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Abstract: Hepatocellular carcinoma (HCC) that is triggered by metabolic defects is one of the most
malignant liver cancers. A much higher incidence of HCC among men than women suggests the
protective roles of estrogen in HCC development and progression. To begin to understand the
mechanisms involving estrogenic metabolic effects, we compared cell number, viability, cytotoxicity,
and apoptosis among HCC-derived HepG2 cells that were treated with different concentrations of 2-
deoxy-D-glucose (2-DG) that blocks glucose metabolism, oxamate that inhibits lactate dehydrogenase
and glycolysis, or oligomycin that blocks ATP synthesis and mitochondrial oxidative phosphorylation.
We confirmed that HepG2 cells primarily utilized glycolysis followed by lactate fermentation, instead
of mitochondrial oxidative phosphorylation, for cell growth. We hypothesized that estrogen altered
energy metabolism via its receptors to carry out its anticancer effects in HepG2 cells. We treated cells
with 17β-estradiol (E2), 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) an estrogen receptor
(ER) α (ERα) agonist, or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), an ERβ agonist. We then
used transcriptomic and metabolomic analyses and identified differentially expressed genes and
unique metabolite fingerprints that are produced by each treatment. We further performed integrated
multi-omics analysis, and identified key genes and metabolites in the gene–metabolite interaction
contributed by E2 and ER agonists. This integrated transcriptomic and metabolomic study suggested
that estrogen acts on estrogen receptors to suppress liver cancer cell growth via altering metabolism.
This is the first exploratory study that comprehensively investigated estrogen and its receptors, and
their roles in regulating gene expression, metabolites, metabolic pathways, and gene–metabolite
interaction in HCC cells using bioinformatic tools. Overall, this study provides potential therapeutic
targets for future HCC treatment.

Keywords: HepG2 cells; estradiol; estrogen receptor; genomics; metabolomics; gene–metabolite
interaction; glycolysis; oxidative phosphorylation; amino acid metabolism

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most malignant common type of primary
liver cancers, whose incidence and mortality have been increasing worldwide [1,2]. The
findings from epidemiological studies indicate that people with metabolic diseases have
significantly increased risk for HCC [3], which suggests that metabolic defects may serve
as a trigger for developing HCC. Additionally, the risk for men to develop HCC is 2-5 folds
as for women across different regions of the world [4–7]. For example, the overall HCC
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incidence in the United Kingdom increased 2.5-fold between 1993 and 2017, which included
a greater increase in men (from five to 14 per 100,000) than in women (from three to six per
100,000) [8]. This sex disparity suggests that estrogen may play a protective role in HCC
carcinogenesis [9,10]. Estrogen acts on estrogen receptors (ER) ERα and ERβ expressed in
liver cancer specimen tissues from HCC patients [11,12]. 17β-Estradiol (E2), a primary and
bioactive form of estrogen in non-pregnant premenopausal females, and its specific ER
agonists suppress HCC cell proliferation and promote cell apoptosis in vitro [13,14]. Other
studies have demonstrated that estrogen suppresses tumor growth and fibrosis of HCC
progression in vivo [15,16].

Altered glucose and lipid metabolism is a common feature of many types of cancer.
The most common source of energy production in healthy cells is via mitochondrial
oxidative phosphorylation (OXPHOS). Different from healthy cells, cancer cells have
increased glucose uptake and higher rates of anaerobic and aerobic glycolysis, followed
by lactate fermentation. Cancer cells rapidly grow when comparing to the blood vessels
nourishing them; consequently, hypoxia occurs in cancer cells, due to inadequate oxygen
being acquired. Rather than producing ATP via mitochondrial OXPHOS as normal cells
do, cancer cells tend to use anaerobic glycolysis in the deficiency of oxygen, aerobic
glycolysis in the presence of oxygen, and the pentose phosphate pathway parallel to
glycolysis [17]. Both of the metabolic pathways convert pyruvate to lactic acid catalyzed
by lactate dehydrogenase, and they are followed by lactic acid fermentation in the cytosol.
The pathways serve as the primary source of ATP, a phenomenon that is known as the
Warburg effect [18,19].

The most commonly studied human HCC-derived cell line in metabolic research is
the HepG2 cell line. In general, viral infection does not occur during the development or
progression of metabolic disease-induced liver cancers, as hepatitis B virus and hepatitis C
virus do not replicate in HepG2 cells. In contrast, many liver cancer cell lines, including
HA22T/VGH, Huh7, and Hep3B, are host cells that support the replication of hepatitis
viruses [20–22]. The HepG2 cell line was studied to avoid confounding factors, such as
viral infection. There are many unknowns about HepG2 regarding the regulation of its
energy metabolism. First, it is unclear whether the usage of glucose in HepG2 cells favors
glycolysis or OXPHOS. Second, in the context of energy metabolism, the biological roles
of E2 and different subtypes of ERs during HCC development are unknown. Although
attention has been focused on the regulation of glucose usage, glucose production via
gluconeogenesis and glycogenolysis, as well as metabolism of fatty acids and amino
acids, also influence HCC development. Third, the relationship between metabolic gene
expression, genomic pathways, metabolite profiling, and metabolomic pathways has not
been established.

In this study, we first determined the dominant metabolic pathway that is utilized
by HepG2 cells using 2-deoxy-D-glucose (2-DG), sodium oxamate, and oligomycin. 2-DG
blocks glucose metabolism. Sodium oxamate inhibits lactate dehydrogenase that con-
verts pyruvate to lactic acid, thus inhibiting the glycolysis pathway. Oligomycin blocks
the mitochondrial proton channel, which uncouples ATP synthesis from electron trans-
port, thus inhibiting mitochondrial OXPHOS. Subsequently, we tested whether E2 reg-
ulated metabolism by acting on ERs in HepG2 cells, using ERα-specific agonist 1,3,5-
tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) and ERβ-specific agonist 2,3-bis(4-
hydroxyphenyl)-propionitrile (DPN). The genes that were upregulated and downregulated
in response to E2, PPT, or DPN treatment were identified using RNA sequencing (RNA-Seq)
as an approach for genome-wide expression profiling. The profiling results were analyzed
by Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathway Gene Ontology
(GO) enrichment analysis. The expression of genes encoding key enzymes that are involved
in glucose and lipid metabolism identified by RNA-Seq was measured. Furthermore, high
and low abundances of metabolites from treated HepG2 cells were detected while using
an optimized method of high-pressure liquid chromatography (HPLC) that was coupled
with a mass spectrometry (MS) -based targeted metabolic profiling approach to analyze the
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metabolomes. In order to connect the systematic changes of transcriptome and metabolome
induced by E2 and ER antagonists, we performed multi-omics analyses that integrated
transcriptome and metabolome findings and identified key genes and metabolites in gene–
metabolite interaction, a more advanced approach than transcriptome profiling analysis
alone. To our knowledge, this is the first study with high novelty that has explored the
impact of estrogen and its receptors on metabolic gene expression, metabolites, metabolic
pathways, and gene–metabolite interaction in HCC-derived HepG2 cells using bioinfor-
matic tools. The identified metabolic genes and pathways that were impacted by estrogen
and different ERs could pave the way for a future comprehensive understanding of the
metabolic effects of estrogen in HCC progression and potential targets for treating HCC.

2. Materials and Methods
2.1. Cell Culture

The HepG2 cell line was obtained from American Type Culture Collection (ATCC,
Manassas, VA, USA) and authenticated by ATCC with short tandem repeat genotyping
analysis. HepG2 cells in early passages were used to maintain a close resemblance of the
original HCC cancerous cells. This avoided the potential for culture-induced cell insta-
bility and selective growth of rapidly growing cells with greater molecular abnormalities.
Although the expression of ERα and ERβ in HepG2 cells has been reported in our [13]
and others’ studies [23–26], some studies failed to detect ERα gene expression [27]. It is
possible that ERα gene expression is diminished over long-term cell culture [23]. Using
Western blot analysis, the expression of ERα and ERβ was detected in protein that was
extracted from tested HepG2 cells.

