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Forward genetic screens in model organisms are vital for identifying novel genes essential for developmental or disease
processes. One drawback of these screens is the labor-intensive and sometimes inconclusive process of mapping the
causative mutation. To leverage high-throughput techniques to improve this mapping process, we have developed a
Mutation Mapping Analysis Pipeline for Pooled RNA-seq (MMAPPR) that works without parental strain information or
requiring a preexisting SNP map of the organism, and adapts to differential recombination frequencies across the genome.
MMAPPR accommodates the considerable amount of noise in RNA-seq data sets, calculates allelic frequency by Euclidean
distance followed by Loess regression analysis, identifies the region where the mutation lies, and generates a list of putative
coding region mutations in the linked genomic segment. MMAPPR can exploit RNA-seq data sets from isolated tissues or
whole organisms that are used for gene expression and transcriptome analysis in novel mutants. We tested MMAPPR on
two known mutant lines in zebrafish, nkx2.5 and tbx1, and used it to map two novel ENU-induced cardiovascular mutants,
with mutations found in the ctr9 and cds2 genes. MMAPPR can be directly applied to other model organisms, such as
Drosophila and Caenorhabditis elegans, that are amenable to both forward genetic screens and pooled RNA-seq experiments.
Thus, MMAPPR is a rapid, cost-efficient, and highly automated pipeline, available to perform mutant mapping in any
organism with a well-assembled genome.

[Supplemental material is available for this article.]

Forward genetic screens in zebrafish have identified a large

number of genes essential for organogenesis (Driever et al. 1996;

Haffter et al. 1996), laterality (Chen et al. 2001), axon guidance

(Xiao et al. 2005), and cancer development (Moore et al. 2006),

many of which have been linked to human disease. Similar

large-scale forward-genetic screens have been and continue to

be performed in mice (Yu et al. 2004; Garcı́a-Garcı́a et al. 2005),

Drosophila (Nüsslein-Volhard and Wieschaus 1980; Medina et al.

2006), and Caenorhabditis elegans (Brenner 1974; Hughes et al.

2011). However, mapping mutants in many species traditionally

has been labor intensive and often inconclusive, especially in or-

ganisms with relatively complex genomes.

Several methods exist to expedite genetic mapping. For

example, genotyping DNA pooled from phenotype-sorted in-

dividuals (bulk segregant analysis) has long been a standard

method for low-resolution genetic mapping. Bulk segregant

analysis provides a qualitative estimate of the linkage between

a given marker and the mutant locus, while greatly reducing the

time and expense of genotyping. However, this method is still

labor intensive because it requires that each marker be analyzed

individually.

The development of techniques using genotyping arrays

(Tabernero et al. 2012), genomic resequencing of individuals

(Warren et al. 2012), and exome-capture sequencing (Lin et al.

2012) have made mapping mutations much more rapid in hu-

man populations by allowing multiple markers to be analyzed

simultaneously, but they have been less widely adopted in many

model organisms because of incomplete genomic annotation, high

polymorphism rates, and the costs associated with performing these

analyses on large numbers of individuals. Recently, several methods

to use whole-genome sequencing techniques to model organisms

have been proposed for Arabidopsis thaliana (Schneeberger et al.

2009; Cuperus et al. 2010; Austin et al. 2011; Uchida et al. 2011),

zebrafish (Bowen et al. 2012; Leshchiner et al. 2012; Voz et al. 2012),

mice (Arnold et al. 2011), and C. elegans (Doitsidou et al. 2010;

Zuryn et al. 2010).

An alternative to whole-genome sequencing (WGS) is RNA-seq,

which is less expensive because the transcriptome is smaller than

the genome, allowing greater read depth to be achieved with fewer

reads. The utility of RNA-seq analysis for mapping has been dem-

onstrated recently in self-pollinated individuals derived from in-

bred mapping strains in maize (Liu et al. 2012), but this has not

been tested in more noisy data sets from outbred animal pop-

ulations. In addition to mapping, RNA-seq is becoming a standard

analysis method in model organisms for determining the gene

expression and splicing changes underlying phenotypes derived

from both forward and reverse genetics (Aanes et al. 2011; Rösel

et al. 2011; Vesterlund et al. 2011).

Because RNA-seq of pooled individuals can be used for dif-

ferential expression analysis to further understand the phenotypes

of novel mutants from forward genetic screens, we sought to de-

velop a method to use these data to identify the causative mutation

underlying the observed phenotype, thus creating an inexpensive

and rapid alternative to traditional mapping procedures. We have

designed our method, which we call MMAPPR (Mutant Mapping

Analysis Pipeline for Pooled RNA-seq), to use the data and exper-

imental design typical in RNA-seq-based transcriptome experi-

ments directly. Although this study goes through the principles
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and optimization of MMAPPR analysis as well as the details of

successfully mapping four mutants, the average user will not be

required to have this level of expertise and can simply process

their data sets through our program (available at http://yost.

genetics.utah.edu/software.php) in order to identify their mu-

tant genes. We have validated MMAPPR on two known mutants,

nkx2.5 (KV Targoff, unpubl.) and tbx1 (Piotrowski et al. 2003), and

two unknown mutant lines, zy13 and zy14, identified in an ENU

screen performed in our laboratory. MMAPPR was then used to

identify a genomic region containing the mutation and generate

a list of nonsynonymous mutations that serve as candidates for

the gene encoding the causative mutation. In each case, the

identified causative mutation was <1 cM from the maximum

score generated by MMAPPR, indicating that MMAPPR is able to

identify mutations derived from a forward genetic screen in

zebrafish successfully and accurately. In addition to zebrafish,

MMAPPR can be directly applied to other organisms, such as

Drosophila melanogaster and C. elegans, in which both forward

genetic screens and pooled RNA-seq experiments are common,

thus removing a significant barrier for performing mutagenesis

screens in model organisms.

