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Abstract: Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism
in phytohormone signaling and plant development. However, how this is achieved remains in-
completely understood. The Karyopherin (KAP) superfamily is critical for separating the biological
processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin
α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleo-
cytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis
development and stress response by regulating the nucleo-cytoplasmic transport of members in
hormone signaling. However, the KAP members and their associated molecular mechanisms are still
poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes
in the maize genome and described their evolution traits and the recognition rules for substrates with
nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched
for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs
functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally,
we found that several ZmKAPs share similar expression patterns with their interacting proteins,
implying their function in root development. Overall, this article focuses on the Karyopherin super-
family in maize and starts with this entry point by systematically comprehending the KAP-mediated
nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during
maize development, with a perspective on a closely associated regulatory mechanism between the
nucleo-cytoplasmic transport and the phytohormone network.

Keywords: Karyopherin; Importin α; Importin β; nucleo-cytoplasmic transport; maize; NLS; NES;
phytohormone signaling; auxin; root development

1. Introduction

Eukaryotic cells establish separate functional spaces for transcription and translation
in the nucleus and cytoplasm. The nuclear pores and nuclear pore complexes (NPCs)
across the nuclear envelope link two cellular compartments for high-efficiency molecular
exchange channels [1,2]. Disordered phenylalanine- and glycine-rich nucleoporins (FG-
Nups) are distributed in the center of NPCs, serving as a bidirectional permeability gate
to restrict arbitrary translocation of macromolecules [3,4]. Ions, metabolites, and signal-
independent small molecules diffuse freely through the NPCs; macromolecules such as
proteins, RNAs, and some complexes more than ~5 nm or ~40 kDa in size are usually signal-
dependent active transport-mediated by a range of nuclear transport receptors (NTRs) [5,6].
An evolutionarily conserved superfamily of soluble receptors is primarily responsible for
the nucleo-cytoplasmic transport (NCT) of the macromolecules, known as Karyopherins
(KAPs) or Importins (IMPs) [7,8]. The KAPs play central roles in substrate screening and
transport via recognition of the specific short-peptide signals displayed on cargos, referred
to as nuclear localization signals (NLSs) or nuclear export signals (NESs) [9,10].
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Appropriate nucleo-cytoplasmic partitioning of specific proteins is the critical intracel-
lular step for executing downstream physiological functions [11,12]. However, how the
intracellular distribution of nuclear proteins is regulated remains incompletely understood.
KAPs may act as upstream regulators of the functional components for gene regulation,
chromatin modulation, and signal transduction [13–15]. Some published reports have
demonstrated the pivotal roles of several KAP members in plant growth, reproduction,
immunity, stress response, and epigenetic regulation (Table S1). However, the role of only
one member of the KAP superfamily in maize has been revealed: its role in mediating the
nuclear accumulation of Opaque2 (O2) to promote zein biosynthesis in kernel develop-
ment [16,17]. In contrast, the other members of the KAP superfamily and their functions in
maize are still unknown.

Therefore, this review first identifies seven IMPα and twenty-seven IMPβ genes in the
maize genome, then starts with this entry point to review the evolution traits of the KAP
superfamily, the KAP-mediated nucleo-cytoplasmic transport pathway, and the recognition
rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs)
in plants. Furthermore, we spotlight the regulatory roles of nucleo-cytoplasmic transport
in phytohormone signaling and execution. Next, we searched for the protein interaction
partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in
auxin biosynthesis, transport, and signaling to predict their potential function. Lastly,
several ZmKAPs were observed to share similar expression patterns with their interacting
proteins, implying their potential functions in root development.

2. A General View of the Karyopherin Superfamily

The Karyopherin superfamily is categorized into Importin α (IMPα) and Importin β

(IMPβ) based on structural and functional features [7]. Genome-wide identification of the
IMPα or IMPβ families in Saccharomyces cerevisiae, Danio rerio, Homo sapiens, Mus musculus,
Arabidopsis thaliana, and Solanum tuberosum has been successively reported [18–21]. The
IMPαs serve as a protein adaptor between cargo and IMPβ1 in the classical nuclear
import pathway in yeast and mammals, and most IMPβs can independently mediate
nuclear–cytoplasmic transport [22,23]. Generally, IMPβs are divided into importins and
exportins, while a few IMPβs perform a dual role in both nuclear import and export, such
as ScKAP142/ScKAP122, HsXPO4/HsXPO7, and HsIPO13 in yeast and humans [24–28].
However, these bidirectional receptors are demonstrably undetermined in plants. In ad-
dition, the function of some KAPs remains poorly understood in plants (Supplementary
Materials Table S1).