HepG2 cells were maintained in tissue culture dishes (diameter 100 mm) in phenol
red-free Dulbecco’s Modified Eagle Medium (Fisher Scientific, Waltham, MA, USA) that
was supplemented with 10% (v/v) heat-inactivated and charcoal-stripped FBS (Fisher
Scientific), 1% antibiotics of 50 U/mL penicillin, and 50 µg/mL streptomycin (Invitrogen,
Grand Island, NY, USA) at 37 ◦C and 5% CO2/95% air. When the initial cells (1 × 105/mL)
became ~70% confluent, the cells were starved with medium low in serum (0.1% v/v FBS)
for 16 h before treatments.

2.2. Cell Treatment

The cells were treated with 2-DG (0–10 mM), sodium oxamate (0–50 mM), or oligomycin
(0–1.0 µg/mL; Santa Cruz, Dallas, TX, USA) for 24 h to test major metabolic pathways that
are utilized by HepG2 cells. Each chemical was dissolved in DMSO and further diluted
to final concentrations. Cells were treated with E2 (Sigma-Aldrich, St. Louis, MO, USA),
ERα agonist PPT (Fisher Scientific), or ERβ agonist DPN (Fisher Scientific) for 48 h to
examine effects of E2 and ERs. E2 and ERs were dissolved to 1 µM in DMSO and diluted
to 10 nM in culture medium. Vehicle DMSO was the control treatment. The concentration
ranges of these chemicals are commonly used in liver cancer research and our previous
studies [13,14,28–30].

2.3. Cell Number, Cytotoxicity, Viability, and Apoptosis

Confluent cells (1 × 104/mL) were seeded in tissue culture dishes (diameter 60 mm)
and then treated with 2-DG, sodium oxamate, or oligomycin. The growth of HepG2 cell was
assessed using light microscopy. The cell numbers were measured using a TC10 automated
cell counter (Bio-Rad, Hercules, CA, USA), which counted cells with diameters between
6 and 50 µm. HepG2 cells (~500 cells/well) were seeded in 96-well cell culture plates,
treated with 2-DG, sodium oxamate, or oligomycin, and then measured in triplicates in
order to assess cytotoxicity, viability, and apoptosis. Viability indicated by live-cell protease
activity, cytotoxicity indicated by dead-cell protease activity, and caspase activation-related
apoptosis were evaluated using ApoTox-Glo Triplex Assay (Promega, Madison, WI, USA).
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2.4. ERα and ERβ Protein Detection by Western Blot Analysis

The HepG2 cells were trypsinized, proteins were extracted, and protein lysates were
separated using gel electrophoresis and then transferred to nitrocellulose membranes (Bio-
Rad). ERα and ERβ (1:200; Santa Cruz, Dallas, TX, USA) and β-actin (a housekeeping
protein control; 1:1000; Cell Signaling, Danvers, MA, USA) were detected by standard
immunoblotting and chemiluminescence (Amersham ECL Prime, GE Healthcare, Chicago,
IL, USA). Protein bands and a protein ladder with a mid-range molecular weight (a
molecular size marker; Abcam, Cambridge, MA, USA) were visualized using an Odyssey
Infrared Imaging System (LI-COR, Lincoln, NE, USA). Western blot analysis detected the
expression of ERα and ERβ in HepG2 cells (Supplemental Figure S1).

2.5. Transcriptome Functional Analysis

The RNA-Seq using high-quality RNA samples with RNA integrity numbers above 9,
isolated from ~106 HepG2 cells treated with vehicle, E2, PPT, or DPN using RNeasy Mini
Kits (Qiagen, Foster City, CA, USA), was conducted at the University of Cincinnati Ge-
nomics, Epigenomics, and Sequencing core facility, according to the standardized protocols
that were developed by the facility [14]. Briefly, cDNA was converted from1 µg isolated
total RNA using a cDNA synthesis kit (Bio-Rad). The cDNA libraries were amplified while
using the universal and index-specific primer.

The purified library was checked for quality and yield using a DNA high sensitivity
chip and a Bioanalyzer (Agilent, Santa Clara, CA, USA). The library concentration for
clustering was measured using PCR and a Kapa Library Quantification kit (Kapa Biosys-
tems, Woburn, MA, USA). The libraries were then pooled for clustering and sequenced as
single-end 50 bp on an Illumina HiSeq 2000 system (Illumina, San Diego, CA, USA), which
retrieved ~25 million sequence reads from each sample. The sequences were deposited at
Gene Expression Omnibus with accession number GSE112983, being aligned to the human
genome (ENSEMBL GRCh38.p10) and analyzed for differentially expressed genes using
RStudio DESeq2 package. DAVID functional annotation (https://david.ncifcrf.gov/ (ac-
cessed on 19 February 2021)) bioinformatics analysis was performed to identify significant
KEGG functional pathways comprised of differentially expressed genes and to categorize
the pathways containing similar associated genes into the same groups. A p value for
each group of KEGG pathways and its adjusted p value were calculated in E2-, PPT-, or
DPN-treated cells as compared to the cells receiving control treatment, with the adjusted p
value < 0.05 considered to be significant.

2.6. Reverse Transcription Quantitative PCR (qPCR)

KEGG pathway analysis revealed many metabolic pathways. We then measured
metabolic genes of interest including glucose transporter 2 (GLUT2), which takes up glu-
cose into hepatocytes; 6-phosphofructokinase (6PFK) and pyruvate kinase (PK), which
encode two rate-limiting enzymes in glycolysis; cytochrome c oxidase subunit 6B (COX6B)
for OXPHOS; glycogen phosphorylase liver form (PYGL) for glycogenolysis; glycogen
synthase 2 (GYS2) for glycogen synthesis; phosphoenolpyruvate carboxykinase cytoplas-
mic form (PEPCK1) for gluconeogenesis; transcriptional factor peroxisome proliferator-
activated receptor (PPAR) gamma coactivator 1 alpha (PGC1A), which regulates PEPCK1
expression; PPAR gamma (PPARG) and sterol regulatory element-binding transcription
factor 1 (SREBP1C), which encodes two lipogenic transcriptional factors; and, acetyl-CoA
carboxylase (ACC) and fatty acid synthase (FAS), which encode enzymes for fatty acid
biosynthesis. β-Actin (ACTB) mRNA levels were similar among groups and ACTB was
used as a reference gene. The qPCR was carried out in triplicates on a qPCR instrument
(Bio-Rad CFX96) using primers (Integrated DNA Technologies, San Jose, CA, USA; Table 1)
and SYBR green master mixes. Gel electrophoresis and melt curve analysis were used
to confirm the amplified PCR products. The expressions were normalized to ACTB and
presented using control group as 100%.

https://david.ncifcrf.gov/
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Table 1. Primers for reverse transcription-quantitative PCR.

Gene Coding Protein Forward Primers (5′–3′) Reverse Primers (5′–3′)

ACC acetyl-CoA carboxylase GCTGCTCGGATCACTAGTGAA TTCTGCTATCAGTCTGTCCAG

ACTB β actin AGAGCTACGAGCTGCCTGAC AGCACTGTGTTGGCGTACAG

COX6B cytochrome c oxidase subunit 6B CTCAACGTGTTCCTCAAGTC ATGGAGGACAGAGGAAAGG

FAS fatty acid synthase GAAACTGCAGGAGCTGTC CACGGAGTTGAGGCGGAT

GLUT2 glucose transporter 2 AGTTAGATGAGGAAGTCAAAGCAA TAGGCTGTCGGTAGCTGG

GYS2 glycogen synthase 2 GCCAGACACCTGACATTAAG CTCCACTTCATCTTCCACATC

PEPCK1 phosphoenolpyruvate carboxykinase CCAGGCAGTGAGGGAGTTTCT ACTGTGTCTCTTTGCTCTTGG

