then,
we calculated the t-statistics for two comparisons: (1) es-
trogen receptor-positive (ER+) versus estrogen receptor-
negative (ER-) subtypes of breast cancer cell lines, and (2)
prostate adenocarcinoma versus normal prostate tissue. As
shown in Figure 2, the distribution profiles of the t-statistics
in TE exon classes, especially in the un-annotated TE
classes, are different between these two comparisons. The
shape demonstrated a left-skewed single-mode pattern in
(1) but resembled a bimodal distribution in (2). In
addition, using the expression quantities of these exons,
we can largely separate the three prostate tumors from
their adjacent normal tissue samples by a complete-
linkage hierarchical clustering algorithm with Euclidean
distance measure. We attribute this observation to two po-
tential reasons. First, the disease process in the tumor
samples might influence the alternative splicing of the
transcripts of TE exon host genes. Second, there was a
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(not-recorded technical) batch effect in generating the
short read sequencing data for these tumor and normal
prostate samples.

Linear model analysis of the relationship between
genomic factors and TE exon expressions
Based on the TranspoGene/Human exonized TEs table
and a preliminary analysis, we determined four categor-
ical or numerical genomic factors with each individually
associated with the expression levels of TE exons. Then,
we stringently inferred the effects of these factors on the
dependent variables (indicating or measuring TE exon
expression) by a set of linear models. Four factors were
considered as the independent variables (predictors).
They include the location (CDS, 3'UTR, and 5'UTR) of
a TE exon in the host gene; the TE family (Alu, L1, etc.)
to which the exonized TE belongs; the TE exon length
(ELN); and the TE nucleotide proportion (RTE, see
Methods section for the calculation) of a TE exon.

We begin the linear model analysis by a brief descrip-
tion of the two categorical factors. TE exons located in
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Figure 2 Histograms for the variability and standardized inter-class differences of the digital expression levels of TE exons. CV: the
coefficient of variance of the rescaled RPKMs across the 26 samples. BR t-statistic: calculated with the difference and pooled standard deviation of
the rescaled RPKMs for three ER- breast cancer cell lines and four ER + breast cancer cell lines. PR t-statistic: calculated with the difference and
pooled standard deviation of the rescaled RPKMs for three prostate adenocarcinoma samples and three normal prostate tissue samples.
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CDSs or in both UTR and CDSs, amount to 66.7% of
the entire TE exon set. 1.4% and 31.9% of TE exons are
solely located in 3'UTRs and 5 UTRs, respectively. The
classification of TE exon with respect to the cognate TE
families is summarized in Figure 3. The exons derived
from “CR1” and “other DNA” are rare and, therefore,
are excluded from further analysis.

Considering the sparseness of TE exon retention in
transcripts, similar to [15], we adopted a two-step ap-
proach in the analysis. The first step (by Model-1) evalu-
ates the effects of the quantitative predictors (ELN and
RTE) and categorical predictors (location in the host
gene and TE family) on the presence or absence of TE
exons in the transcripts of their host genes. The second
step (by Model-2) evaluates the effects of the same
quantitative and categorical predictors on the rescaled
RPKMs of the TE exons with non-zero expression. The
exons within the un-expressed genes were excluded
from the analysis. Logl0 transformation was applied to
the dependent variable of Model-2.

We summarized the sample-specific results in Figure 4,
where the discretized p-values were presented for the
corresponding effects. For the first categorical factor (lo-
cation in the host gene), the effects of 3'UTR and 5°
UTR were evaluated with CDS as the baseline. For the
second categorical factor, the effects of L1 and other
seven TE families were evaluated with Alu as the base-
line. Consistently across all the 26 samples, the TE exons
in 5'UTRs and derived from MIR elements are more
frequently included in transcripts (according to the