2.1. Evolution of the Karyopherins

Based on validated members of the IMPα and IMPβ families from yeast, humans,
and Arabidopsis, each protein sequence was used as a query to perform BLASTP searches
against the blue-green algae (Nostoc), green algae (Chlamydomonas reinhardtii), bryophyte
(Marchantia polymorpha), pteridophyte (Selaginella moellendorffii), gymnosperm (Thuja plicata),
angiosperm (Amborella trichopoda), and maize genomes (Figure 1). For this analysis, the
KAPs are an ancient gene superfamily existing in all eukaryotes. In blue-green algae, a few
sequences referred to as HEAT (Huntingtin, elongation factor 3 (EF3) 1, protein phosphatase
2A (PP2A) 2, and the yeast PI3-kinase TOR1) repeat domain-containing proteins share
a low similarity with IMPα and IMPβ, which may suggest the evolutionary source of
their unique properties. In eukaryotes, the KAP superfamily is highly conserved from
single-celled to multicellular organisms. Among plant species, the PLANTKAP clade in the
IMPβ family is unique to embryophyte plants. Analogously, there is also an embryophyte
plant-specific group in the IMPα family, and we named this clade PLANTα (Figure 1).
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Figure 1. Phylogenetic tree of the Karyopherin superfamily. Based on validated members of the
IMPα and IMPβ families from yeast, humans, and Arabidopsis, each protein sequence was used
as a query to perform BLASTP searches in Phytozome v13 (https://phytozome-next.jgi.doe.gov/
(accessed on 4 October 2022)), NCBI (https://www.ncbi.nlm.nih.gov/ (accessed on 4 October 2022)),
and MaizeGDB (https://www.maizegdb.org/ (accessed on 4 October 2022)), remove the non-
representative splicing forms of the same gene locus, and confirm sequences of non-redundant
candidates by phylogenetic analysis with the homologous series of the other species. Saccharomyces
cerevisiae (Sc), Homo sapiens (Hs), Chlamydomonas reinhardtii (Cre), Marchantia polymorpha (Mapoly),
Selaginella moellendorffii (Smo.), Thuja plicata (Thupl.), Amborella trichopoda (AmTr.), Arabidopsis thaliana
(At), Zea mays (Zm); ZmIMPα proteins in blue font and ZmIMPβ in red.

Results ultimately identified seven IMPαs and twenty-seven IMPβs in maize, named
based on their subfamily affiliation (Table 1). In comparison to Amborella trichopoda and
Arabidopsis, the members of maize KAPs undergo family expansions, especially in the IMPβ
family. The lineage of maize experienced a tetraploidy period combined with two genomes,
the Maize1 and Maize2, accompanied by whole genome duplication (WGD) [29,30]. As
shown in Supplementary Materials Table S2, sixteen of thirty-four KAP genes experienced
duplication and retained elements from ancient tetraploid maize genomes. There are
fourteen KAP genes that may undergo uneven gene loss after WDG. Among the thirty-
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four KAP genes, eighteen genes come from the Maize1 subgenome and twelve genes are
from the Maize2 subgenome. In addition, four maize KAP genes may be dispersed as
duplicate genes.

Table 1. List of putative Karyopherin gene family members in Zea mays.

Gene Name a Locus ID b

Chromosomal Location c

Transcript
ID

Putative Proteins d

Chr Chr_start Chr_end Length
(aa) MW (kDa) Subcellular Location

IMPα

ZmIMPα1 Zm00001d008345 8 5938159 5944491 (−) T001 527 57.85 Nucleus/Cytoplasm
ZmIMPα2 Zm00001d040274 3 35350411 35356233 (+) T001 529 57.95 Nucleus/Cytoplasm
ZmIMPα3 Zm00001d037606 6 131468248 85071126 (−) T001 528 58.13 Nucleus/Cytoplasm

ZmIMPα4 Zm00001d009850 8 85065908 131476305
(−) T005 529 58.20 Nucleus/Cytoplasm

ZmIMPα5 Zm00001d040153 3 29316628 29318539 (+) T004 183 20.42 Nucleus/Cytoplasm

ZmIMPα6 Zm00001d022536 7 179671127 179674969
(+) T008 568 61.71 Nucleus

ZmIMPα7 Zm00001d008640 8 15537598 15544131 (+) T002 526 56.54 Nucleus/Cytoplasm

IMPβ

ZmIMB1a Zm00001d030694 1 153742904 153749377
(+) T002 1074 116.51 Nucleus/Cytoplasm

ZmIMB1b Zm00001d041556 3 127112005 127118515
(−) T002 987 107.94 Nucleus/Cytoplasm

ZmIMB1c Zm00001d038021 6 145393970 145398983
(−) T001 879 96.77 Nucleus/Cytoplasm

ZmIMB1d Zm00001d010512 8 118588081 118591573
(−) T001 876 96.15 Nucleus/Cytoplasm

ZmIMB2a Zm00001d002936 2 27303853 27322287 (+) T010 891 98.80 Nucleus/Cytoplasm

ZmIMB2b Zm00001d026696 10 150180000 150204009
(+) T005 890 98.86 Nucleus/Cytoplasm

ZmIMB3a Zm00001d021893 7 165532355 165542662
(−) T002 1126 123.26 Nucleus/Cytoplasm

ZmIMB3b Zm00001d033632 1 269308497 269321829
(+) T008 1132 123.78 Nucleus/Cytoplasm

ZmIMB4 Zm00001d028511 1 37580598 37594480 (−) T008 1047 114.94 Nucleus/Cytoplasm

ZmIMB5 Zm00001d045725 9 35215354 35239296 (−) T001 1028 113.35 Nucleus
envelope/Cytosol

ZmIPO8a Zm00001d050526 4 96801958 96828810 (+) T008 1145 128.01 Nucleus
envelope/Cytosol

ZmIPO8b Zm00001d016479 5 164246013 164266562
(+) T001 1036 131.22 Nucleus

envelope/Cytosol

ZmKA120 Zm00001d007225 2 225128676 225140701
(+) T019 1115 116.49 Nucleus/Cytoplasm

ZmXPO1a Zm00001d012815 5 776419 787466 (+) T022 1151 132.30 Nucleus
envelope/Cytosol

ZmXPO1b Zm00001d034914 1 305341236 305352529
(−) T037 1122 128.54 Nucleus

envelope/Cytosol

ZmXPO2a Zm00001d033764 1 272997605 273005246
(+) T002 981 108.32 Nucleus/Cytoplasm

ZmXPO2b Zm00001d013417 5 10817793 10829003 (+) T005 982 108.52 Nucleus/Cytoplasm

ZmXPOTa Zm00001d022125 7 170837895 170846340
(+) T002 978 107.96 Nucleus/Cytoplasm

ZmXPOTb Zm00001d006845 2 217770387 217778785
(+) T005 1024 113.22 Nucleus/Cytoplasm