Results

We developed a novel method, MMAPPR, for identifying recessive

mutations identified in forward genetic screens (outlined in Fig. 1).

Briefly, MMAPPR uses RNA-seq data from F2 embryos separated by

phenotype into two pools: wild-type phenotype (which includes

homozygous wild-type and heterozygotes), and mutant pheno-

type (which includes homozygous mutants). Candidate molecular

mutations are then identified based on three criteria: physical lo-

cation in the linked region, expression at the time of tissue col-

lection, and effect on protein amino acid sequence.

RNA-seq data contain many thousands of single nucleotide

polymorphic markers (SNPs) spread across the entire genome,

making it an ideal source for high-throughput mapping. However,

these data sets are extremely noisy due to the variable expression

levels of individual genes across the genome at the time of RNA

collection, PCR amplification artifacts, sequencing errors, map-

ping errors, and genome annotation errors. MMAPPR compen-

sates for the noise inherent in RNA-seq data sets to map muta-

tions. MMAPPR encompasses five steps: (1) RNA sequencing and

mapping, (2) allele frequency distance calculation, (3) signal

Figure 1. Schematic overview of MMAPPR. (A) Mating scheme. Fish from the mutant line are outcrossed and then F1 progeny, heterozygous for the
mutation, are crossed. Pools of phenotypically mutant and phenotypically wild-type fish are then sorted. (B) Schematic representation of allelic segre-
gation between wild-type and mutant pools. (Black) Genomic regions inherited from the mutant carrier line; (gray) regions inherited from the outcross
line. (Bottom panel) A plot of the expected Euclidean distances calculated from the allele frequencies in the two pools. (C ) Flowchart of the analysis steps
incorporated in the MMAPPR algorithm. Each phase of the pipeline is shown by gray boxes, and the portion of the pipeline processed by the MMAPPR
software package is shown by a vertical gray bar.
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processing, (4) candidate single nucleotide polymorphism (SNP)

identification, and (5) candidate confirmation. We have created

the MMAPPR software package to perform steps 2–4, while steps 1

and 5 involve bench work and preexisting software packages;

however, because all five steps are integral to the process, each one

is covered in more detail below.

RNA sequencing and mapping

Any pool of individuals derived from a cross between two hetero-

zygous carriers of a SNP will contain a Mendelian distribution of

genotypes (expected frequencies: 0.25 AA, 0.5 Aa, and 0.25 aa) at

every SNP locus where both parents were heterozygous. Similarly,

the expected allele frequencies of such a SNP are fA = 0.5 and fa =

0.5. However, when the pool of individuals is subdivided into two

pools based on a mutant phenotype, the expected allele frequen-

cies for any SNP depend on its linkage to the mutation causing the

phenotype. For example, a SNP located 10 cM away from the

causative mutation has an expected allele frequency of 90% for the

allele linked to the causative mutation and 10% for the comple-

mentary allele.

MMAPPR uses this principle by selecting polymorphic SNPs

from mapped RNA-seq reads and calculating the SNP allele fre-

quencies in each pool, and then uses this information to estimate

the location of the causative mutation (described below). There-

fore, the theoretical resolution of these SNPs is a function of both

population size and read depth. It is expected that increasing these

factors would improve results until other factors such as data set

noise and SNP density in the genome become limiting factors. To

test the effect of population size, we crossed zy14 heterozygotes

and prepared RNA-seq libraries from 20 phenotypically mutant

and 20 phenotypically wild-type sibling embryos. We did not ad-

just this parameter to fewer than 20 individuals because of the

amount of material typically required to build libraries for RNA-

seq. This was performed three times, generating six libraries of

three separate biological replicates for the zy14 line. We then used

MMAPPR to analyze the 20-embryo RNA-seq data sets pairwise

(matched sets of mutant and wild-type pools), and then combined

the RNA-seq data sets from the three independent biological re-

peats to create a single data set representing 60 embryos. Surpris-

ingly, increasing the number of individuals from 20 to 60 resulted

in only a marginal decrease in the width of the detected peak (from

7.1 Mb to 5.8 Mb for the zy14 data set). It is important to note that

improvements in peak size and shape are limited by data noise and

SNP density. Therefore, the observations that the peak was only

marginally improved by increasing numbers of embryos in the

pools and that the peak maximum is <1 cM from the causative

mutation indicate that we may have reached these limits, thus

masking any improved resolution gained by increasing the num-

ber of individuals in each pool. However, the increased number of

individuals did increase the height of the peak from an average of

0.73 in the individual data sets to 1.29 in the combined data set.

Together, this suggests that RNA-seq libraries generated from 20

individuals should be sufficient for mapping.

An important question is how many reads are required in an

RNA-seq data set for MMAPPR. We analyzed the effects of read

count on peak width and height. Read depth across the genome in

RNA-seq data sets is widely variable, with most regions having very

low coverage (Supplemental Fig. S1). Due to the differences in gene

expression levels at different developmental stages or in different

tissues, SNP read coverage in any RNA-seq data is skewed and has a

very high variance. Thus, the ‘‘mean coverage’’ across the genome

(which is important for WGS analysis) is not a stable or intuitive

summary statistic for RNA-seq-based analysis. Therefore, we used

‘‘total reads per pool’’ as a statistic that is applicable across a variety

of RNA-seq experiments. Twenty data sets were created by ran-

domly down-sampling reads from the combined (60 embryo) data

set, generating data sets that contained from 1% to 100% of the

reads from the original data. The 1% data set (containing 835,714

and 861,895 reads in the wild-type and mutant pools, respectively)

did not contain enough SNPs meeting thresholds to identify

a linked region. The next larger data set (containing 5,008,193 and

5,165,185 reads in the wild-type and mutant pools, respectively)

generated a 10.1-Mb peak, and all remaining, larger data sets

generated peaks between 5.7 and 6.9 Mb wide (Fig. 2A). Peak

maxima were also more volatile in the smaller data sets but did not

trend toward a higher or lower score as the number of reads was

increased (Fig. 2B). Therefore, both peak width and maximum

score are robust at read depths greater than 10 million total reads

per pool, which is within the normal range of RNA-seq data sets.