Page 7 of 14

Model-1's result), and have higher expression levels
(according to the Model-2's result) compared to the
baselines (CDS and Alu) with p <0.01. A similar reten-
tion preference is shown among TE exons in 3'UTRs.
However, due to the small exon subset, the class effect is
not significant in Model-1 (p > 0.05). Besides MIR, L2 is
another family of TE elements from which the (highly)
expressed exons were commonly derived. The positive
class effect is significant (p <0.05) in both statistical
models and for most samples. The third TE family re-
lated to the highly expressed TE exons is MaLR, where
the class effect is significant in Model-2 for most sam-
ples. The TE nucleotide proportion in an exon negatively
influences its retention in transcripts. For most samples,
the negative RTE effect is significant (p < 0.05). The im-
pact of the TE exon length (ELN) on the expression of
TE exons is somewhat elusive. The result of Model-1 in-
dicates that the expression evidence is more frequently
observed among those exons of relatively long se-
quences. However, we believe that this is due to the ran-
dom noise introduced in the read mapping process as
well as the existence of primary RNAs. The correct con-
clusion should be implied by the Model-2 analysis,
where the length effect on the expression levels of TE
exons is negative for most samples.

The high variability of the TE exon retention in tran-
scripts prompted us to ask whether the genomic factors
affecting the expression level of TE exons are also asso-
ciated with the variability across the biological samples.
In this regard, we repeated the linear model analysis
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with two descriptive statistics as the dependent variables.
The two statistics are the median () and coefficient of
variance (v) of a TE exon’s expression quantities across
all samples. We calculated the m and v for each TE exon
hosted by a gene expressed in at least 13 samples. The
effect coefficients (see Methods section) of the defined
continuous and categorical factors on the medians and
coefficient of variance are visualized in Figure 5 (plots A
and B). For the median, the effect coefficients of 3'UTR,
5'UTR, MIR, L2, MaLR, ELN and RTE are significant
(p <0.05), where the effect (coefficient) bars are longer
than the corresponding error pikes. The profile is con-
sistent with the sample-specific results presented in the
previous paragraph. For the coefficient of variance, only
the effects of 5'UTR, MIR and RTE are significant.
However, as shown in plots A and B, the directions
(positive or negative) of the most effect coefficients of
the predictors for this variability measure (v) are re-
versed to those for the median (m). Such a relationship
is also reflected in the significantly negative correlation
as demonstrated in the scatter plot of these two descrip-
tive statistics (Figure 5C).

An analysis on the biological function of TE exons
We considered a TE exon with the rescaled RPKM over
0.25 in at least two samples to be “highly expressed”.

Accordingly, 327 genes hosting highly-expressed TE
exon(s) were identified. Functional enrichment analysis
using the GO Fat gene ontology functional annotation
tool (available at DAVID [38]) showed that eight GO
categories are over-represented by these genes at the
threshold of False Discovery Rate (FDR) less than 0.05
(Table 3). The most significant term is molecular func-
tion (MF): zinc ion binding (FDR = 1.6-E4), where C2H2
ZNF genes amount over 60% of the total hits. ZNF genes
represent one of the largest and most complex gene
super-families in human genome, and are assumed to be
the regulators of the expression of downstream genes
[39]. The proteins of C2H2 ZNF genes contain zinc fin-
ger motifs of CX2-4CX3FX5LX2HX3-4HTGEKPYX (X
represents any amino acid) forms. A recent publication
reported that Alu-derived exons are preferentially
established in this gene family [4]. We conjecture that
such a preference may also hold for the exons derived
from the DNA repeats of other TE families. Herein, we
first generated the distribution table of the (ZNF) genes
hosting the (highly expressed) TE exons across the cog-
nate TE families. Then, by the Fisher’s exact test, we
evaluated the null hypothesis (Ho) that the classification
(“highly expressed” or “other”) of exons derived from a
specific TE family is independent of the host genes’ clas-
sification (“C2H2 ZNF” or “other”). TE families,
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including CR1, ERV1 and “other DNA” that didn’t con- indicated that TE exons in ZNF genes are preferentially
tribute an exonized TE to ZNF genes according to the retained during the post-transcriptional modification, re-
analyzed data, were excluded from this test. As shown in  gardless of the family to which an exonized TE belongs.
Table 4, with the p value less than 0.05, Hy was rejected ~ All C2H2 ZNF genes hosting the highly-expressed TE
in all major involved categories (TE families). This exons are summarized in Additional file 3.