ZmXPO4 Zm00001d032704 1 235324863 235346931
(−) T036 1165 129.84 Nucleus/Cytoplasm

ZmXPO5 Zm00001d009270 8 49685540 49721525 (+) T001 1175 130.20 Nucleus/Cytoplasm

ZmXPO7 Zm00001d037100 6 112267718 112290870
(+) T051 1067 121.03 Nucleus/Cytoplasm

ZmTNPO3a Zm00001d052632 4 195421971 195454136
(+) T005 1038 114.09 Cytoplasm

ZmTNPO3b Zm00001d014033 5 29806869 29825510 (−) T001 564 62.27 Cytoplasm

ZmTNPO3c Zm00001d032699 1 235073263 235106928
(−) T030 981 109.64 Cytoplasm

ZmPLANTKAPa Zm00001d048628 4 1742938 1750365 (+) T001 1092 120.63 Nucleus
envelope/Cytosol

ZmPLANTKAPb Zm00001d019335 7 28400881 28407780 (−) T004 655 73.54 Nucleus
envelope/Cytosol

a Name refers to systematic designation among members of the Karyopherin family applied to Zea mays based
on homology against Arabidopsis thaliana and Homo sapiens; b Gene accession number in maizeGDB (MAIZE
GENETICS AND GENOMICS DATABASE); c Chromosomal location of the ZmIMPα and ZmIMPβ genes based
on the Zm-B73-REFERENCE-GRAMENE (V4.0); d Basic physicochemical properties of the putative ZmIMPα
and ZmIMPβ proteins, and subcellular location predicted by UniProt (https://www.uniprot.org/ (accessed on
4 October 2022)).

2.1.1. Importin α

IMPαs in animals include three subfamilies designated α1, α2, and α3 [18]. Group α1,
found in all eukaryotes, is believed to be the earliest progenitor of IMPαs and gave birth to

https://www.uniprot.org/
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the other two groups, which function in development and differentiation for the evolution
of metazoan animals [31,32]. Eight of nine IMPαs in Arabidopsis belong to subfamily α1, and
the remaining one is a non-conventional isoform [20]. Replication events based on group α1
are distinct between animals and plants, which may have taken unique evolutionary paths
to bring forth particular clades. ZmIMPα1-5 and AtIMPA1-8 are orthologous to ScSRP1
and HsKAPNA1/5/6, belonging to clade α1. ZmIMPα7 is the ortholog of AtIMPA9 as the
non-conventional isoform. This specific group is also present in other species, except for
Chlamydomonas reinhardtii. Therefore, we named PLANTα as an embryophyte plant-specific
group of the IMPαs. In addition, ZmIMPα6 failed to classify into any group, and it appeared
to be another gene duplication.

2.1.2. Importin β

IMPβs are a large conserved family in which the number of members varies slightly
across eukaryotes, and can be divided into fifteen subfamilies (Figure 1). The ZmIMPβs lack
the XPO6 subfamily and have a PLANTKAP group without a noticeable difference from
other eukaryotic plants. The distribution pattern of IMPβ subclasses may be established
before the evolutionary expansion of eukaryotes, accompanied by continuous selective
pressure leading to a secondary loss of the IMPβ orthologs [33]. The lack of the XPO6
subfamily in Arabidopsis is likely to be a representative loss event, and an analogous
situation is available in yeast (XPO4/6/7) [33]. PLANTKAP is a paralogous expansion
cluster identified in embryophyte-specific land plants [34]. It indicates the fifteen IMPβ
subfamilies that are conserved in eukaryotes but at the same time accompanied by ortholog
expansion or paralog secondary loss. A report shows decreased IMPβ subfamilies during
the evolution of the potato genome, but increased homologous genes within the IMB1 and
IMB3 subfamilies in Solanum tuberosum [21]. Analogous duplication events might have
observably promoted the expansion of the composition of ZmIMPβ members, especially
in the IMB1, XPOT, XPO2, TNPO3, and PLANTKAP subfamilies compared to HsIMPβs
and AtIMPβs.

2.2. The Karyopherin-Mediated NCT Pathway
2.2.1. The Classical Nuclear Protein Import Cycle in Yeast and Mammals

The classical nuclear protein import cycle in which IMPα and IMPβ1 cooperate has
been well characterized in yeast and mammals [35]. It includes three steps: (I) In the
cytoplasm, cargos with classical NLS (cNLS) are recognized by the IMPαs, linking with the
IMPβ1 to form an IMPα/β1 heterodimer localized to the nuclear envelope [36]. Then, the
IMPβ1 directly interacts with the FG-Nups to facilitate transport of the cargo–IMPα–IMPβ1
complex across the NPCs [37]. (II) Once the imported complex reaches the nucleus, a
conformation change triggered by high-affinity RanGTP binding to the IMPβ1 results in
the primary dissociation of IMPβ1 from the IMPα-cargo [38]. This irreversible dissociation
also influences the conformational change in IMPα itself and accelerates the release of cargo
from the IMPα [39]. (III) Lastly, the empty IMPα is recycled by exportin CAS back to the
cytoplasm in preparation for the next round of nuclear import [40].