However, increasing the read depth is expected to improve sensi-

tivity for including genes in the final candidate list, which may

significantly impact identification of low expressed genes. This

Figure 2. Effect of various parameters on peak width, height, and lo-
cation. Reads were randomly sampled from the combined zy14 data set
to create 20 data sets with 1%–100% of the original data. (A) The width of
the peak in each data set. (B) The height of the peak for the same data sets.
The 1% data set did not have a sufficient number of SNPs to identify a peak
(X in A and B). (r) All other data sets. (C ) The effect of different mapping
quality scores on peak location (distance of the peak maximum from the
identified mutation). Mapping quality had little effect on peak position,
but the best overall position for all data sets was at a phred-scaled mapping
quality score threshold of 30.

Mutation mapping by RNA-seq

Genome Research 689
www.genome.org



information will be useful for strategizing how many barcoded

samples can be included in a single lane of sequencing.

Two other important considerations when designing RNA-

seq experiments that will be used in MMAPPR are RNA collection

time and tissue. It is important to point out that MMAPPR will

identify the linked interval regardless of time point or tissue used

for RNA collection. SNPs in neighboring genes that are expressed

at the time of RNA collection should be sufficient to identify

the linked interval, even if the mutant gene is not expressed at

that time. Obviously, discovery of a SNP within the mutant gene

requires that the gene be expressed to be part of the RNA-seq

data set. We therefore suggest isolation of the affected tissue

when feasible. However, as exemplified by mapping and iden-

tification of previously uncharacterized zy13 and zy14 mutants

from our laboratory (see below), the cell lineage that is perturbed

in a mutant is not always known or readily isolated, so in some

cases, RNA isolated from whole embryos can be used. RNA

should also be collected as soon as the embryos can be reliably

segregated by phenotype to increase the likelihood of the gene

being expressed.

After RNA collection and sequencing, reads are mapped to a

reference genome. We used Novoalign (Novocraft) for read map-

ping. Although the algorithm should be software independent,

selection of optimized alignment parameters may differ due to

small differences in alignment and scoring algorithms in other

software. MMAPPR contains several signal processing steps (see

below) to compensate for noise, but selecting the proper align-

ment parameters also improves results. One common filtering cri-

terion for genomic mapping is the minimum mapping quality score

(mapq). This score is a phred-scaled probability that the read

is misaligned and is affected by the quality of the sequencing

read, the number of mismatches/gaps that occur at the putative

mapping location, and the uniqueness of the sequence in the

genome—all factors that can affect SNP calling. To identify the

optimized mapq, we measured the distance from the peak maxi-

mum to the known mutation in the nkx2.5 line using various mapq

cutoffs (Fig. 2C). This analysis showed that a cutoff of 30 resulted in

a peak maximum nearest to the known mutation. Retrospectively,

this cutoff was also the ideal for all of the lines tested, although we

did not optimize the other lines before analysis. Changing the score

threshold did not have a large effect on any of the tested lines

(largest range = 0.61 Mb), indicating that the algorithm is robust

against the effects of low quality reads on SNP calling.

Euclidean distance calculation

After genomic mapping, two BAM formatted alignment files are

submitted to the MMAPPR software package. MMAPPR then

generates a de novo catalog of informative SNPs by identifying

genomic positions at which there is a mixture of alleles in the

phenotypically wild-type pool (containing both wild-type and

heterozygous individuals). MMAPPR does not consider whether

the base calls at these catalogued positions match the reference

genome. This allows the algorithm to work regardless of parental

background or the strain from which the genome build was de-

rived. Small insertions or deletions (indels) and other genomic

changes are not used due to the current limits of indel-calling

algorithms. However, once these algorithms are reliable, they will

be added to MMAPPR. The resulting data set is then processed to

minimize the effects of noise.

RNA-seq data sets are typically noisy due to a combination of

several factors including library/PCR artifacts, sequencing error

rates, mapping errors, etc. Therefore, measuring the relative allele

frequencies between the mutant and control RNA-seq data sets

requires a metric that is not susceptible to this noise. Traditional

mapping methods typically use the log odds ratio (LOR) to mea-

sure linkage disequilibrium as shown in the equation:

LOR = log
amut=Amut

awt=Awt

� �����
����

where a is the number of reads containing a nonreference allele at

the position and A is the number of reads containing the reference

allele at the position. This metric has several characteristics that

make it well suited for mapping analyses. Among these is the fact

that it is asymptotic with its limit corresponding with the actual

mutation, increasing its sensitivity near the segregating locus.

However, its asymptotic nature also makes LOR extremely sensitive

to noise generated from inaccurate measures of allele frequency and

to situations in which there is a zero in the denominator, both of

which are common in relatively low-coverage RNA-seq data. The

combination of these factors resulted in a bimodal distribution of

LOR scores with high LOR scores representing SNPs where low

coverage stochastically resulted in a zero in the denominator.

These locations are spread across the entire genome, masking any

SNPs linked to the causative mutation (Supplemental Fig. S2).

Recent genome resequencing techniques in plants

(Schneeberger et al. 2009) and C. elegans (Doitsidou et al. 2010)

have used the density of SNP markers from the nonmutant line

(based on previously generated SNP maps for parental strains) as an

alternative metric to identify a putative linked region. However,

RNA-seq data sets are often obtained as mutant and control pairs,

and comparable sets are not obtained from parental lines, so this

metric was not suited for our needs, because MMAPPR is specifi-

cally designed to work without parental strain information. An-

other potential method was to identify regions with homozygous

SNPs in the mutant pool with or without incorporating these data

into statistical models (Liu et al. 2012). However, RNA-seq is sus-

ceptible to false positives in low-coverage regions, resulting in

many regions throughout the genome showing a large number of

homozygous SNPs, and this method is susceptible to imperfect

phenotypic identification or penetrance because nonhomozygous

candidates are automatically excluded.