6PFK 6-phosphofructokinase CTCACAGGTGCCAACATC GCCGCAGAAGTCGTTATC

PGC1A PPAR gamma coactivator 1 alpha GACGACGAAGCAGACAAG CCAAGGGTAGCTCAGTTTATC

PK pyruvate kinase TCGTCTTTGCCTCCTTTG CTCACCTCCAGGATTTCATC

PPARG PPAR gamma GAAATGACCATGGTTGAC CCGCTAGTACAAGTCCTTGTA

PYGL glycogen phosphorylase liver form CCTGTGATGAGGCCATTTAC GTATCCATAGGCTGCAAGTC

SREBP1C sterol regulatory element-binding transcription factor 1 CTTTGCCCACCCTGGTGAGT GGTTCTCCTGCTTGAGTTTCTGG
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2.7. HPLC-MS/MS Targeted Metabolite Analysis

Metabolites were extracted from ~106 cells that received the same treatment of vehicle,
E2, PPT, or DPN as RNA-Seq analysis following the established chromatography proto-
col [31,32]. In brief, the cells were homogenized with phosphate-buffered saline, extracted
in 250 µL cold methanol, and then mixed with 50 µL isotopically labeled spiking solution
with a mixture of C13 amino acids and C13 lactate as internal standards (Cambridge Isotope
Laboratories Inc., Tewksbury, MA, USA). The mixture was incubated at −20 ◦C for 20 min.
and then centrifuged at a speed of 14,000 rpm for another 20 min. The supernatant (150 µL)
was then collected, dried, reconstituted in mobile phase with a mixture of HPLC-MS grade
water, acetonitrile, ammonium acetate, and acetic acid (Fisher Scientific), and it was mea-
sured according to their corresponding standard chemical compounds (Sigma-Aldrich and
IROA Technologies, Boston, MA, USA).

Targeted metabolite profiling was operated according to our validated method [31–35],
using an Ultimate 3000 HPLC that was coupled with a TSQ Quantiva triple quadrupole
MS (Thermo Fisher Scientific, Waltham, MA, USA) installed with a hydrophilic interaction
chromatography column (Waters Corporation, Milford, MA, USA). The total separation
for positive and negative ionization modes was 20 min. at a flow rate of 0.300 mL/min.,
with the HPLC gradient separation running for 11 min, followed by a 9-min wash to
avoid potential carryover. Targeted data acquisition was performed together with multiple
authentic standards in selected reaction monitoring (SRM) mode. The instrumentation
method with built-in retention time and SRM transition information was used to detect the
targeted metabolites in unknown samples.

All 221 measured metabolites that represented key metabolites of interest from rele-
vant metabolic pathways [36,37] have been validated in our published work [31–35] and
they are consistent with others’ studies. The analyzed metabolites were determined by the
detection ability and measurement reliability. Based on the low (<15%) average inter-assay
coefficient of variation for the quality control samples, our targeted metabolic profiling
approach had an excellent reproducibility. All of the recorded mass spectra were manually
inspected using the Quanbrowser module of Xcalibur (V 4.0, Thermo Fisher Scientific,
Waltham, MA, USA). The MS data sets were normalized by the cell number counts at the
point of metabolite extraction. JMP Pro12 (SAS Institute, Cary, NC, USA) was used for
statistical analysis. Principle components analysis was used to compare metabolic profiles
among different groups.

2.8. Metabolic Pathways Analysis

All of the detected metabolites were analyzed for metabolic pathways to explore the
metabolic impact of each treatment on HCC cells using MetaboAnalyst 4.0 computational
platform (http://www.metaboanalyst.ca/ (accessed on 19 February 2021)), to achieve a
broad coverage of extensive metabolic networks [38]. Metabolic pathway impact analyses
were conducted via introducing an individual metabolite into the context of connected
metabolic pathway networks in the KEGG database in order to obtain the number of
identified metabolites (hits) of each pathway with a known number of total composed
metabolites. A raw p value for each metabolic pathway with a group of functionally
associated metabolites, and its adjusted p values, were calculated in E2- or ER agonist-
treated cells when comparing to the cells receiving control treatment, and adjusted p values
< 0.05 were considered to be significant. False discovery rate (FDR) was used to control
for false positives, and an FDR threshold of 0.05 that yields < 5% false positives [39] was
applied to identify significantly enriched pathways. Based on the relative importance
of individual nodes within the overall network, pathway analysis also computed the
importance of each identified metabolite in pre-defined metabolic pathways. Additionally,
pathway analysis computed a pathway impact score as the sum of the importance measures
of identified metabolites divided by the total sum of the importance measures of all the
identified and unidentified metabolites in the pathway. The importance of a given pathway

http://www.metaboanalyst.ca/
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relative to a global metabolic network was estimated by its pathway impact score. The
pathways with impact scores > 0.05 were considered to be important metabolic pathways.

2.9. Multi-Omics Integration Analysis

Multi-omics integration analyses using transcriptome and metabolome data were per-
formed using MetaboAnalyst 4.0 Joint Pathway Analysis Module (http://www.metaboanalyst.
ca/ (accessed on 19 February 2021)) and Ingenuity Pathway Analysis (Qiagen, Germantown,
MD, USA). Gene–metabolite interaction networks were established to show first-order rela-
tionships based on MetPriCNet (https://www.metricnet.com/ (accessed on 19 February
2021)) [40], a curated compound interaction database extracted from published literature.
The chemical associations for the gene–metabolite and metabolite-metabolite networks
were extracted from STITCH (http://stitch.embl.de/ (accessed on 19 February 2021)) [41],
ensuring that only highly confident interactions were represented.

2.10. Statistical Analysis

Comparisons of cell number, viability, cytotoxicity, apoptosis, gene expression, metabo-
lite levels, and ADP/ATP ratio were used one-way analysis of variance (ANOVA), followed
by Tukey’s multiple comparison post hoc test (GraphPad Prism 8; La Jolla, CA, USA), with
p < 0.05 being considered to be statistically significant.

3. Results
3.1. Effects of 2-DG, Oxamate, and Oligomycin on Cell Growth

When compared to the control treatment, 2-DG at all concentrations tested (1, 5, and
10 mM; Figure 1A; Supplemental Figure S2) and oxamate at the higher concentrations
tested (10, 20, and 50 mM; Figure 1B; Supplemental Figure S2) significantly decreased
the HepG2 cell numbers. Additionally, while 2-DG at different concentrations reduced
cell number to a similar extent, oxamate led to a concentration-dependent cell number
reduction. In contrast, treatment with 1.0 µg/mL or lower concentrations of oligomycin
did not significantly change the cell numbers (Figure 1C; Supplemental Figure S2).
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Figure 1. Effects of 2-deoxy-D-glucose, oxamate, and oligomycin on HepG2 cell number and growth. Cell numbers
(A–C), viability (D–F), cytotoxicity (G–I), and apoptosis (J–L) of HepG2 that were treated with different concentrations
of 2-deoxy-D-glucose (0–10 mM; G), oxamate (0–50 mM; H), and sodium oxamate (0–1 µg/mL; E). Cell number data and
fluorescence or luminescence signal data were represented as mean± SEM (n = 5/group) and analyzed by one-way ANOVA
analysis. For Figure 1A,D,G,J, *: Significantly different comparing with control group; †: Significantly different from 1 mM
group; and ‡: Significantly different from 5 mM group. For Figure 1B,E,H,K, *: Significantly different comparing with
control group; †: Significantly different from 5 mM group; ‡: Significantly different from 10 mM group; and §: Significantly
different from 20 mM group. For Figure 2F, *: Significantly different comparing with control group; †: Significantly different
from 0.1 µg/mL group; and ‡: Significantly different from 0.5 µg/mL group. (p < 0.05).
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control group; †: Significantly different from 5 mM group; ‡: Significantly different from 10 mM group; and §: Significantly 
different from 20 mM group. For Figure 2F, *: Significantly different comparing with control group; †: Significantly differ-
ent from 0.1 µg/mL group; and ‡: Significantly different from 0.5 µg/mL group. (p < 0.05). 
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Figure 2. Effects of estradiol, estrogen receptor α (Erα) specific agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole
(PPT), and ERβ specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) on HepG2 cell Kyoto Encyclopedia of Genes
and Genomes (KEGG) functional pathway Gene Ontology (GO) enrichment analysis of differentially expressed genes
analyzed using RNA sequencing reads deposited at Gene Expression Omnibus (accession number GSE112983). Pathways
containing similar associated genes were categorize into the same groups. (A) Upregulated genes and KEGG pathways GO
analysis of HepG2 treated with estradiol. (B) Downregulated genes and KEGG pathways GO analysis of HepG2 treated
with estradiol. (C) Downregulated genes and KEGG pathways GO analysis of HepG2 treated with PPT. (D) Upregulated
genes and KEGG pathways GO analysis of HepG2 treated with DPN. (E) Downregulated genes and KEGG pathways GO
analysis of HepG2 treated with DPN.