2.2.2. The IMPα- and IMPβ-Mediated Nuclear Transport Pathway in Plants

Although the classical transport cycle has yet to be confirmed in plants, several reports
have shown a conservative mechanism of the IMPα/β-mediated nuclear protein import
pathway. A bimolecular fluorescence complementation (BiFC) assay shows the interaction
between AtKPNB1 and four AtIMPAs (AtIMPA1, AtIMPA2, AtIMPA4, and AtIMPA6) [41].
The exportin AtXPO2/AtCAS can be specifically bound to AtIMPA1, AtIMPA2, AtIMPA3,
and AtIMPA4 in yeast two-hybrid (Y2H) analysis [42]. The AtIMPA2 interacts with the N-
terminal region of AtXPO5/AtHASTY to mediate its nuclear shuttling from the cytoplasm
to the nucleus [43]. Additionally, the vitro nuclear import assay demonstrates that rice
IMPα1 can form a complex with mouse IMPβ1 and cNLS cargo [44]. Interestingly, another
report shows that AtIMPα can mediate the nuclear accumulation of NLS cargo independent
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of IMPβ [45]. It implies that IMPα may not only act as a protein adaptor but also possibly
independently mediate a unique nuclear import pathway in plants.

2.2.3. The IMPβ-Dependent Nuclear Translocating Pathway

In eukaryotic cells, the IMPβ family dominates the nuclear translocation transport of
most proteins and RNAs [46]. These cargos, with distinctive signals, can directly interact
with importins or exportins to constitute multiple non-classical transport pathways [47,48].
These parallel pathways share a similar mechanism to the classical nuclear import cycle in
their multivalent interaction with the FG-Nups and directional regulation by the Ran (Ras-
like nuclear protein) system, as well as their functional redundancy in the transportation
of the same cargos [49–51]. The IMPαs and the IMPβs are probably evolutionarily related
proteins defined by two helical secondary structures, Armadillo-like (Arm) and the HEAT
repeats, which provide interaction scaffolds for multiple protein ligands [52,53]. That
might lead to differences in protein conformation flexibility between IMPαs and IMPβs
that impact their affinities for specific cargos.

3. Importin α Family in Maize and Arabidopsis
3.1. Protein Domain Distribution and Gene Expression Profiles of the ZmIMPαs

Three conserved domains, an N-terminal importin-β-binding (IBB) domain followed
by a consecutive ARM repeat region and an atypical ARM repeat at the C-terminal, are
predicted by the NCBI and Pfam database of both the AtIMPA and the ZmIMPα proteins
(Figure 2A). These conserved domains form a highly similar protein structure in most
IMPαs, suggesting their comparable biological function.

The flexible IBB domain is the central zone in recruiting IMPβ1 [54]. In the AtIMPαs,
the IBB domain appears to be absent in AtIMPA8 and AtIMPA9. In AtIMPA8 this is due
to a reduction in the partial sequence at the N-terminal, while AtIMPA9 seems to have an
undefined region. Compared to its homolog in the PLANTα group, ZmIMPα7 contains the
IBB domain at the N-terminal. The sequence alignment suggests that the vacant N-terminal
of AtIMPA9 may have a similar function to the IBB domain (Figure 2C).

The ARM array and atypical ARM are responsible for cargo loading and CAS bind-
ing [55,56]. In the ZmIMPαs, ZmIMPα5 appears to be an incomplete gene copy with a
closer kinship to ZmIMPα4. The lack of the multi-ARM repeats region and the atypical
ARM may result in nuclear transport function deficiency. Additionally, members in the
PLANTα group display a reduced ARM array, which may lead to differences with other
isoforms in substrate recognition.

The RNA-seq-based B73 gene expression data from twenty-one tissues at different
growth stages were selected and analyzed [57]. As shown in Figure 2B, the ZmIMPα genes
display a constitutive expression pattern in various organs. ZmIMPα4 (Zm00001d009850)
shows high expression in the endosperm (en), which may relate to its role in the transcrip-
tional regulation of storage proteins [16,17]. The expression levels of ZmIMPα1/2/3/4 are
noticeably higher than those of the other isoforms in the IMPα group. A report shows that
AtIMPA9 is highly expressed in the leaves during pathogen infection [58]. The expression
profile may imply their potential functional redundancy or differentiation in response to
specific ambient cues (Supplementary Materials Figure S1).
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Figure 2. IMPORTINα family in maize and Arabidopsis. (A) Schematic view of the domains conserved
between AtIMPA and ZmIMPα proteins according to Pfam Database (https://pfam.xfam.org/ (ac-
cessed on 4 October 2022)) and CCD Tools (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
(accessed on 4 October 2022)); (B) Heat map of the expression pattern of ZmIMPα genes, with the
expression value calculated by log2 (FPKM). SAM: shoot apical meristem, NU: nucellus, em: em-
bryo, en: endosperm, HAP: Hours after Pollination, DAP: Day after Pollination; (C) Signatures
of the Importin β binding (IBB) domain of the ZmIMPα1 protein predicted by AlphaFold Protein
Structure Database (https://alphafold.com/ (accessed on 4 October 2022)); multiple amino acid
sequences of the IBB domain aligned using CLUSTALW, three conserved motifs highlighted in red
and rectangle boxes.

3.2. Multifunctionality of the IBB Domain

The IBB domain is a critical molecular connector between IMPα and IMPβ, and it is
also an ingenious regulator for the activity of IMPα itself. The crystal structure of IMPα
in mammalians shows the IBB domain containing an internal NLS that binds to its NLS-
binding site and functions as an autoinhibited regulator [39]. The auto-inhibitory action
can be displaced by IMPβ1 binding to fulfill its affinity switch to cargos [59]. The alkaline
amino acid 54KRR56 (Lys-Arg-Arg) in the IBB domain of ScSRP1 acts as an auto-inhibitory
NLS sequence [60,61]. The mutation of 54KRR56 does not impact the interaction with IMPβ,
but it will lead to the failure of cargo to be released in the nucleus [60]. Additionally, the
other two conserved alkaline amino acids in the IBB domain, 33RXXR36 and 44RXXXR48 (X
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for any residue), are likely to significantly affect the binding activity of IMPβ1 [62]. This
shows flexible switching roles of the IBB domain in auto-inhibition, interaction with IMPβ,
and cargo release.