Table 3 Functional enrichment analysis of the host genes with 327 highly expressed TE exons

Category Term Gene number P-value FDR (%)
MF' GO:0008270 ~ zinc ion binding 59 1.16E-05 1.63E-02
MF GO:0046914 ~ transition metal ion binding 66 3.01E-05 421E-02
MF GO:0043169 ~ cation binding 85 3.18E-04 445E-01
MF GO:0046872 ~ metal ion binding 84 393E-04 549E-01
MF GO:0043167 ~ ion binding 85 537E-04 751E-01
BP 2 GO:0006350 ~ transcription 50 846E-04 1.35E +00
MF GO:0003677 ~ DNA binding 52 1.44E-03 2.00E + 00
BP GO:0009101 ~ glycoprotein biosynthetic process 9 2.64E-03 4.17E+00

'Molecular Function; 2Biological process.
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Table 4 Classification and comparison of the C2H2 ZNF
genes hosting highly-expressed TE exons

TE N1 N2 N3 N4 p
Alu 850 51 143 17 7.65E-04
CRI 1 0 4 0 NA
ERV] 29 0 13 0 NA
ERVL 19 1 6 1 0.00E + 00
L1 148 12 24 5 471E-03
L2 79 7 34 5 227E-02
MalR 57 1 18 1 0.00E + 00
MERT 40 2 13 1 1.00E-01
MER2 37 2 15 2 0.00E + 00
MIR 132 4 56 3 3.04E-02
Other_DNA 4 0 1 0 NA

TE: the categories of exonized TEs. N1: the number of the genes hosting TE
exons. N2: the number of C2H2 ZNF genes hosting TE exons. N3: the number
of genes hosting the highly-expressed TE exons. N4: the number of C2H2 ZNF
genes hosting the highly-expressed TE exons. Among the 327 highly-expressed
TE exons, 115 are included in the UCSC RefGene table.

Discussion and conclusions

Computational identification of an exonized TE is usu-
ally based on the alignment with an exonic part of an
EST (or ¢cDNA) and the existence of canonical splice
sites in the sequence. However, the functional import-
ance of a TE exon is mainly determined by the expres-
sion level in a specific tissue and biological environment.
In this study, we demonstrated that, with relatively high
expression variability, most TE exons in mRNAs, espe-
cially those without exact counterparts in the UCSC
RefSeq gene tables, demonstrate low but still detectable
expression levels in most tissue samples. We also
showed that the TE exons in CDSs are less likely to be
constitutively expressed than those in 3" (5°) UTRs.
These results confirmed previous studies regarding the
establishment of TE exons in the assembly of human
mRNAs [4,21,22].

A recent study reported that MIR exons have highest
inclusion levels among exonized TEs [23]. We found this
result can be further generalized. That is, the exons de-
rived from younger TE families (Alus, L1s) are less well
established in the host genes than those derived from
older TEs (MIRs, L2s) of the same super-classes, as indi-
cated by the expression quantities including the mea-
sures of presence, level and variability. A deviation from
the general association is that, although the activity burst
of L1 families was 20-30 million years earlier than that
of Alus [40,41], the expression quantities of the exons
derived from the elements of these two families are simi-
lar to each other (p >0.05). This similarity may be due
to their common consensus target sites [42,43]. Another
explanation is that the insertion of Alu and L1 elements
frequently disturbs the stability of the target gene [14],
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and the human genome evolution process has likely
formed a mechanism to remove the exons derived from
such elements.

A previous study showed that the lengths of exons in-
versely influenced the TE inclusion levels in transcripts
[44]. This relationship was confirmed by our analysis fo-
cused on exonized TEs. We are especially interested in
this finding and wonder if it can be also derived by EST
data analysis. Thus, we repeated the linear statistical
analysis using EST-based inclusion level (retrieved from
the TranspoGene/Human exonized Tes table) as the
dependent variable in the place of rescaled RPKM. The
result moderately supports the RNA-seq data based ana-
lysis in that the observed length effect is negative but
not significant (p > 0.05). Such an observation even holds
when the analysis is focused on the subset of Alu-
derived exons. Herein, we speculated that, to which ex-
tent, the digital expression quantities of TE exons are
consistent with the inclusion levels calculated using EST
data [21]. By a simple regression analysis (Additional file 4),
we found that 47.8% of variability across TE exons in the
digital expression measure can be explained by the inclu-
sion levels (p = 0). These results indicate that the EST data
and digital expression data can be complementary in in-
ferring the expression patterns of TE exons.

Our work also extended the previous studies by sev-
eral novel findings. Among them, the finding that a high
TE nucleotide proportion leads to lower retention rates
of the expressed TE exons in mRNAs is intuitively cor-
rect. The other two as described below warrant further
investigation.