The cell viability mirrored the cell count results. Specifically, 2-DG at all concentra-
tions tested (Figure 1D) and oxamate concentration-dependently (Figure 1E) reduced cell
viability when compared with the control treatment; however, no difference in viability was
found among the groups treated with oligomycin (Figure 1F). In general, cells that were
treated with 2-DG (Figure 1G), oxamate (Figure 1H), and oligomycin (Figure 1I) showed
a concentration-dependent increase in cytotoxicity. Additionally, 2-DG (Figure 1J) and
oxamate (Figure 1K) increased apoptosis in a concentration-dependent manner. In con-
trast, the highest concentration of the oligomycin treatment tested significantly increased
cytotoxicity (Figure 1I), but did not significantly affect viability (Figure 1F) or apoptosis
(Figure 1L). The HepG2 cell number and viability were suppressed, while cytotoxicity and
apoptosis were elevated, when glucose metabolism was blocked by 2-DG and glycolysis
was blocked by oxamate. Blocking OXPHOS by oligomycin did not significantly affect the
cell number, viability, or apoptosis, but did increase cytotoxicity when HepG2 were treated
with the highest concentration of oligomycin, which suggested that HepG2 cell growth
dominantly relied on glycolysis, rather than OXPHOS.
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3.2. Effects of E2 and ER Agonists on Transcriptome Functional Pathways

In order to explore potential mechanisms underlying protective effects of estrogen on
HCC development, the comprehensive global transcriptome profiles regulated in response
to E2, ERα specific agonist PPT, or ERβ specific agonist DPN were generated using RNA-
Seq as an approach for genome-wide expression profiling and then analyzed by KEGG
functional pathway enrichment analysis.

E2 had the most evident impact on cell metabolism and function among the treatment
groups when compared to the control group, with 956 upregulated genes being associated
with KEGG pathway groups that are linked to hypoxia-inducible factor-1 (HIF-1) signaling,
complement and coagulation cascades, and carbohydrate digestion and absorption, and
starch and sucrose metabolism (Figure 2A; Table 2; Supplemental Table S1). The transcrip-
tome analysis revealed 380 downregulated genes by E2 treatment, which were associated
with KEGG pathway groups that were linked to p53 signaling pathway, glycine, serine
and threonine metabolism, cell cycle and progesterone-mediated oocyte maturation, and
oocyte meiosis. Ascorbate and aldarate metabolism, pentose/glucuronate interconversions,
retinol metabolism, drug metabolism, metabolism of xenobiotics by cytochrome P450,
steroid hormone biosynthesis, chemical carcinogenesis, and porphyrin and chlorophyll
metabolism were also included (Figure 2B; Table 2; Supplemental Table S2).

Table 2. Significant pathways of HepG2 cells treated with estradiol estradiol (E2), ERα specific
agonist PPT, and ERβ specific agonist DPN revealed by transcriptome pathway analysis.

Upregulated Pathways Treatment Group

HIF-1 signaling pathway E2 DPN
Complement & coagulation cascades E2 DPN
Carbohydrate digestion & absorption E2
Starch & sucrose metabolism E2
Hematopoietic cell lineage DPN

Downregulated Pathways Treatment Group

Steroid hormone biosynthesis E2 PPT DPN
Cell cycle E2 PPT DPN
Progesterone-mediated oocyte maturation E2 PPT DPN
Oocyte meiosis E2 PPT DPN
p53 Signaling pathway E2 PPT DPN
Ascorbate and aldarate metabolism E2 PPT
Pentose and glucuronate interconversions E2 PPT
Retinol metabolism E2 PPT
Metabolism of xenobiotics by cytochrome P450 E2 PPT
Drug metabolism E2 PPT
Chemical carcinogenesis E2 PPT
Porphyrin and chlorophyll metabolism E2 PPT
Fanconi anemia pathway PPT DPN
Glycine, serine & threonine metabolism E2
Butanoate metabolism PPT
Primary bile acid biosynthesis PPT
Complement and coagulation cascades PPT
PPAR signaling pathway PPT
DNA replication DPN
Base excision repair DPN
Nucleotide excision repair DPN
Mismatch repair DPN
Homologous recombination DPN
Bladder cancer DPN
HTLV-I infection DPN

The transcriptome analysis revealed 242 upregulated genes by ERα agonist PPT
without any significantly associated KEGG pathway. PPT-treated cells downregulated
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397 genes that were associated with KEGG pathways linked to the same groups of p53
signaling, cell cycle, and metabolisms as E2 treatment, and additional PPAR signaling
pathway, Fanconi anemia pathway, complement and coagulation cascades, primary bile
acid biosynthesis, and butanoate metabolism (Figure 2C; Table 2; Supplemental Table S3).

The transcriptome analysis revealed 254 upregulated and 271 downregulated genes
by DPN. The enhanced pathways by ERβ agonist DPN were HIF-1 signaling, complement
and coagulation cascades, and hematopoietic cell lineage (Figure 2D; Table 2; Supplemental
Table S4). The suppressed pathways by DPN treatment were the same steroid hormone
biosynthesis, cell cycle, and p53 signaling pathway as E2 and PPT; with additional pathways
in human T-cell leukemia virus type 1 (HTLV-I) infection, bladder cancer, homologous re-
combination, and Fanconi anemia pathway, as well as DNA replication, base excision repair,
nucleotide excision repair, and mismatch repair (Figure 2E; Table 2; Supplemental Table S5).

3.3. Effects of E2 and ER Agonists on Metabolic Genes

KEGG pathway analysis of the transcriptome profiles identified by RNA-Seq revealed
many metabolic pathways; therefore, the expression of genes encoding key enzymes
involved in glucose and lipid metabolism was measured using qPCR.

When compared to the control treatment expression of GLUT2, which encodes GLUT2,
which takes up glucose into hepatocytes, was increased by E2, but not PPT or DPN
(Figure 3A), indicating increased glucose uptake into HepG2 cells by E2. The expression
of 6PFK encoding an ATP-dependent glycolysis rate-limiting enzyme was significantly
lowered by all treatments, with E2 treatment having the most prominent effects (Figure 3B).
The expression of another glycolysis rate-limiting enzyme, PK, was significantly reduced by
E2 and DPN (Figure 3C). The expression of COX6B, an important mitochondrial OXPHOS
gene, was not significantly changed by E2 or ER agonist treatment (Figure 3D). The expres-
sion of PYGL coding a glycogenolysis enzyme that breaks down glycogen in hepatocytes
was enhanced by E2 (Figure 3E); whereas, expression of GYS2, which is a critical gene
for glycogen synthesis, was not significantly altered by any E2 or ER agonist (Figure 3F).
Additionally, PPT treatment induced expression of PEPCK1 (Figure 3G), a gene regulating
gluconeogenesis, while E2 and DPN treatments induced expression of PGC1A (Figure 3H),
a transcriptional factor regulating PEPCK1 expression to activate gluconeogenesis [42]. The
expressions of lipogenic transcriptional factors PPARG and SREBP1C, which function to
activate fatty acid biosynthesis, were also enhanced. Specifically, PPARG expression was
enhanced by E2 and ER agonists, with E2 having more pronounced effects than PPT and
DPN treatments (Figure 3I); and, SREBP1C expression was enhanced by E2 (Figure 3J).
Furthermore, genes encoding two additional important enzymes for fatty acid biosynthesis
ACC and FAS were measured. E2 and PPT both significantly induced the expression of
ACC as compared with control and DPN (Figure 3K), but no significant difference in FAS
expression was detected in any groups (Figure 3L).