The protein conformation of the ZmIMPαs displays a similar structure except in
ZmIMPα5. As represented in ZmIMPα1, the IBB domain folds back to occupy the NLS-
binding surface (Figure 2C). That auto-inhibited state can be switched from closed to open
by cooperative binding of the NLS cargo and IMPβ to the IMPα [63]. In the putative IBB
domain sequence, three clusters of alkaline amino acids in the AtIMPAs and ZmIMPαs
show subtle distinctions or variations (Figure 2C). The first two clusters in the PLANTα
groups show distinct features, such as (Q/N) RRR and KERRE. The RRRR cluster is
conservative in other IMPαs such as ScSRP1 and HsKPNA1. The RKXKR motif is the
primary pattern in group α1 except for ZmIMPα1/2 (RKSRR), suggesting that amino acid
R (arginine) at both ends is likely the most conserved residue. The terminal residue of the
last cluster is random, e.g., KRX.

Moreover, a recent study in mice shows that a DNA-binding region can be identified in
the IBB domain of KPNA2 and characterized to overlap the conserved alkaline amino acid
region [64]. This suggests that the IBB domain may act as a common interacting domain
for multiple binding partners involved in the functional switching of the transport and
non-transport pathways of IMPαs [65].

3.3. The ARM Repeat and Classical NLS Recognition

A series of ARM repeats in IMPαs is mainly responsible for cargo loading and releasing
by cooperating with the IBB domain [55]. The consecutive stacking ARM repeats generate
a superhelical structure and the inner concave surface of the protein provides NLS-binding
grooves for the cargos, which include the major and minor binding pockets for recognizing
positively charged amino acid clusters in NLSs [66,67]. NLSs with short and regular amino
acid clusters generally divide into classical (cNLS) and non-classical NLSs (ncNLS) based
on residue composition [68]. The monopartite (MP) and bipartite (BP) motifs are two
common types of cNLSs mainly recognized by IMPαs [69]. In addition, the LSD1-type
zinc finger motifs possibly act as NLSs bound to the IMPα [70]. That indicates that more
potential signals are yet to be discovered and interpreted.

The first identified cNLS in the simian virus 40 (SV40) large T antigen, composed of
seven amino acids, was PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val), identified as an MP-
cNLS bound to the major site of the IMPαs [71]. There are five classes of MP-cNLS motifs
with a distinctive preference for the major or minor binding sites of IMPαs differently in
yeast, plant, and mammals [72,73]. As shown in Table 2, the Class I type MP-cNLS seems
to be the most common, while others exhibit flexible variation [74–77]. AtIMPA1/2/3 can
recognize Class I/II/V NLS-containing proteins [76]. The NLS of PIP5K2 is analogous to
the Class III consensus motifs and is recognized by AtIMPA6/9 [78].

As shown in Figure 2C, the autoinhibitory sequences in the IBB domain (KRR and
RRRR) may act as a BP-cNLS, folding back to occupy the major and minor sites when
the IMPα is in an empty state to prevent futile nuclear translocation of unloaded import
complexes [79]. In rice, OsIMPAα1 may show binding activity to variable motifs on different
proteins, suggesting a mutual co-recognition mechanism in BP-cNLS [80,81]. Additionally,
there is more than one NLS displayed on cargo; for example, AtMINIYO has two NLSs that
may promote its accumulation in the nucleus [77].
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Table 2. Classification of NLSs and NESs recognized by KAPs in plants.

Type Consensus Motifs Cargo Sequence NTR Source

MP-cNLS

Class I—
KR (K/R) R or

K (K/R) RK

AtFHY1/AtFHL 40KKRK AtIMPA1 Arabidopsis [74]

AtPARP2 48KRKR AtIMPA2 Arabidopsis [75]

AtLHP1 173RKRKRK AtIMPA1/2/3 Arabidopsis [76]

AtMINIYO 253KLKKRRK AtIMPA4 Arabidopsis [77]

Class II—
(P/R) XXKR (ˆDE)

(K/R)
AtVRN1 173PTPTPKIPKKRGRKKKNADPE AtIMPA1/2/3 Arabidopsis [76]

Class III—
KRX (W/F/Y) XXAF AtPIP5K2 239ATRKRSSVDSGAGSLTGEKIFPRIC AtIMPA6/9 Arabidopsis [78]

Class IV—
(R/P) XXKR (K/R)

(ˆDE)
– – – –

Class V—
LGKR (K/R) (W/F/Y) VQ-protein 92LGLGKRKRGPGVSGGKQTKRRSR AtIMPA1/2/3 Arabidopsis [76]

BP-cNLS

Class VI—
KRX10–12K(KR) (KR) or

KRX10–12K(KR) X
(K/R)

AtMINIYO 1401RKR–1414RYKK, AtIMPA4 Arabidopsis [77]

OsWRKY62/OsWRKY76 8RK–36KKK OsIMPα1 Oryza Sativa [80]

OsCOP1 294RKKR–312KRR OsIMPα1b Oryza sativa [81]

ZmOpaque2 230RKRK–241RRSRYRK OsIMPα1b
ZmIMPα4

Oryza sativa [81],
Zea mays [16]

PY-NLS

(basic/hydrophobic)
Xn—

(R/H/K) (X)2–5 PY
AtFRA1 311KKRK–320PY AtIMB4 Arabidopsis [82]

M9-like domain AtGRP7 112SGGGGSYGGGGGRREGGGGYSG AtTRN1 Arabidopsis [83]

Other NLS Zinc finger motifs PsLSD1
7CNGCRNMLLYPRGATNVCCALC–
46CGGCRTLLMYTRGATSVRCSCC–
84CANCRTTLMYPYGAPSVKCAVC