Given the reasons for rejecting the approaches outlined

above, we chose to measure allele segregation using Euclidean

distance (ED), as a metric that does not require parental strain in-

formation and is resistant to noise, using the equation:

ED =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amut � Awtð Þ2 + Cmut � Cwtð Þ2 + Gmut � Gwtð Þ2 + Tmut � Twtð Þ2

q

where each letter (A, C, G, T) corresponds to the frequency of its

corresponding DNA nucleotide. In practice, SNP loci with more

than two variants are extremely rare, so two of the terms will be

zero. Frequencies are used in place of raw read counts to com-

pensate for read coverage differences for loci across the genome

and between mutant and wild-type pools. Because frequencies

cannot be accurately measured at low read counts, a minimum

cutoff of 10 reads is used. ED is advantageous because it is linear,

making it less prone to errors in allelic frequency analysis, and is

able to subtract out sequence-specific errors, an artifact of Illumina

sequencing technology (Nakamura et al. 2011) that is assumed to

be equally present in both samples. In contrast, sequence-specific

Hill et al.
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artifacts can have a large effect on LOR,

especially near a segregating mutant due

to its asymptotic nature.

As an example of the combined

effects of noise on LOR and ED, we cal-

culated the theoretically expected and

experimentally observed LOR and ED

scores for the nkx2.5 mutation. Expected

scores were calculated using the read cov-

erage numbers from the nkx2.5 RNA-seq

data set and assuming the ideal fre-

quencies of 100% mutant allele in the

MUT pool and 33% mutant allele in the

wild-type (WT) pool. The expected LOR

for a completely linked SNP is 8.01, but

the observed LOR score for the pre-

viously identified nkx2.5 SNP was 1.20,

which is only 15% of the expected value

and within one standard deviation from

the median. In contrast, using the same

RNA-seq data sets, the expected ED was

0.89 and the observed value was 0.71—

80% of the expected value and several

standard deviations above the median.

Therefore, using the ED robustly com-

pensates for the noise found in RNA-seq

data sets.

Signal processing

Although measurement of allelic segre-

gation between mutant and phenotypi-

cally wild-type (WT) pools by ED was

greatly improved and did not show the

bimodal distribution of SNP enrichments

seen with the LOR analysis (Supplemen-

tal Fig. S2), it still showed considerable

noise (Fig. 3A). Therefore, MMAPPR uses

two signal-processing steps to identify

the linked genomic sequence: raising the

distance measurement to a power (EDx)

to decrease noise created by small varia-

tions in the allelic frequency estimations

(Fig. 2B) and local linear regression (Loess

fit with a polynomial exponent of 1)

(Cleveland 1988) of the EDs with a span

automatically chosen by minimizing the corrected Aikaike In-

formation Criterion (AICc) (Fig. 2C; Hurvich et al. 1998).

Our method assumes that the Euclidean distance (ED) be-

tween allele frequencies in the mutant and WT pools decreases

proportionally to the genetic distance between a given SNP and the

causative mutation (see Fig. 1B). Therefore, small EDs are a mixture

of noise and signal from relatively distant markers. As the ED in-

creases, it becomes increasingly likely that a given distance mea-

surement is signal and less likely that it is noise, while simulta-

neously indicating stronger linkage. Therefore, we raise the allele

frequency ED to a power to increase the effect of large ED mea-

surements and decrease the effects of low ED measurements/noise

(Fig. 3B). The effect of raising an ED to increasingly greater powers

minimizes the effects of increasing portions of the data. Conse-

quently, raising the distance to too large of a power results in the

shape of the Loess curve being dominated by a few outlying points.

To determine the optimized power for our data sets, we ran

MMAPPR on the nkx2.5 RNA-seq data at various powers and

measured the width of the peak at its base and the proximity of the

top of the peak to the mutation. Our results show that a power of 4

resulted in the best fit (Fig. 3D). A power of 4 also worked well on

the three other mutants shown here.

A complementary method for reducing the effects of noise is

to fit a curve to the raw data. However, there is not a readily ap-

parent model that the ED data are expected to fit, excluding the use

of parametric methods. We also found that smoothing methods

that used a fixed window were sensitive to skewing in regions with

low expressed SNP density, so we chose to fit the data using Loess

regression. Loess regression is a nonparametric method for fitting

curves based on a weighted average of points within a given span.

In linkage analysis, SNPs located near each other should have the

same ED because they are genetically linked, while SNPs located

Figure 3. Data progression through noise reduction steps. (A) Raw Euclidean distance scores across
the genome. For all panels, vertical gray lines delineate chromosome edges, and chromosome widths
represent the relative number of SNPs on the chromosome. (B) Euclidean distance raised to the fourth
power. (C ) Loess fit curve calculated using the data shown in B. (D) Effect of raising the Euclidean
distance to different powers on the Loess fit curve. All data are from the nkx2.5 mutant and pheno-
typically wild-type RNA-seq data sets. (*) The mutation location.
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progressively farther apart are progressively less linked, and thus

the difference in their EDs is less restricted. Loess regression line-

arly fits the data using a set number of points while weighting by

the distance between each of the points. Points close to each other,

which all should be genetically linked together, are weighted

heavily, while points farther apart carry less weight. Using Loess

regression allows for and compensates for regions with low SNP

density. In contrast, fixed window methods, which use a fixed

number of points with equal weight, would result in windows that

span several centimorgans in low SNP density regions, and fixed

distance windows would have few points in low SNP density re-

gions. Because MMAPPR is data driven, it also accounts for local

recombination frequencies without requiring a previously gener-

ated genetic map (Bowen et al. 2012) or requiring one to assume

that the recombination frequency is the same across the genome,

as required by HMM-based models (Leshchiner et al. 2012). We allow

the span to be chosen by the software using AICc, which is commonly

used for optimizing Loess fit curves (Hurvich et al. 1998). The result-

ing Loess curve shows a very distinct peak (Fig. 3C) at the shared

segment that was not readily visible in the raw data (Fig. 3A).