3.4. Effects of E2 and ER Agonists on Metabolic Profiles

A metabolomic analysis was performed because differential expressions of metabolic
genes were detected by the treatments. Among the 221 metabolites tested, 174 metabolites
were detected in all of the samples and compared for relative concentrations. Clear patterns
were shown in the heatmap, which indicated greater levels of metabolites in the E2 and
ER agonist groups, with DPN treatment showing the greatest abundance (Supplemental
Figure S3). The principal component analysis score plot indicated a separation of the
targeted metabolic profiles among all four groups (Figure 4), which suggested that E2, PPT,
and DPN treatments exhibited unique metabolic fingerprints that were different from the
control treatment.
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Figure 3. Effects of estradiol (E2), ERα specific agonist PPT, and ERβ specific agonist DPN on HepG2 cell expression of 
genes involved in energy metabolism. (A–L) The mRNA levels of (A) glucose transporter 2 (GLUT2), (B) phosphofructo-
kinase-6 (6PFK), (C) pyruvate kinase (PK), (D) cytochrome c oxidase (COX6B), (E) glycogen phosphorylase (PYGL), (F) 
glycogen synthase (GYS2), (G) phosphoenolpyruvate carboxykinase cytoplasmic form (PEPCK1), (H) peroxisome prolif-
erator-activated receptor (PPAR) gamma coactivator 1 alpha (PGC1A), (I) PPAR gamma (PPARG), (J) sterol-regulatory 
binding protein-1c (SREBP1C), (K) acetyl-CoA carboxylase (ACC), and (L) fatty acid synthase (FAS) were normalized to 
reference gene β-actin (ACTB) mRNA levels and % of the control group. The data were represented as mean ± SEM (n = 
5/group) and analyzed by one-way ANOVA analysis. *: Significantly different when comparing to control groups; †: Sig-
nificantly different comparing to E2 groups; and ‡: Significantly different comparing to PPT groups (p < 0.05). 
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Figure 3. Effects of estradiol (E2), ERα specific agonist PPT, and ERβ specific agonist DPN on HepG2 cell expression of genes
involved in energy metabolism. (A–L) The mRNA levels of (A) glucose transporter 2 (GLUT2), (B) phosphofructokinase-6
(6PFK), (C) pyruvate kinase (PK), (D) cytochrome c oxidase (COX6B), (E) glycogen phosphorylase (PYGL), (F) glycogen
synthase (GYS2), (G) phosphoenolpyruvate carboxykinase cytoplasmic form (PEPCK1), (H) peroxisome proliferator-
activated receptor (PPAR) gamma coactivator 1 alpha (PGC1A), (I) PPAR gamma (PPARG), (J) sterol-regulatory binding
protein-1c (SREBP1C), (K) acetyl-CoA carboxylase (ACC), and (L) fatty acid synthase (FAS) were normalized to reference
gene β-actin (ACTB) mRNA levels and % of the control group. The data were represented as mean ± SEM (n = 5/group)
and analyzed by one-way ANOVA analysis. *: Significantly different when comparing to control groups; †: Significantly
different comparing to E2 groups; and ‡: Significantly different comparing to PPT groups (p < 0.05).
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Figure 4. Principal component analysis showing metabolic profile-based separation of HepG2 cells treated with control,
estradiol (E2), ERα specific agonist PPT, and ERβ specific agonist DPN. Each symbol represents one biological replicate, the
shading area indicates the 95% confidence interval of grouping.

We confirmed a few representative metabolites that contributed to the separation of
the metabolic profiles among the groups. When comparing to the control treatment, the
E2 and ER agonists induced levels of 6-hydroxynicotinate (Figure 5A) from nicotinate
and nicotinamide metabolism; glyceraldehyde (Figure 5B), an intermediate of glucose
metabolism; 2-hydroxybutyric acid (Figure 5C), a product in amino acid catabolism; flavin
adenine dinucleotide (FAD, Figure 5D), which is involved in several important metabolic
enzymatic reactions; and, a glycolysis intermediate glucose-6-phosphate (G6P, Figure 5E).
DPN had the most marked effects in increasing all five metabolites. Additionally, E2
significantly increased, whereas PPT and DPN had a trend to increase the ADP/ATP ratio
(Figure 5F).
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Figure 5. Effects of estradiol (E2), ERα specific agonist PPT, and ERβ specific agonist DPN on levels of representative
metabolites of glucose and lipid metabolism and ADP/ATP ratio. (A–E) Relative units of the levels of metabolites that were
identified different from control group. The representative metabolites included 6-hydroxynicotinate (A), glyceraldehyde
(B), 2-hydroxybutyric acid (C), flavin adenine dinucleotide (FAD; D), and glucose-6-phosphate (G6P; E). Data (mean
± standard deviation) were normalized and auto-scaled using Metaboanalyst program. The analysis process rendered
negative unit levels of metabolites in some groups. Boxes presented 25–75% of normalized values with medians indicated
by horizontal lines within boxes, error bars indicated 5–95% of normalized values, and data points that were <5% or >95%
of normalized values were indicated using open circles. (F) The ADP/ATP ratio data were represented as mean ± SEM.
Data were analyzed by one-way ANOVA analysis. *: Significantly different comparing to the control group (p < 0.05).

3.5. Effects of E2 and ER Agonists on Metabolic Pathways

The detected metabolites were analyzed for metabolic pathways between each treat-
ment group and the control group (Supplemental Tables S6–S8; Table 3). All of the E2 and
ER agonists commonly impacted amino acid metabolic pathways (i.e., tyrosine, tryptophan,
histidine, glycine/serine/threonine, arginine/proline, and taurine/hypotaurine) and carbo-
hydrate metabolic pathways (i.e., amino sugar/nucleotide sugar, pyruvate, TCA cycle, and
glycolysis and gluconeogenesis). E2 and DPN also significantly impacted cofactors and vi-
tamin metabolism involving one carbon pool by folate. Both of the ER agonists significantly
impacted amino acid metabolic pathways (i.e., cysteine/methionine, beta-alanine, arginine
biosynthesis, alanine/aspartate/glutamate, and glutathione); carbohydrate metabolic path-
ways (i.e., glyoxylate/dicarboxylate, starch/sucrose, and pentose/glucuronate interconver-
sions); glycerophospholipid metabolism; cofactors and vitamins metabolic pathways (i.e.,
vitamin B6 and nicotinate/nicotinamide); nucleotide pyrimidine and caffeine metabolic
pathways; and, translation processing involving aminoacyl-tRNA biosynthesis. DPN alone
also affected inositol phosphate and biotin metabolism (Table 3).
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Table 3. Significant metabolic pathways of HepG2 cells treated with estradiol E2, ERα specific agonist PPT, and ERβ specific
agonist DPN revealed by metabolomic pathway analysis.

Metabolism Pathways Treatment Group

Amino acid Tyrosine metabolism E2 PPT DPN
Tryptophan metabolism E2 PPT DPN
Histidine metabolism E2 PPT DPN
Glycine, serine and threonine metabolism E2 PPT DPN
Arginine and proline metabolism E2 PPT DPN
Taurine and hypotaurine metabolism E2 PPT DPN
Cysteine and methionine metabolism PPT DPN
beta-Alanine metabolism PPT DPN
Arginine biosynthesis PPT DPN
Alanine, aspartate and glutamate metabolism PPT DPN
Glutathione metabolism PPT DPN

Carbohydrate Amino sugar and nucleotide sugar metabolism E2 PPT DPN
Pyruvate metabolism E2 PPT DPN
Citrate cycle (TCA cycle) E2 PPT DPN
Glycolysis and gluconeogenesis E2 PPT DPN
Glyoxylate and dicarboxylate metabolism PPT DPN

Lipid Glycerophospholipid metabolism PPT DPN

Cofactors and vitamins One carbon pool by folate E2 DPN
Vitamin B6 metabolism PPT DPN
Nicotinate and nicotinamide metabolism PPT DPN
Biotin metabolism DPN