AtIMPA1 Pisum sativa [70]

NES Φ-X2–3-Φ-X2–3-Φ-X-Φ

OXS2 699LEAWIEQMQL/LGALLEQMQL - Arabidopsis [84,85]

AtFHY1 54LLPL AtXPO1 Arabidopsis [74]

OsWRKY62 308VDQIPHIPV AtXPO1 Oryza Sativa [80]

CMV 2b 79L-85L-87L AtXPO1 Mosaic Virus [86]

cNLS: classical nuclear locational signals. MP: monopartite, BP: bipartite, PY: Proline-Tyrosine, NES: nuclear
export signals, NTR: nuclear transport receptor, X: any amino acid, ˆD/E: any amino acid except Asp or Glu,
Φ: for Leu/Val/Ile/Phe/Met. FHY1: FAR-RED elongated hypocotyl 1, FHL: FHY1-like, PARP: poly (ADP-
Ribose) polymerase, LHP1: like heterochromatin protein 1, VRN1: vernalization1, PIP5K2: phosphatidylinositol
4-phosphate 5-kinase 2, VQ-protein: VQ motif-containing protein, COP1: photomorphogenic 1, FRA1: fragile
fiber 1, GRP7: glycine-rich RNA-binding protein, OXS2: oxidative stress 2, CMV 2b: cucumber mosaic virus 2b.

4. Importin β Family in Maize and Arabidopsis
4.1. The Characteristic Domains of IMPβ Proteins

Compared to the high similarity among the IMPα proteins, the IMPβs may represent a
more flexible transport receptor family containing various functional domains (Figure 3A).
The increased numbers of homologous genes in the IMB1, IMB2, IMB3, XPO2, XPOT,
TNPO3, and PLANTKAP subfamilies form a larger family than the AtIMPβs. The con-
served domains stay the same in importin and exportin subfamilies between maize and
Arabidopsis, implying that members of each group hold potential functional resemblances.
As shown in Figure 3B, most ZmKAPβ genes display a constitutive expression pattern
suggesting their indispensable roles in maize growth and development. The homologous
genes appear to have differential expression levels in each subfamily, potentially indicating
neo- and sub-functionalization of these proteins.
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domains between AtIMPβ and ZmIMPβ proteins according to Pfam Database and CCD Tools;
(B) Heat map of the expression profile of ZmIMPβ genes in different tissues, with the expression
value calculated via log2 (FPKM). SAM: shoot apical meristem, NU: nucellus, em: embryo, en:
endosperm, HAP: Hours after Pollination, DAP: Day after Pollination.

4.1.1. Importin

Four ZmIMB1s with high protein similarity are classed into the IMB1 subfamily.
ZmIMB1a and ZmIMB1b appear to be the closest orthologs to AtKPNB1, while ZmIMB1c
and ZmIMB1d show higher kinship to the other two ARM repeat superfamily proteins,
At3G08943 and At3G08947. The importins contained in the IMB1/2/3/4/5, IPO8, KA120,
PLANTKAP and TNPO3 subfamilies independently mediate nuclear import. In Arabidopsis,
AtKPNB1 and AtSAD2 have shown prominent functions in responses to various abiotic
stresses [41,87]. AtTRN1, AtKETCH1, and AtSAD2 have demonstrated different roles
in microRNA biogenesis and activity regulation [88–90]. Both AtKA120 and AtMOS14
act as modifiers of Suppressor of npr1-1, constitutive (SNC1) to affect plant immunity
response [91,92]. In yeast and mammals, KAP122 and IPO13 may act as bidirectional
receptors [26,28]. The protein domain of the TNPO3 subfamily shares high similarity with
the exportins in Arabidopsis and maize, which may imply their function in nuclear export,
and still needs further verification in plants.

4.1.2. Exportin

The exportins exhibit unique domains in each group and remain highly consistent
in Arabidopsis and maize. The XPO1 domain is a common feature among the XPO1,
XPOT, XPO5, and TNPO3 subfamilies. In the XPO1 subfamily, the CRM1_C domain may
contribute to the transition from an extended to a compact conformation in NES–cargo
binding [93,94]. A report suggests that the CRM1_C domain in AtXPO1 functions to fa-
cilitate virus infection in the nuclear export of viral replicase [95]. Members in the XPO2
subfamily have two related domains, CSE1 and CAS/CSE1, which appear to form a flexible
conformation that changes upon cargo binding [96]. XPOT and XPO5 are primarily in-
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volved in the nuclear export of multiple RNAs to the cytoplasm [97]. The EXPORTIN-T and
EXPORTIN-5 domains are likely to provide the binding pocket for various RNAs [98,99].
Remarkably, however, the link between the protein conformation of the IMBβs and their
distinctive cargos is still an open question. This may be inseparable from the function of
these conserved domains and still needs further exploration and verification.

4.2. The Function of the IBN_N Domain and Ran System

The Importin-beta N-terminal domain (IBN_N) is a typical structural feature at the
N-terminal of most IMPβs (Figure 3A). It seems to play a role in cooperation with the Ran
system. Several reports show that the residues at the N-terminals of KPNB1, TPNO1, and
CSE1 provide the first interactive interface for the Ran protein [37,38,100,101]. The crystal
structure of XPO4 in mammals has revealed four distinct Ran-interaction sites, and the
N-terminal is in charge of the first Ran-binding site [102]. In Arabidopsis, the Ran interacts
with the amino terminus in AtHASTY, AtTRN1, and AtMOS14 [83,91,103]. In addition,
the IBN_N domain of AtXPO1 appears to support the binding activity of virus protein to
impact mosaic virus replication [95].