First, the considered genomic factors impact the ex-
pression level and the expression variability of TE exons
in inverse ways. For examples, compared to those de-
rived from Alus, MIR-derived exons have high rescaled
RPKMs but the variability measure (CV) across the sam-
ples is lower. The expression profile of MIR exons sug-
gests that they may have become functionally essential
in human.

Second, not only the exons derived from Alu elements
but also the exons from the transposons (retrotransposons)
of other families were preferentially established in C2H2
ZNF genes. In fact, such a preference is more remarkable
in the exons derived from ancient TEs. For example,
among the seven TE exons derived from L2 elements and
hosted by ZNF genes, five are highly expressed. However,
because most TE exons are derived from Alu elements,
the roles of these elements in shaping ZNF genes and in
the regulatory functions are most predominant.

Understanding the expression pattern of the TE exons
not annotated in RefSeq is of special biological import-
ance. For these exons, the distribution of rescaled
RPKMs shown in Figure 1 (represents the 16 sample in
cluster G1) can be regarded as a canonical profile.
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Herein, a challenging question is why the reads mapped
to the genome regions are so rare to detect in the sam-
ples of cluster G2 (Additional file 1), which include three
prostate tumors (prAd-1, 2, 3) and one normal prostate
sample (prNorm-3). In the Results section, we explored
this issue from biological aspects. Another potential ex-
planation lies in the filtering process of the mapped
reads. This can be scrutinized from two aspects. First, a
relatively short read naturally has more chances to be
aligned to multiple sites of the reference genome and
thus to be filtered out as an “ambiguously mapped read”.
Second, TE exon sourced reads are more likely to be “re-
petitively mapped” compared to others. As a result, the
true expression level or un-expression ratio of TE exons
may be underestimated or overestimated in G2 samples
where the read length is short (33 bp). However, this
elucidation is not supported by the information of two
prostate (cancer) cell lines. That is, the samples LNCaP
and PrEC have the read length (35 bp) close to G2 sam-
ples but the expression profile of TE exons similar to G1
samples. Apparently, this phenomenon warrants add-
itional follow-up in independent laboratory studies.

As discussed above, the assembly of short sequencing
reads derived from repetitive elements is potentially as-
sociated with a high unmapped fraction. The problem
arises from exclusion of ambiguously mapped reads in
data preprocessing, and is likely serious for a dataset
generated by single-read sequencing methods. However,
for a dataset generated by paired-end sequencing
methods, in which the two ends of an mRNA fragment
are measured, the uncertainty should be largely allevi-
ated [45]. A plausible explanation is that, in mapping
paired-end reads, the hit(s) of a read is determined not
only by its alignment with the genome but also by the
alignment of its mate read [46]. Usually, an mRNA frag-
ment to be measured in paired-end RNA-seq experi-
ments is long (at least 200 bp) [33,35], sufficient to
cover a sequence longer than a medium-sized exon. In
this context, the probability that a paired read is mapped
to multiple genomic positions is low. The observed repeti-
tive hits can be largely attributed to the existence of par-
alogous genes. Accordingly, we can assume the chances
for ambiguously mapped reads solely due to repetitive ele-
ments are rare in paired-end RNA-seq datasets.

It should be noted that in the linear model analysis, we
included four independent variables whose quantities or
categories can be directly inferred from the TranspoGene
human exonized TEs table as the predictors of the reten-
tion level of TE exons. We believe that the quality of the
splice sites of the exonized TEs is a promising predictor
for their retention levels in mature mRNAs. However, the
measurement of splice quality is yet an unsolved chal-
lenge, though many studies on the prediction of splice
sites have been published [44,47]. We have not devised an
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appropriate method to derive a measure that is related to
the sequences of the splice sites and is in association with
the retention levels. Solving this challenge is the goal of
another study in our research agenda.