Nucleotide Pyrimidine metabolism PPT DPN

Biosynthesis of other metabolites Caffeine metabolism PPT DPN

Genetic information translation processing Aminoacyl-tRNA biosynthesis PPT DPN

3.6. Effects of E2 and ER Agonists on Gene–Metabolite Interaction

We performed multi-omics integration analyses using powerful bioinformatics tools
to connect the systematic changes of transcriptome and metabolome induced by E2 and
ER agonists. First, by integrating the transcriptome and metabolome results, IPA iden-
tified eight important enzymes of glycolysis pathway that were altered by treatments
(Figure 6A), including glucose-6-phosphate isomerase, fructose-bisphosphate aldolase,
triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglyc-
erate kinase, phosphoglycerate mutase, phosphoenolpyruvate hydratase, and pyruvate
kinase. This is in agreement with predictions that were made using curated results of the
Ingenuity Knowledge Base of IPA. We further evaluated the effect of E2 and ER agonists
on transcriptome and metabolome of HepG2 cells using differentially expressed genes that
were identified by RNA-Seq and metabolites detected by targeted metabolomics. Inter-
action maps indicated that 52 genes and 44 metabolites in E2-treated cells (Supplemental
Figure S4A), 24 genes and 21 metabolites in PPT-treated cells (Supplemental Figure S4B),
and 21 genes and 20 metabolites in DPN-treated cells (Supplemental Figure S4C) were
connected based on the reported network in the KEGG database. We then overlapped
these three gene–metabolite interaction maps and generated a summary map of 5 genes
(i.e., SSTR1, C5AR1, RRM2, IL11, and BIRC5) (Figure 6B). Somatostatin receptor (SSTR)
1 (SSTR1) and complement component 5a (C5a) receptor 1 (C5AR1) served as central
hubs. The summary map also included nine endogenous metabolites mainly from amino
acid metabolic pathways: serotonin, gamma-aminobutyric acid, acetylcholine, dopamine,
histamine, epinephrine, guanine, melatonin, and norepinephrine (Figure 6B). The sum-
mary map reflected common changes in gene–metabolite interaction that are caused by E2,
PPT, and DPN treatments, and provided metabolic and signaling pathways that could be
explored in the future.
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Figure 6. Gene–metabolite interaction revealed using multi-omics analysis. (A) Enzymes in glycolysis pathway altered by
estradiol treatment. (B) Commonly altered genes and metabolites among all three networks (see Supplemental Figure S4) of
HepG2 cells treated with estradiol, ERα specific agonist PPT, and ERβ specific agonist DPN. Each square node represents
one metabolite and each circle node represents one gene. Sizes of nodes are proportional to their degree values, signifying
number of their connections to other nodes. Nodes with higher degree values act as hubs in a network. Colors of nodes
reflect their betweenness centrality values, signifying number of shortest paths or interactions going through the nodes.
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4. Discussion
4.1. Summary of Findings

The lower incidence of HCC in women as compared to men could be attributed to
the protective roles of estrogen in HCC development and progression. Although there
has been considerable progress in demonstrating anticancer effects of estrogen, the mecha-
nisms that are related to metabolic reprogramming that underlie HCC protection remain
unclear [43]. We took advantage of transcriptome and metabolome pathway analyses
and multi-omics analysis of gene–metabolite interaction to explore potential mechanisms
involving metabolic action by estradiol and its receptor agonists. Through these techniques,
altered metabolic gene expression and pathways affected by estrogen and its receptor
agonists were identified. Key observations included the suppression of fuel usage via
glycolysis, pentose/glucuronate interconversions, and altered metabolism of amino acids
and fatty acids. Conversely, enhanced fuel storage via glucose uptake, glucose production
by means of glycogenolysis and gluconeogenesis, along with lipogenesis by estrogen and
its receptor agonists were also observed. All of which could potentially inhibit HepG2 cell
growth. ERα and ERβ are reported to interact with each other and they have opposing
actions in breast cancer, prostate cancer, and ovarian cancer [44,45]. Future experiments
with activation or knockdown of respective ERα and ERβ will be conducted to confirm the
functions of individual ERs and the effects of ER agonists, as well as to test the possible
interaction between ERα and ERβ.

4.2. Metabolism Reprograming in HepG2 Cells

Healthy liver cells perform various essential functions in addition to digestion and
detoxification, such as glucose, lipid, and amino acid metabolism, in order to maintain a
balance between the storage and utilization of fuels. Energy metabolism reprogramming is
essential for the survival and growth of cancer cells. A well-known metabolic alternation
of cancer cells is the Warburg effect. Cells become dependent on glycolysis instead of
OXPHOS to produce ATP, even in the presence of abundant oxygen. Aerobic glycolysis
supplies cancer cells with intermediates that are essential for cell proliferation. It has
been reported that higher levels of lactate, the glycolysis end product, are detected in
aggressive, drug-resistant, and metastatic cancer cells [46]. Although the Warburg effect
is widely recognized, not all cancer cells producing ATP primarily rely on glycolysis.
For example, NB4 leukemia cells are sensitive to glucose metabolism inhibitor 2-DG and
they are considered to be “glycolytic” cells. THP-1 leukemia cells are 2-DG resistant, but
sensitive to OXPHOS inhibitor oligomycin, and they are considered “OXPHOS” cells [47].
Because energy metabolism mechanisms vary in different types of cancer cells, specific
metabolic pathways can be used as targets for cancer therapy.

The first experiment of this study indicated that HepG2 cells were sensitive to the
treatment of a glucose metabolism blocker, 2-DG, and a lactate dehydrogenase and glycoly-
sis inhibitor, oxamate. These treatments lead to reduced cell numbers and lower viability,
but greater markers of cytotoxicity and apoptosis (Figure 1). In contrast, HepG2 cells
were resistant to the treatment of oligomycin, an inhibitor for mitochondrial ATP synthase.
HepG2 cell growth was profoundly suppressed when glucose metabolism was blocked
or when glycolysis was inhibited, but it was not significantly affected when mitochon-
drial OXPHOS was abolished. This indicates that glycolysis was the dominant metabolic
pathway supporting HepG2 cell growth. It is noteworthy that the concentrations tested
in HepG2 cells could have very different effects in other cell lines. For example, 1 mM
2-DG blocked cell viability and induced cytotoxicity in liver cancer cells HepG2 in this
study. It has been reported that 1 mM 2-DG is toxic in breast cancer cell SUM149 [48], but
it is not toxic in other breast cancer cells MDA-MB-231, HCC1937, HDQ-P1, and MCF-7
cells [48,49]. Thus, the findings from this study can be referenced in future studies.
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4.3. Effects of E2 and ER Agonists on Metabolic Gene Regulation in HepG2 Cells

E2 is known to regulate gene transcription by acting on its nuclear receptors. By
investigating the effects of agonists of ERα and ERβ on metabolic genes and metabolites
in HepG2 cells, this study is of great interest, as it contributes to the understanding of
estrogen actions via different ER isoforms in liver cancer development [10]. Transcriptomic
and metabolomic pathway analyses identified both shared and individual metabolic path-
ways. Each of the E2, PPT, and DPN treatments downregulated lipid metabolism involving
steroid hormone biosynthesis. E2 and PPT suppressed carbohydrate metabolism, including
ascorbate and aldarate metabolism; pentose/glucuronate interconversions that are parallel
to glycolysis; metabolism of cofactors and vitamins; and, xenobiotics biodegradation and
metabolism. Furthermore, E2 enhanced starch and sucrose metabolism and conversion
to glucose and G6P, whereas decreased amino acid metabolism involving glycine, serine,
and threonine, which are growth-stimulating amino acids [50]. PPT downregulated car-
bohydrate metabolism involving butanoate metabolism and lipid metabolism, primary
involving bile acid biosynthesis. These metabolic changes by E2 and ER agonists provided
lower amounts of energy and fewer intermediates as building blocks essential for HepG2
cells to proliferate and grow [51,52].