The IMPβs bound to RanGTP are the direct target regulated by the Ran system [23,38].
In the nucleus, RanGTP binds to IMPβ1 to facilitate the disassembly of the IMPα- β1
cargo [38]. In the cytoplasm, Ran-binding protein 1 (RanBP1) and RanBP2 cooperate
with RanGTPase-activating protein 1 (RanGAP1) to hydrolyze RanGTP to RanGDP for
releasing IMPβ1 [104,105]. The gradient distribution of the RanGTP/GDP in the nucleus
and cytoplasm ensures the proper direction of the nucleocytoplasmic traffic [50]. Therefore,
the RanGTP/GDP transformation, the KAP-mediated cargo transport, and the restriction
of the NPC complex constitute a multiple-layer control for NCT [106].

4.3. The Non-Classical NLS and NES Recognized by Importin β

4.3.1. The Non-Classical NLS

Unlike arginine or lysine residue-enriched cNLSs, only a few ncNLSs or other types of
NLSs are structurally characterized and recognized according to their particular IMPβs [68,107].
The PY (proline-tyrosine) motif is a distinguishing feature of the ncNLS that interacts
with members of the IMB2 and IMB4 subfamilies [82,108,109]. The PY-NLS has loose
sequence motifs in a disordered structure and its overall basic charge is irregular and
variable among different cargos [107,110]. The M9 domain of human heterogeneous nuclear
ribonucleoprotein A1 (hnRNP A1) with a typical PY-NLS interacts with HsTNPO1 [110]. In
Arabidopsis, two small RNA-binding proteins, AtGRP7 and AtGRP8, contain an M9-like
domain to interact with the ortholog AtTRN1 [83]. The difference in several amino acid
residues between the M9 and M9-like domains suggests a discrepancy in the PY-NLS
between plants and animals (Table 2). Additionally, the PY motifs seem to function not
just in nucleocytoplasmic shuttling. AtIMB4 interacts with the PY motifs in FRA1 kinesin
to inhibit its motility and protect protein stabilization in the cytoplasm [82]. Additionally,
there are two other types of NLSs, recognized by their designated IMPβs in yeast and
human. ScKAP121 and HsIPO5 can bind to a specific IK (isoleucine-lysine-rich)-NLS
with a consensus motif K-V/I-X-K-X1–2-K/H/R [111]. HsTNPO3 can mediate the cellular
trafficking of SR proteins (serine/arginine-rich proteins) through interaction with the
RS (arginine–serine) repeat domain [112]. However, these two analogous NLS are still
unknown in plants.

4.3.2. NES

NES is a leucine-rich peptide signal in the nuclear export process, primarily recognized
by the exportin XPO1/CRM1 [113]. A set of ten consensus sequence patterns apply to
the NES family in animals and plants [114,115]. As shown in Table 2, the NES motifs of
zinc finger transcription factor OXS2 members show high conservation in Arabidopsis, rice,
and maize [84,85]. NES and NLS may coexist in transcription factors such as AtFHY1 and
OsWRKY62, suggesting a dynamic nucleocytoplasmic distribution of the nuclear proteins in
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plant developmental and environmental responses [74,80]. A similar situation also presents
itself in plant virus proteins that may facilitate the virus’s replication cycle in plant host
cells [86]. Generally, these identified NLSs or NESs are linear targeting signals for IMPαs or
IMPβs. In addition, the folded domains in some cargos are likely to bind to IMPβ as well,
and that may be related to the particular conformation of the IMPβs [111,116]. However, for
other exportins, the more extensive identification signals are still an outstanding problem
requiring further elucidation of the potential interaction mechanism.

5. Functional Cues of Karyopherins in Hormone Signaling and Plant Development
5.1. The Roles of Arabidopsis KAPs in Hormone Signaling

Phytohormones are important in regulating transcriptional networks in plant growth
and environmental adaption [117]. Recently, some encouraging progress has been made in
understanding the regulatory roles of the Arabidopsis KAPs in plant hormone pathways, and
a schematic illustration is shown in Figure 4. Of note, this motivates a stepwise progression
towards new insight into the more regulatory components in the phytohormone network.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 13 of 26 
 

 

OsWRKY62, suggesting a dynamic nucleocytoplasmic distribution of the nuclear proteins 
in plant developmental and environmental responses [74,80]. A similar situation also pre-
sents itself in plant virus proteins that may facilitate the virus’s replication cycle in plant 
host cells [86]. Generally, these identified NLSs or NESs are linear targeting signals for 
IMPαs or IMPβs. In addition, the folded domains in some cargos are likely to bind to IMPβ 
as well, and that may be related to the particular conformation of the IMPβs [111,116]. 
However, for other exportins, the more extensive identification signals are still an out-
standing problem requiring further elucidation of the potential interaction mechanism. 

5. Functional Cues of Karyopherins in Hormone Signaling and Plant Development 
5.1. The Roles of Arabidopsis KAPs in Hormone Signaling 

Phytohormones are important in regulating transcriptional networks in plant growth 
and environmental adaption [117]. Recently, some encouraging progress has been made 
in understanding the regulatory roles of the Arabidopsis KAPs in plant hormone pathways, 
and a schematic illustration is shown in Figure 4. Of note, this motivates a stepwise pro-
gression towards new insight into the more regulatory components in the phytohormone 
network. 