Candidate selection

In addition to providing mapping information, RNA-seq data sets

also contain mutation data for genes expressed at the devel-

opmental time point when the tissue is collected. To identify

putative causative mutations, MMAPPR selects SNPs within the

identified peak(s) that have an ED above a threshold and have

a high allele frequency in the mutant pool. Because of the noise

inherent in the data set, we set these cutoffs conservatively with

a minimum distance of 0.5 and a minimum mutant pool allele

frequency of 0.75. Identified SNPs are then analyzed using the

Alleler program (part of the Useq package) (Nix et al. 2008), which

uses annotated genes to determine whether a given mutation is

nonsynonymous. The result provides a list of putative mutations

that are confined to the identified region and may impact the

gene’s protein product.

The Alleler program is not able to identify causative muta-

tions that are in genomic sequences outside the RNA data set, such

as mutations in transcriptional regulatory regions, in genes that

undergo nonsense-mediated decay, or mutations that consist of

large deleted regions. Therefore, in addition to this analysis, we

recommend that the data sets in hand be used for differential gene

expression analysis using available software (for example, USeq,

Cufflinks, Bioconductor) to identify genes in the identified region

that have significantly different gene expression profiles.

Validation

We have verified MMAPPR using four mutants: two previously

identified mutations, nkx2.5 and tbx1tm208, using RNA-seq from

isolated heart tissue, and two unpublished mutations from an ENU

screen performed in our laboratory, zy13 and zy14, using RNA-seq

from whole embryos. Results from these experiments are sum-

marized in Table 1. First, we developed our method and optimized

the method’s parameters using the previously mapped nkx2.5 line

as shown in Figures 2B and 3. The final results for this line using the

optimized parameters are shown in Figure 4A and Supplemental

File 1. We next used these optimized parameters to analyze the

previously mapped tbx1tm208 mutation (Fig. 4B; Supplemental File

2). In both cases, MMAPPR identified a stop codon within 0.5 Mb

of the maximum fitted peak value corresponding with the pre-

viously identified mutations in each line. This shows that the op-

timized MMAPPR parameters were not specific to the nkx2.5 line,

but provided a strong starting point for novel mutation analysis.

We next used MMAPPR on two mutants, zy13 and zy14, from

an ENU screen for cardiovascular development mutants performed

in our laboratory. The zy13 mutant has severe pericardial edema

and lacks melanophores and other migratory neural crest cells.

Unlike the nkx2.5 and tbx1tm208 lines, the phenotype of this mu-

tant did not clearly indicate a dysfunction in a readily accessible

tissue, which will likely be a common situation in the analysis of

novel mutants. Therefore, we asked whether MMAPPR was able to

identify a mutation using RNA-seq from whole embryos (Fig. 5A,B)

and compared this approach with the RAD-seq method (Baird et al.

2008) used by the commercial mapping service Floragenex (Fig.

5C). Interestingly, both methods identified a large region spanning

approximately half of chromosome 7, although the peak found by

MMAPPR was more informative because it had a maximum at ;67

Mb, while the RAD-seq region was flat, without a peak.

To investigate possible causes for the large region on chro-

mosome 7, we compared the published zebrafish genetic map

(Bradley et al. 2011) with physical positions in the Zv9 genome

assembly. In Figure 5D, lines between the two x-axes connect the

positions of genetic mapping markers (in centimorgans) and their

corresponding genome assembly locations (in megabases). Cross-

ing lines indicate locations where the two maps disagree on the

genomic order of the markers. Differences between the relative dis-

tances between markers show localized differential recombination

rates in the region. This analysis showed that this region falls very

near the centromere (indicated by a black dot on the top and bottom

x-axes), a region with very little recombination. There is also at least

one pair of mapping markers that do not match the order in the

physical genome assembly, indicating that there are possible errors

in this region of the genomic build that may also affect the mapping

results. Thus, it is likely that the large identified region was due

to genomic characteristics that repress recombination around the

centromere and inaccuracies in the genomic build.

Unlike the RADseq result shown in Figure 5C (which was

relatively flat throughout the region), MMAPPR showed a dis-

cernible peak at ;67 Mb. Candidate selection did not identify any

stop codons in the region, but differential gene expression analysis

of the RNA-seq data identified two genes near the peak maximum

with greatly reduced expression levels in the mutant pool (Table 1).

Table 1. Summary of MMAPPR results

Line Peak width
SNPs in

peak
Nonsynonymous

SNPs
Genes in

peak
Genes

expressed
Diff. exp.

genes
Confirmed
mutation

Distance from
peak max

nkx2.5 5.2 Mb 181 1 (1 nonsense) 35 15 0 NS in nkx2.5 0.5 Mb (0.13 cM)
tbx1tm208 8.1 Mb 417 6 (1 nonsense) 63 27 0 NS in tbx1 0.3 Mb (0.22 cM)
zy13 37.9 Mb 1680 22 (0 nonsense) 299 116 4 NS in ctr9 0.04 Mb (0.07 cM)
zy14 6.6 Mb 518 19 (1 nonsense) 111 45 2 NS in cds2 1.40 Mb (0.98 cM)
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PCR-based DNA sequencing confirmed the presence of a nonsense

mutation in the ctr9 gene that appears to cause nonsense-mediated

decay, and the ability to rescue the mutant phenotype by injection

of wild-type ctr9 mRNA confirmed ctr9 as the causative mutation

(MJ Jurynec, X Bai, A Nechiporuk, B Bisgrove, RA Somer, H Wilson,

H Grunwald, Y-C Su, K Hoshijima, HJ Yost, et al., unpubl.). These

results show that MMAPPR generates an accurate estimate of the

mutant location even in centromeric regions or genomic regions

that are not perfectly represented in current genetic maps and

genome assemblies.