E2 and ER agonists affected the expressions of regulatory genes in glucose and lipid
metabolism in HepG2 cells. The switch from glucose production to glucose usage is a
unique feature in HCC metabolism. Cancer cells increase glycolysis and pentose phosphate
pathway while reducing gluconeogenesis, both of which contribute to cancer cell survival
and growth [17]. It is noteworthy that glycolysis accumulates glycolytic intermediates,
such as NADPH and ribose-5-phosphate nucleotide synthesis [53,54]. In cancer cells, the
activities of enzymes that are involved in glucose catabolism, such as hexokinase, 6PFK,
and PK, are increased in HCC [55] to stimulate cell proliferation. Pentose/glucuronate
interconversion occurring in the pentose phosphate pathway, a metabolic pathway parallel
to glycolysis, not only provides cancer cells an alternative mechanism for glucose oxidation,
but also produces ribose-5-phosphate. Ribose-5-phosphate is a key building block of nuclei
acids that facilitate rapid cell division and growth in HCC. On the contrary, the activities
of key enzymes that are involved in gluconeogenesis, such as PEPCK1 and PGC1α, are
suppressed in primary human HCC and during hepatocarcinogenesis in a mouse model
leading to reduced gluconeogenesis in HCC [56–58]. E2 and ER agonists have opposite
effects on glucose and lipid metabolism when compared to cancer cells.

The expression of the genes that are related to glucose and lipid metabolism collec-
tively indicated suppressed glucose usage with elevated fuel level in HepG2 cells by E2 and
ER agonists. E2, PPT, and DPN inhibited the expression of 6PFK and PK, which encode two
energetically irreversible glycolytic enzymes, but did not inhibit the expression of COX6B,
encoding an OXPHOS enzyme. This suggests that estrogen suppresses glycolysis and re-
lated TCA cycle via ERα and ERβ, without affecting OXPHOS, in order to suppress glucose
usage for cell growth. Additionally, enhanced expressions of GLUT2, PYGL, PEPCK1, and
PGC1A indicated enhanced glucose uptake, glycogen breakdown, and gluconeogenesis in
E2- (GLUT2, PYGL, and PGC1A), ERα agonist- (PEPCK1), or ERβ agonist- (PGC1A) treated
HepG2 cells. Our results also showed the upregulated expressions of transcriptional factors
PPARG and SREBP1C, which activates de novo lipogenesis, along with a key lipogenic
enzyme, ACC, when HepG2 cells were treated with E2 and/or ER agonists. Lipid de novo
synthesis could play either protective roles or oncogenic roles, depending on different
types of cancer. Specifically, as cancer cells shift from OXPHOS to glycolysis, intermediate
metabolite pyruvate accumulates and drives cells into de novo lipogenesis to meet the
need of lipid-rich membrane production [59,60]. The activation of PPARG in HCC cells
induces apoptosis and cell cycle arrest, but it inhibits cell proliferation and growth [61–64].
Consequently, PPARG could be a target for HCC prevention and treatment.

Transcriptome functional pathway analysis also revealed upregulated HIF-1 signaling
pathway by E2 and DPN treatments. Hypoxia is a prominent characteristic that is closely
related to the abnormal energy metabolism seen in tumor cells, due to rapid cell prolifera-
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tion and inadequate oxygen supply. Unlike healthy cells, the metabolism of most cancer
cells is reprogrammed from mitochondrial oxidative phosphorylation to glycolysis and
produces lactic acid to generate energy under the hypoxic condition typically present in tu-
mor microenvironment [65]. Although the expression of HIF1 or HIF2 was not significantly
different, this study revealed that E2 and DPN commonly upregulated hypoxia-induced
genes, such as epidermal growth factor receptor (EGFR), egl nine homologue 3 (EGLN3),
and serpin family E member 1 (SERPINE1) (Supplemental Tables S1 and S4) [66,67]. HIF-1
signaling pathway plays a dual role in tumor growth [68]. On one hand, HIF-1 expression
is elevated in tumor cells and inhibition of HIF-1 expression suppresses cancer develop-
ment [69,70], indicating that HIF-1 signaling has oncogenic effects. On the other hand, the
overexpression, sustained expression, or activation of HIF-1 impairs tumor growth [71,72],
but deficiency or inhibition of HIF-1 promotes tumor growth and survival [73–76]. There-
fore, HIF-1 signaling increases oxygen supply for glycolysis via angiogenesis, provides
energy for tumor survival, but it also induces cell cycle arrest and apoptosis, especially
when oxygen supply is limited in malignant cancers, such as HCC [68].

4.4. Effects of E2 and ER Agonists on Metabolite Regulation in HepG2 Cells

Relatively similar metabolic profiles between E2 and ERα selective agonist PPT, as
compared to ERβ selective agonist DPN, were observed (Figures 4 and 5; Supplemental
Figure S3). Both ERα and ERβ protein expression were detected in liver HepG2 cells,
with ERα expression being more abundant than ERβ expression (Supplemental Figure S1),
consistent with the literature [13,77]. Additionally, E2 binding affinity is four-fold higher
for ERα than for ERβ [77,78]. Therefore, E2 mainly acts via ERα and it provokes metabolic
effects that are relatively similar to ERα selective agonist PPT, in contrast to the very distinct
metabolic effects that are produced by ERβ selective agonist DPN.

A high level of ATP or a low ADP/ATP ratio is essential for proliferating and growing
cancer cells. Our targeted metabolomics showed that E2 treatment significantly increased,
while PPT and DPN treatments had a trend to increase the ADP/ATP ratio as compared to
the control treatment (Figure 5). These results suggest dampened fuel utilization, consistent
with the suppressed expression of glycolytic genes that contributes to lowered ATP pro-
duction in HepG2 cells by E2 and ER agonists, consequently leading to suppressed cancer
cell growth. Our targeted metabolomics data also showed that E2 and ER agonists signifi-
cantly affected major metabolites in the metabolism of amino acids, carbohydrates, lipids,
cofactors and vitamins, and nucleotides (Table 3; Supplemental Tables S6–S8). Specifically,
levels of glyceraldehyde, an intermediate from the breakdown of fructose-1-phosphate
that connects fructose metabolism to glycolysis and gluconeogenesis [79], were increased
by E2 and ER agonists. The E2 and ER agonists also increased the levels of a nicotinic
acid metabolite 6-hydroxynicotinate and 2-hydroxybutyric acid derived from ketobutyric
acid. 6-Hydroxynicotinate is a metabolomics biomarker for oral cancer [80]; however, its
presence in liver cancer cells has not been extensively reported. 2-Hydroxybutyric acid
is produced by the catabolism of amino acid L-threonine and glutathione synthesis in
mammalian hepatic cells, whose levels arise due to enhanced lipid oxidation and oxidative
stress, as well as impaired glucose regulation [81]. The rate of hepatic glutathione synthesis
dramatically increases under oxidative stress or detoxification of xenobiotics in the liver.
Therefore, increased 2-hydroxybutyrate in E2- and ER agonist-treated cells may indicate
increased oxidative stress. FAD is a redox-active coenzyme associated with different types
of proteins and it involves several important enzymatic reactions in metabolism, and it is
utilized in energetically difficult oxidation reactions. FAD-dependent proteins function in
metabolic pathways, including amino acid catabolism, fatty acid β-oxidation, and biosyn-
thesis of nucleotides and cofactors. One well-known reaction is part of the TCA cycle,
in which FAD is required for succinate dehydrogenase of the electron transport chain to
catalyze succinate oxidation [82]. In our analysis, the increased FAD production in all three
treatment groups may indicate that, due to the restricted glycolysis pathway during the
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treatments, the energy supplies for these cells have to go through a slightly more active
TCA cycle to maintain the energy homeostasis.

Higher levels of G6P, an immediate substrate for both glycolysis and pentose phos-
phate pathways, were seen in all three treatment groups as compared to the control group.
G6P and other measured metabolic intermediates are not final products, but they are able
to directly and indirectly impact multiple alternative pathways, including glycolysis, pen-
tose phosphate pathway, TCA cycle, fatty acid biosynthesis, and oxidation, via allosteric
regulation of enzymes. The findings of this study clearly indicated significant differences in
the levels of key metabolic intermediates between groups that were treated with estrogen
or an estrogen receptor agonist and the control group. Several genes and intermediate
metabolites were measured, but many other genes and metabolites, along with these gene
product proteins, are awaiting further investigation.