In this study, we employed a ratio quantity, i.e. the
rescaled RPKM (see Methods Section), to infer the ex-
pression (retention) level of an exon. Theoretically, this
estimate may be biased due to the potential existence of
primary RNAs. However, due to following reasons, it
does not impact the validity of our conclusion on the
variability and influential factors for the TE exon reten-
tion. First, the reads mapped on the simulated exons, i.e.
the intron sequences immediately downstream of the
un-annotated TE exons, are very rare in the analyzed
datasets except for the six ovarian cell line samples. Sec-
ond, we used the rescaled RPKM of the simulated exons
as the baseline to determine the “expressed” genes and
to test the existence of the transcripts containing un-
annotated TE exons. An alternative quantity (in the
place of rescaled RPKM) is the inclusion level for an
(TE) exon of interest. The value can be computed from
the counts of the reads mapped to the flanking exon-
exon junctions [6]. However, in this way, most reads in a
dataset will be unused because the length of a junction
must be shorter than the read length. As a result, given
the limited sequencing depth of currently published
RNA-seq datasets for individual samples, the inclusion
level estimate of an alternative exon may be severely
biased or difficult to explain because of the unbalanced
read counts in flanking junctions as shown in the Figure 1
of [4]. Therefore, there is a dilemma on using either of the
two methods to exactly model the splicing pattern of a
specific exon, but this is beyond the scope of our study.

As mentioned in the Results section, we hypothesize
that there is a tissue-specific mechanism underlying the
association between the expression-based sample group-
ing (G1, G2 and G3) and the tissue/disease type-based
classification. However, so far, we lack additional data to
provide further evidence for this hypothesis. On the
other hand, the differences among G1, G2 and G3 in the
profiles of the retention rates of TE exons could be at-
tributed to the variations of the used experimental pro-
tocols (especially those for cell culture) in generating the
analyzed data. Previous studies have shown that pol III
SINE transcripts increase when the cells are stressed
[27,38]. However, it seems that this finding cannot ex-
plain our observation. More specifically, many TE exons
(including those derived from SINEs) demonstrate high
inclusion levels in the six ovarian cell lines (G3), but the
G3 cells were not stressed, i.e. they were cultured in nor-
mal medium and temperature [36]. Another related
problem is that substantial pre-RNAs are observed
present in the six ovarian cell lines (G3 class) but not in
other samples (Figure 1, Additional files 1 and 2). One
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may speculate whether the variation of methods for
extracting mRNAs may cause such a difference. We
compared the experimental protocols of the 26 RNA-seq
datasets listed in Table 1, and found that the method
[36] used to extract mRNAs from G3 samples is the
same as the method (using Invitrogen TRIzol) [32]
employed for the liver tissue samples (of G1 class). This
indicates that there could be other factors contributing
to this issue.

A recent publication showed that Alu exonization is
controlled by the competition of hnRNP C and U2AF65
genes [39]. We found that the RPKMs of hnRNP C gene
in G2 and G3 samples are significantly (p <0.01) lower
than those in G1, while such a group specific character-
istic is not observed for the expression level of U2AF65
gene (p >0.05). This observation, together with the de-
scending order of the digital expression levels of TE
exons from G3, G1 to G2 modestly suggests that hnRNP
C (but not U2AF65) regulate the exonization of TEs in a
non-linear way. In other words, this implies that both
too high (G3) and too low (G2) exonization levels of
TEs are related to a lower expression level of hnRNP C
gene.

Methods

RNA-seq data preprocessing

We downloaded the RNA-seq read data from the NCBI
SRA database (Table 1) [36]. The TopHat software [46]
was employed to map the short reads onto the human
genome (hgl9) and the computationally identified exon-
exon junctions. In the execution, we set “anchor length”
as 4, and “—segment-length” as half of the read length.
“Mate-inner-dist” (for paired-end data) was estimated by
the difference between the middle RNA fragment length
and twice the read length. Other parameters were set as
default in TopHat (v-1.3.2) including two mismatches
allowed for a read [49]. We divided the output file of ac-
cepted hits in SAM format into a set of relatively small
files with each corresponding to a chromosome. Mean-
while, we filtered out the ambiguously mapped reads
that have non-primary alignments and repetitive hits. A
lab-owned R program was then used to compute the
digital gene expression profiling. More specifically, by re-
ferring to the UCSC RefSeq gene tables, we first counted
the number of reads mapped to the region of an exon
that resides in at least on RefSeq gene. Then, the RPKM
for an exon was calculated using the method mentioned
in [50] (Additional file 5). After that, the expression level
of a RefSeq gene was determined by averaging the
RPKMs of the contained exons (Additional file 6). Fi-
nally, we calculated the rescaled RPKM of an exon by
dividing its RPKM with the expression level of its host
gene. The rescaled RPKM of a TE exon un-annotated to
any RefSeq gene or of a simulated exon (see the Results
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section) was determined using the same method but its
RPKM was excluded from calculating the gene-level ex-
pression. Other data preprocessing procedure includes
the threshold treatment of rescaled RPKMs with an
upper limit of 10 in the subsequent analysis.