The other mutant, zy14, has a complex phenotype, including

failure to form intersomitic vessels and head vasculature. MMAPPR

results for this line are shown in Figure 6. The identified region was

6.6 Mb, similar to the regions identified for nkx2.5 and tbx1 and

much smaller than the region identified for zy13. Several non-

synonymous mutations segregating with the phenotype were

identified within this region, but only a single nonsense mutation

was found in the cds2 gene (Table 1). Because MMAPPR works with

RNA-seq libraries generated from 20 embryos, we analyzed these

libraries for differential expression to see if the candidate was also

identified. However, no genes with significantly different gene

expression profiles were identified within the linked region using

single sets of RNA-seq libraries. Since differential expression anal-

ysis using a single RNA-seq replicate can be limited because the

variance cannot be accurately estimated (Anders and Huber 2010),

we tested differential expression analysis using three separate bi-

ological replicates, each derived from 20 different embryos per

mutant and phenotypically wild-type pool. This analysis showed

that expression of cds2 RNA containing the nonsense mutation

is greatly reduced in the mutant pool, likely due to nonsense-

mediated decay, providing further evidence for its role in the ob-

served phenotype. Based on this result and the optimization studies

described above (Fig. 2), in the limited cases in which the differential

expression analysis component of MMAPPR is required, we rec-

ommend using at least three biological replicate RNA-seq libraries,

as is common for differential expression analysis by RNA-seq, from

pools each of 10–20 wild-type and mutant embryos. Including at

least 10 individuals in each replicate will yield 30 individuals for

mapping by combining the data sets, which provides a number of

individuals above the minimum required (Fig. 2).

We first confirmed the putative nonsense mutation in cds2

by Sanger sequencing mutants and their siblings to show that

it segregated as expected in the population (Fig. 6C,D). Next, we

successfully rescued the mutant phenotype by injecting wild-type

cds2 RNA injection into one-cell-stage embryos (Fig. 6E–G).

Mutant cds2 mRNA, with the single base change, was unable to

rescue the phenotype (Fig. 6H). After we conducted our confir-

mation experiments, another group published a paper showing

that a different mutation in the same gene gave a similar phe-

notype (Pan et al. 2012). Together, these experiments indicate

that MMAPPR correctly identified cds2 as the causative mutant in

the zy14 line.

Discussion
The MMAPPR method described here is able to identify candidate

mutations without any parental strain or genotype information,

without previously identified SNP map databases, and without

data from separate individuals. By using only single RNA-seq li-

braries from a small number of pooled mutant individuals and

their phenotypically wild-type siblings, MMAPPR requires fewer

animals than is normally required for traditional mapping and less

sequencing data than is required for whole-genome sequence

mapping. In addition, unlike whole-genome sequencing, the same

RNA-seq data sets can also be used for transcriptome analyses of

mutants. Furthermore, MMAPPR will allow identification of

X-linked mutations because mutant allele frequency in the mutant

pool will be 1, while the mutant allele frequency in the wild-type

pool will be 0.2, creating a Euclidean distance between populations

that is actually greater than the autosomal recessive case. A linked

region can also be identified for dominant mutations if they are

fully penetrant using the Euclidean distance equation here, al-

though modifications to the MMAPPR program would have to be

made for candidate SNP identification. Together, these attributes

make MMAPPR an efficient and cost-effective means to identify

spontaneous or induced mutations.

Using RNA-seq also allows candidate genes within the linked

region to be identified by three different bioinformatics approaches.

First, SNPs can be analyzed by their effect on the protein. We have

integrated this analysis into MMAPPR because it directly uses the

Figure 4. Linked region peaks identified by MMAPPR for the nkx2.5 and tbx1tm208 lines. (A) Genome-wide (top panel) and chromosome 14 (bottom
panel) Loess fit curves for SNP allele frequency Euclidean distance raised to the fourth power for the nkx2.5 line. (B) Genome-wide (top panel) and
chromosome 5 (bottom panel) Loess fit curves for SNP allele frequency Euclidean distance raised to the fourth power for the tbx1 line. (*) The mutation
location. (•) Centromeres on the x-axis.

Mutation mapping by RNA-seq

Genome Research 693
www.genome.org



data generated for the linkage analysis. Second, gene expression

analysis can be done using a number of available tools (USeq,

Cufflinks, Bioconductor) to identify putative mutations that re-

duce mRNA levels, due either to mutations in the coding regions

that lead to nonsense-mediated decay or to mutations in gene

regulatory regions. Finally, differential splicing can be analyzed

using several tools (USeq, SpliceGrapher, SpliceSeq, KISSPLICE). By

finding the intersection between the lists generated by these tools

and the MMAPPR-identified region, one can generate a robust list

of candidate mutations underlying the phenotype in question.

The use of these lists will differ on a case-by-case basis.

MMAPPR can be used for a wide variety of model and non-

model organisms. For any organism, the criteria are a moderately

well-assembled genome, a sufficient level of sequence poly-

morphism (typical of most model organ-

isms that are not highly inbred), and

a sufficient number (;20) of F2 offspring

that can be pooled by phenotype for RNA-

seq. These F2 offspring do not have to be

siblings, but can be generated from crosses

of multiple F1 carrier siblings, as we did

with the nkx2.5 and tbx1 lines. In organ-

isms that have a genome assembly but not

a strong transcriptome annotation, tools

are available to build a transcriptome from

RNA-seq (Grabherr et al. 2011).