4.5. Multi-Omics Integration Analysis Revealed Other Pathway Impacts in Addition to Glycolysis

Multi-omics integration analyses confirmed the effects of E2 and its receptor agonists
on metabolic and signaling pathways in HepG2 cells. First, we identified eight metabolic
enzymes in E2-treated HepG2 cells (Figure 6A) that are key predictors of cancer progression
by systematically evaluating the changes of transcriptome and metabolome data and dig-
ging into the existing Ingenuity Knowledge Base of IPA. For example, high expression of
phosphoglycerate kinase promotes HCC tumorigenesis [83] and phosphoglycerate mutase
promotes oral cancer squamous cell migration [84]. Expression of phosphoglycerate kinase
has been reported to correlate with tumorigenesis in various types of cancer cells [83,85–90].
The overexpression or administration of phosphoglycerate kinase has been reported to
promote liver cancer cell growth [83] while inhibiting cell growth and progression in
lung, pancreatic, breast, and colon cancer cell lines [87,88]. Therefore, phosphoglycerate
kinase could have both oncogenic and anticancer characteristics, and could potentially
be an important target for cancer therapy. We also mapped the interaction between dif-
ferentially expressed genes and detected metabolites, and summarized core genes and
metabolites that were affected by all three treatments. Two identified genes at the center
of the gene–metabolite interaction map, SSTR1 and C5AR1, were key hubs intertwining
with nine metabolites (Figure 6B). It has been reported that healthy hepatocytes do not
express any SSTR subtype, while cirrhotic HCC cells and cultured hepatoma cells express
all five SSTRs at both mRNA and protein levels [91]. Additionally, an elevated expression
of SSTR1 in tumor cells has been reported in patients diagnosed with advanced-stage
HCC [92]. In this study, all of the E2 and ER agonist treatments reduced SSTR1 expression.
Interestingly, none of the specific SSTR agonists tested by Reynaert et al. influenced liver
cancer proliferation or apoptosis, and only an SSTR1 agonist reduced the migration of
HepG2 cells [91]; this suggesting that the stimulation of SSTR1 may decrease invasiveness
of HCC via reducing cell migration. The expression of C5AR1 is increased in HCC and
HCC-derived cell lines. Increased expression of C5AR1 correlates with tumor stage and
tumor cell invasion of liver capsule [93]. The complement system plays tumor promoting
roles. The activation of the complement system promotes tumor growth via providing
complement mediators and an inflammatory microenvironment [94]. Several complement
components have been reported to regulate tumor growth via directly interacting with
their corresponding receptors on tumor cells. The interaction of complement C5a and its
receptor C5aR1 activates the mitogenic pathway and decreases apoptosis, consequently
promoting oncogenesis [95]. However, most of this line of research has focused on the
roles of complement in regulating growth of primary tumors. In the current study, the
expression of C5AR1 was downregulated by E2, leading to reduced interaction between
C5 and its receptor C5AR1, but it was upregulated by PPT and DPN possibly due to
lowered C5 production by HepG2 cells. This possibility and the complicated involvement
of C5aR1 signaling pathway in cancer development and metastasis await further inves-
tigation. Several metabolites that were reported in the gene–metabolite interaction map
were key amino acid metabolites (i.e., serotonin and melatonin in tryptophan metabolism;
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dopamine, norepinephrine, and epinephrine in tyrosine metabolism; histamine in his-
tidine metabolism; and, gamma-aminobutyric acid in glutamate metabolism), guanine
in nucleotide metabolism, and acetylcholine in glycerophospholipid metabolism. This
finding suggested that, in addition to glycolysis pathway, the metabolism of amino acids,
nucleotides, and glycerophospholipids could be investigated in future studies.

5. Conclusions

HCC is one of the most common and deadly cancers worldwide [1,2]. Warburg’s
discovery regarding an increased utilization of aerobic glycolysis not only establishes
metabolic reprogramming as one of the distinguishing characteristics of cancer cells [96],
but also provides a venue for developing anticancer treatments [97]. Additional metabolic
alterations in cancer, such as pentose phosphate pathway, amino acid metabolism, and
nucleotide metabolism, have also been revealed to contribute to metabolism reprogram-
ming [50]. We investigated the metabolic effects of estrogen and selective nuclear estrogen
receptor agonists in HCC cells, and identified metabolic pathways using integrated tran-
scriptome and metabolome analyses. It is noteworthy that estrogen acts on classic nuclear
ERs, including ERα and ERβ, as well as membrane-bound ERs, including G protein-
coupled ER (GPER, also known as GPR 30) and membrane-associated ERα and ERβ vari-
ants, in order to exert metabolic effects in glucose and lipid metabolism in liver cells [10].
The findings collectively indicated elevated intracellular fuel levels, via upregulated conver-
sion from starch and sucrose to glucose, glucose uptake, glycogenolysis, gluconeogenesis,
and lipogenesis, with dampened energy utilization, via inhibited glycolysis and its parallel
pentose/glucuronate interconversion pathway, but unaffected mitochondrial OXPHOS.
This led to impaired ATP levels in HepG2 cells, which serves as a potential mechanism
underlying anticancer effects and provides a strategy for HCC treatment. Certain genes
and metabolites identified in this study could be targets of future liver cancer treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/2/455/s1, Supplemental Tables S1–S5. Effects of estradiol, estrogen receptor ERα agonist PPT,
and estrogen receptor ERβ agonist DPN on gene expression detected via RNA sequencing and KEGG
pathway analysis. Table S1: Upregulated genes and pathways by estradiol comparing to control
treatment. Table S2: Downregulated genes and pathways by estradiol comparing to control treatment.
Table S3: Downregulated genes and pathways by ERα agonist PPT comparing to control treatment.
Table S4: Upregulated genes and pathways by ERβ agonist DPN comparing to control treatment.
Table S5: Downregulated genes and pathways by ERβ agonist DPN comparing to control treatment.
Supplemental Tables S6–S8. Effects of estradiol, estrogen receptor ERα agonist PPT, and estrogen
receptor ERβ agonist DPN on metabolites detected via metabolite profiling and KEGG pathway
analysis. Table S6: Altered metabolites and pathways by estradiol comparing to control treatment.
Table S7: Altered metabolites and pathways by ERα agonist PPT comparing to control treatment.
Table S8: Altered metabolites and pathways by ERβ agonist DPN comparing to control treatment.
Supplemental Figure S1. Western blot analysis detected protein expression of ERα (66 kDa), ERβ
(56 kDa), and a housekeeping protein β-actin (45 kDa) in HepG2 cells used in this study. The gel blot
image shows protein bands and a protein ladder as the molecular size marker. Supplemental Figure
S2. Representative images of HepG2 cells treated with 2-deoxy-D-glucose, oxamate, and oligomycin.
HepG2 cells treated with vehicle DMSO (Control), 2-deoxy-D-glucose (5 and 10 mM), oxamate (5, 10
and 50 mM), or oligomycin (0.1, 0.5 and 1.0 µg/mL) were evaluated using light microscopy (10×
magnification). Bars = 50 µm. Supplemental Figure S3. Heatmap presentation of metabolic profiles
comparing relative concentrations of detected 174 metabolites from HepG2 cells treated with control,
estradiol (E2), ERα specific agonist PPT, and ERβ specific agonist DPN. Each column represents
one biological replicate, and each row represents one targeted metabolite detected. Supplemental
Figure S4. Gene–metabolite interaction maps. Gene–metabolite interaction maps showing the effect
of estradiol (S4A), ERα specific agonist PPT (S4B), and ERβ specific agonist DPN (S4C) on the
transcriptome and metabolome of HepG2 cells using significantly differentially expressed genes
identified by RNA-Seq analysis and their significantly altered metabolites detected by targeted
metabolomics. Each square note represents one metabolite, and each round note represents one gene.
The size of the nodes is proportional to their degree values, signifying the number of connections
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it has to other nodes. Nodes with higher node degree act as hubs in a network. The color of nodes
reflects their betweenness centrality values, the number of shortest paths, or interactions going
through the node. Figure S4A: Gene–metabolite interaction maps showing the effect of estradiol.
Figure S4B: Gene–metabolite interaction maps showing the effect of ERα agonist PPT. Figure S4C:
Gene–metabolite interaction maps showing the effect of ERβ agonist DPN.
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