Exonized TE (TE exon) data

We downloaded Table Human Exonized TEs from the
TranspoGene website [21]. Genome coordinates were
converted from hgl8 (Human Genome version 18) to
hg19 by the LiftOver tool hosted on the UCSC genome
browser server [37]. The location in the host gene,
length (ELN), cognate TE family, TE nucleotide propor-
tion (RTE) and EST-based inclusion level of a TE exon
were directly retrieved or derived from this table. In par-
ticular, RTE was calculated as the proportion of the nucle-
otides originated from the cognate TE in the sequence of a
TE exon.

C2H2 ZNF genes

We extracted (11/05/2011) the C2H2 ZNF gene list from
the DAVID Bioinformatics Resources [48], where the
collection of these genes was based on the protein do-
main annotation resource SMART [51].

Two-step linear analysis

To investigate the effects of genomic factors on the ex-
pression of TE exons, we adopted a two-step linear
model analysis approach similar to [15]. The motivation
is that a single linear model is not sufficient to analyze
the observed data where a substantial proportion (e.g.
approximately 30-80% in different datasets) of TE exons
have no RNA-seq reads mapped to the genomic regions
and, as a result, we cannot conduct the logarithmic trans-
formation of the expression levels (rescaled RPKMs) to re-
semble a normal distribution. The proposed method
consists of a logistic regression model and a simple linear
model. Below are the mathematical formulations of these

two models.
Plz,=1
Model-1: log (ﬁ)
=u+Ra+F+yl; + ¢c;
Model-2 : log (yj
=u +Ra* +Ff +y' i+ ¢ci+e
(yi >0

In Model-1, z;€{1,0} indicates if exon i has at least
one read mapped onto the genomic region. R; and F; are
a three-element row indicator vector for the location (in
the host gene) category (CDS, 3'UTR, or 5"'UTR) and a
nine-element row indicator vector for TE category (Alu,
ERV1, ERVL, L1, L2, MaLR, MER1, MER2, or MIR) of
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the exon, respectively. [; is the loglO transformed se-
quence length (ELN) and ¢; is the TE nucleotide propor-
tion (RTE) of the exon. In Model-2, for TE exon j, y;
and e; are the normalized expression level and random
noise, respectively. R, F; , [, and c; are similarly defined
as in Model-1. (4, a, B, y; ¢) and (u*, a*, B*, y*, ¢*) are the
parameter sets of the two models to be estimated.
Among them, a (a*) and B (B*) are three-element and
nine-element column vectors, respectively, and others
are scalars. The estimates of these parameters are called
effect coefficients. Model-1 evaluates the effects of gen-
omic factors on the presence or absence of TE exons in
mature transcripts. Model-2 evaluates the effects of the
genomic factors on the expression levels of the TE exons
with non-zero RPKMs. We performed the logistic re-
gression analysis using the procedure /rm included in
the R package “Design”. The simple regression analysis
was conducted with the procedure /m in the R package
“stats”. In the implementation, we set CDS as the base-
line for the location factor, and Alu as the baseline for
the TE family factor. Therefore, the first element of
o (a*) and B (B*), was set as zero in both models.

Additional files

Additional file 1: Histogram for the digital expression levels of TE
exons in sample prAd_1 (representing cluster G2). The black bar on the
left side of each plot represents the proportion of un-expressed exons.

Additional file 2: Histogram for the digital expression levels of TE
exons in sample OV-1-pr (representing cluster G3). The black bar on the
left side of each plot represents the proportion of un-expressed exons.

Additional file 3: C2H2 ZNF genes hosting the highly-expressed
TE exons.

Additional file 4: The positive correlation between the middle
digital expression quantities of TE exons in the 26 samples and the
inclusion levels calculated using the EST data [21].

Additional file 5: Raw digital expression levels of TE exons (RPKM).
Additional file 6: Rescaled RPKMs of TE exons.
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