Although MMAPPR worked well for

the four examples shown here, it has

several limitations. As currently imple-

mented, it is unable to directly identify

indels that are small enough not to affect

overall gene expression levels. MMAPPR

is capable of mapping larger deletions

(data not shown). It is unable to identify

genes that are missing from the reference

build or are incorrectly annotated. Fi-

nally, it is unable to directly identify the

causative lesion if the pooled samples are

collected after the gene is no longer

expressed or the mutation lies in untran-

scribed genomic regions. Nonetheless, it is

important to note that in each of these

cases, MMAPPR will identify the genomic

region containing the lesion, and in some

cases the affected gene can be identified

using differential gene expression or

splicing analysis, as described above. Any

RNA-seq-based mapping method also

cannot be used in cases in which the

ability to isolate RNA for library construc-

tion is destroyed by tissue fixation or other

processes necessary to identify the mutant

phenotype.

We suggest several experimental de-

sign decisions to help increase one’s odds

of success. First, RNA should be extracted

as soon as possible after onset of the

phenotype to increase the likelihood that

the causative gene is expressed and cap-

tured in the RNA-seq libraries. Second, we

found that MMAPPR works with RNA

isolated from whole animals or from tis-

sue. Of note, the peaks for tbx1 and zy14, which both fall near each

other on chromosome 5, were similar in size, even though Tbx1

was identified from isolated tissue RNA-seq and zy14 was identified

from whole-embryo RNA-seq. However, we recommend when

feasible that RNA isolated from the cells or tissues of interest be

used for RNA-seq. In this case, MMAPPR will provide a smaller

candidate pool because it only identifies candidates in the ge-

nomic region that are expressed at the right time in the right

tissue. Here, the nkx2.5 and tbx1 data sets were derived from

hearts dissected from embryonic zebrafish. This tissue still pro-

vided a sufficient number of expressed SNPs for accurate map-

ping and, concurrently, a very small list of candidates within the

mapped region (Table 1). Finally, increasing the read depth will

increase the likelihood of detecting causative mutations in low-

Figure 5. Results for MMAPPR mapping of the zy13 line. (A,B) Genome-wide (A) and chromosome 7
(B) Loess fit results. (*) Location of the mutation. (C ) RADseq mapping results for chromosome 7. (D)
Location of SNP and microsatellite genetic map markers on the zv9 genome-build. Lines connect the
genetic map position (bottom axis) to the physical map position (top axis) of each marker. (•) Cen-
tromere location on the x-axis.
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expressed genes. It is commonly recommended to use at least

three replicates for accurate differential gene analysis. Based on

our results, three biological replicates containing at least 10–20

individuals each should be sufficient for this analysis. These

replicates can be barcoded and multiplexed to reduce sequencing

costs.

In conclusion, MMAPPR is a robust and effective way to map

mutations generated from forward genetic screens or that spon-

taneously arise in a population. Adoption of this method might

remove many of the barriers for researchers hesitant to conduct

large-scale mutagenesis screens due to the labor-intensive and te-

dious mapping process.

Methods

Animal care and mating
All fish were kept in the University of Utah Centralized Zebrafish
Animal Resource facility or in the Yost Laboratory Zebrafish facility
according to IACUC-approved protocols. For the nkx2.5 and
tbx1tm208 line, fish were received from the Yelon laboratory and the
Trede laboratory, respectively, and mated into the cmlc2:GFP line
maintained on an AB background. Offspring carrying both the
cmlc2:GFP and the appropriate mutation were selected and mated.
The zy13 and zy14 lines were identified from a standard F2 muta-
genesis screen carried out in the AB strain. Mutant lines were
subsequently maintained by outcrossing to the Wik zebrafish line
(zy13, zy14) and the Tg(fli1-EGFP) and Tg(kdrl-EGFP) lines (zy14)
(Lawson and Weinstein 2002; Beis et al. 2005).

RNA collection and sequencing

Offspring from zebrafish matings were raised to 30 hours post-
fertilization (hpf) (zy13 and zy14), 48 hpf (nkx2.5), or 72 hpf
(tbx1tm208) under standard conditions. These time points represent
the earliest stage at which we could confidently identify the phe-
notypes. Embryos were then segregated into mutant and pheno-
typically wild-type groups based on morphological phenotype
as follows: Nkx2.5—enlarged atrium and diminished ventricle;
Tbx1—loss of heart looping; zy13—pericardial edema; and
zy14—loss of intersegmental vessels. Pools of 20 whole embryos
were collected for the zy13 and zy14 lines. For the other two lines,
;500 hearts were isolated as previously described (Geoffrey Burns
and MacRae 2006) and placed in TRIzol. Both whole embryos and
isolated hearts were processed using TRIzol extraction followed by
the QIAGEN RNeasy Mini kit (QIAGEN). Isolated RNA was run on
a Bioanalyzer 2100 Pico Chip (Agilent) to confirm RNA quantity
and quality and then used to generate cDNA libraries as previously
published (Christodoulou et al. 2011) at the Harvard Biopolymers
Facility or using the Illumina Truseq kit (Illumina) at the University
of Utah Microarray and Genomic Analysis Shared Resource. Sam-
ples were barcoded as wild-type (WT) versus mutant pairs (two
barcodes per lane), and single-end 50-bp reads were generated on
a Hiseq 2000 machine at the University of Utah Microarray and
Genomic Analysis Shared Resource followed by processing using
the Cassava 1.6 pipeline. Mapping was done using Novoalign
(Novocraft) with default parameters except output was set to Sam
format and FASTQ scoring to ILMFQ. Mapping was done using the
Zv9 zebrafish build with splice junctions derived from the UCSC
Refseq refflat gene table. Data on the number of reads obtained
from the RNA-seq data sets are summarized in Table 1.

Data processing

A software implementation of MMAPPR was created using a
combination of Python 3 and R and is available at http://yost.
genetics.utah.edu/software.php. Briefly, the software package per-
forms the following steps: First, Bam files are passed through the
mpileup tool in the SAMtools package (Li et al. 2009) to create
a pileup file. The pileup format converts the file to a position-based
format showing the bases sequenced at each position. Reads at each
position are filtered by the minimum base quality and minimum
mapping quality set by the user, and then the frequency of each
allele is calculated. These data are subsequently passed to R for signal
processing and peak identification. First, the Euclidean distance is
calculated at each SNP location using the equation:

ED =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amut � Awtð Þ2 + Cmut � Cwtð Þ2 + Gmut � Gwtð Þ2 + Tmut � Twtð Þ2

q

Figure 6. MMAPPR results for zy14. (A,B) Genome-wide (A) and chro-
mosome 5 (B) Loess fit results from mapping the zy14 line. (•) Centromere
location; (* in B) location of the mutation. (C,D) Sanger sequencing traces
from a wild-type sibling and a zy14 mutant, respectively. (Arrow) A single
base changed in the mutant; (* and underline) the resulting stop codon.
(E–H) Fluorescent images of the vascular phenotype visualized using the
Tg(kdrl-EGFP) line at 40 hpf, which marks vasculature. (E) Wild-type zy14
sibling. (F) zy14 mutant. (G) zy14 mutant rescued by injection of wild-type
cds2 mRNA. (H) Failure of cds2 mutant mRNA injection to rescue zy14
mutant embryo. In three experiments, uninjected embryos from hetero-
zygote crosses had wild-type phenotypes in 39/51, whereas 109/109
embryos injected with wild-type cds2 mRNA had a wild-type phenotype,
indicative of rescue. In contrast, mutant cds2 mRNA with the single-base
change seen in zy14 was not able to rescue: 18/26 injected embryos had
wild-type phenotype, compared with 14/20 uninjected siblings.
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where the letters (A, C, G, T ) represent their corresponding bases.
This distance is then raised to a power set by the user. Next, the
data are fit using a Loess curve with a polynomial exponent of
1 and a span parameter determined by minimizing the AICc. Peak
regions are defined as regions where the Loess fitted values are
greater than three standard deviations above the genome-wide
median. R then plots the Loess fits and returns a list of SNPs within
the identified region(s) that are enriched in the mutant pool (an
allele frequency >0.75 and a Euclidean distance >0.5). The identi-
fied SNPs are then passed to the Alleler program (part of the USeq
package) to filter for nonsynonymous SNPs using the provided
gene annotation. The position and effect of these SNPs are finally
exported to an output file. MMAPPR uses the optimized values
reported here as defaults but allows the following variables to be
modified by the user: mapping quality (default = 30), base quality
(default = 20), minimum read depth (default = 10), power that ED is
raised to (default = 4), and whether repetitive regions are masked
(default = not masked).

Causative allele confirmation

ctr9 was chosen from the list of zy13 candidates based on its po-
sition relative to the peak of the mapped region and its known
function and expression pattern. Because it was identified as
a mutation that might lead to nonsense-mediated decay, it was first
sequenced to identify a G–A mutation resulting in a nonsense
mutation at amino acid 580. The functional significance of the
mutation was confirmed by phenotypic rescue using wild-type
ctr9 RNA (MJ Jurynec, X Bai, A Nechiporuk, B Bisgrove, RA Somer,
H Wilson, H Grunwald, Y-C Su, K Hoshijima, HJ Yost, et al.,
unpubl.). cds2 was chosen as the primary candidate for the zy14
line based on both SNP and expression analysis (see Results). The
mutation was confirmed by Sanger sequencing of a 327-bp geno-
mic DNA fragment amplified using primers flanking the mutation
(Fwd: TGCAGACTTCTTTGCAAGTAAAC and Rev: TTTGGACAC
CCCTGCTTTAT). For RNA rescue confirmation, full-length wild-
type and mutant cDNAs were amplified by PCR (Fwd: CCAG
GCCTCTATTTTCACCA and Rev: CCTGGTGGTCCCAGAAGT
TA) and inserted into pCS2+. Capped RNAs were synthesized with
the mMessage Machine SP6 transcription kit (Ambion). Embryos
derived from matings of zy14+/�;Tg (kdrl-EGFP)+/� double hetero-
zygous parents were injected at the one to two cell stage with 50 pg
of wild-type or mutant cds2 RNA and scored under epifluorescent
illumination at 40 hpf for rescue of the mutant intersegmental
vessel phenotype. Because rescued embryos were phenotypically
indistinguishable from their wild-type siblings, mutant genotypes
were confirmed by Sanger sequencing.

Differential gene expression analysis

Gene expression analysis was performed using the Useq 7.8.1
software package (Nix et al. 2008). A single RNA-seq replicate was
used for the nkx2.5, tbx1tm208, and zy13 lines. For the zy14 line,
both three biological replicates and one replicate were run for
comparison. Differentially expressed genes were defined as genes
with a false discovery rate <0.05.

Genetic distance estimation

Genetic distances between peak maxima and causative mutations
were estimated using the SNP/str combined genetic map and the
Zv9 build (Bradley et al. 2011). Two genetic markers surrounding
the region and their corresponding Zv9 location were first se-
lected and used to create a linear model of genetic versus physical
distance between the markers. This model was then used to esti-

mate the genetic positions of each lesion and the corresponding
peak maximum to calculate the genetic distance between them.
Centromere positions were determined using data from previously
published genetic maps (Shimoda et al. 1999; Mohideen et al. 2000).

Data access
Raw FASTQ files and aligned BAM files are available at the NHLBI
Bench-to-Bassinet Consortium data-sharing hub (https://b2b.hci.
utah.edu:443/gnomex/gnomexFlex.jsp?topicNumber=27). A soft-
ware package for MMAPPR analysis and instructions for its use
can be accessed from http://yost.genetics.utah.edu/software.php.
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