 
Figure 4. A schematic illustration of Arabidopsis KAP-mediated nucleo-cytoplasmic transport in hor-
mone signaling for plant development. (A) Cytokinin regulates cell division by promoting nuclear 
shuttling of transcription factor MYB3R4, mediated by AtIMPA3 and AtIMPA6, in the shoot apical 
meristem (SAM). (B) AtIMB4 mediates the nuclear partitioning of GRF-INTERACTING FACTOR1 
(GIF1)/ANGUSTIFOLIA3 and JANUS, which antagonistically regulate PLETHORA1 (PLT1) tran-
scription. (C) AtSAD2 and AtKPNB1 act as negative regulators in abscisic acid (ABA) signaling. The 
atsad2 mutant displays an ABA hypersensitivity response during seed germination and seedling 
growth. AtKPNB1 is involved in controlling ABA-induced stomatal closure under drought condi-
tions. (D) AtXPO1A mediates the nuclear export of a WD40 repeat-containing protein, XIW1 (XPO1-
interacting WD40 protein 1), which maintains the stability of ABA INSENSITIVE 5 (ABI5) in the 
nucleus. The schematic illustration was drawn with BIORENDER (https://biorender.com/ (accessed 
on 4 October 2022)). 

  

Figure 4. A schematic illustration of Arabidopsis KAP-mediated nucleo-cytoplasmic transport in
hormone signaling for plant development. (A) Cytokinin regulates cell division by promoting
nuclear shuttling of transcription factor MYB3R4, mediated by AtIMPA3 and AtIMPA6, in the
shoot apical meristem (SAM). (B) AtIMB4 mediates the nuclear partitioning of GRF-INTERACTING
FACTOR1 (GIF1)/ANGUSTIFOLIA3 and JANUS, which antagonistically regulate PLETHORA1
(PLT1) transcription. (C) AtSAD2 and AtKPNB1 act as negative regulators in abscisic acid (ABA)
signaling. The atsad2 mutant displays an ABA hypersensitivity response during seed germination and
seedling growth. AtKPNB1 is involved in controlling ABA-induced stomatal closure under drought
conditions. (D) AtXPO1A mediates the nuclear export of a WD40 repeat-containing protein, XIW1
(XPO1-interacting WD40 protein 1), which maintains the stability of ABA INSENSITIVE 5 (ABI5)
in the nucleus. The schematic illustration was drawn with BIORENDER (https://biorender.com/
(accessed on 4 October 2022)).

5.1.1. AtIMB4 and PLT1-Mediated Root Development

PLETHORA (PLT) family members encoding AP2 class transcription factors depend
on auxin response [118]. Auxin-induced PLTs form a gradient to control the location
of the stem cell region and root meristem size. [119]. AtIMB4 is a positive regulator in

https://biorender.com/
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root meristem size [120]. It is involved in transcriptional regulation for the PLT1 gene by
mediating the nuclear accumulation of two antagonistic cargos, JANUS and GIF1 [120].

5.1.2. AtIMPA3/6 and Cytokinin-Activated Cell Division in Shoot Apical Meristem

Myb-domain protein 3R4 (MYB3R4) transcription factor is highly expressed in the
shoot apical meristem and enriched in the dividing cells to activate the expression of the cell
cycle genes during mitosis [121]. Generally, MYB3R4 is mainly localized in the cytoplasm,
and AtIMPA3 acting together with AtIMPA6 mediates its rapid nuclear accumulation
triggered by cytokinin at the G2/M transition [121].

5.1.3. AtIMPβs and ABA Signaling in Response to Abiotic Stress

There are three IMPβs, AtSAD2, AtKPNB1, and AtXPO1A, shown to be involved
in ABA signaling in responses to abiotic stress. AtSAD2 is initially found in the abscisic
acid (ABA) hypersensitivity response during seed germination and seedling growth as
a negative regulator of ABA sensitivity, suggesting its potential function in ABA signal-
ing [122]. AtKPNB1 also acts as a negative regulator at early steps in ABA signaling, and it
might play an essential role in controlling ABA-induced stomatal closure under drought
conditions [41,123]. Conversely, AtXPO1A mediates the nuclear export of a WD40 repeat-
containing protein XPO1-interacting WD40 protein 1 (XIW1) [124]. In the nucleus, XIW1
interacts with the key transcription factor ABA INSENSITIVE 5 (ABI5) in the ABA signaling
pathway to maintain its stability and further positively regulate the ABA response [124].

5.2. The Predicted Interacting Protein of the ZmKAPs Involved in the Auxin Pathway

Reports in Arabidopsis suggest that the Karyopherin-mediated nucleocytoplasmic shuttling
of signal molecules is the critical link to the hormone signal transduction chain [120,121,124].
However, more signal elements remain to be discovered for obtaining a better understanding
of the role played by KAPs in the phytohormone network, especially for corn growth and
development. Therefore, to understand the functional cues of the ZmKAPs, we explored
the putative interacting proteins using plant.MAP and STRING database [125,126]. As the
function of most proteins in maize is not yet studied, we selected their orthologs in Arabidopsis
involving auxin biosynthesis, transport, and signaling to discuss their potential functionality
links (Table 3).

Table 3. Predicted interacting protein of the ZmKAPs.

NTR Putative Interactor in
Maize

Interactive
Score

Ortholog of the Putative Interactor
in Arabidopsis

Name Gene ID

ZmIMPα1/2/3/4 (P, S)
Zm00001d009312 P-0.208,

S-0.582
CHR11 AT3G06400

Zm00001d040831 CHR17 AT5G18620
ZmIMPα1/2/3/4 (S) Zm00001d014449 S-0.781 LHP1 AT5G17690

ZmIMPα1/2/3/4 (P)
Zm00001d050874

P-0.242
NRP1 AT5G17690

Zm00001d016935 NRP2 AT1G74560

ZmIMB1c/d (P)
Zm00001d033218

P-0.333 NRPB2 AT4G21710Zm00001d013683

ZmIMPα1/2 (P)
Zm00001d020898

P-0.631 HSP90.2 AT5G56030Zm00001d031332
ZmIMPα1/2 (P),

ZmXPO1 (S) Zm00001d053813 P-0.208,
S-0.582 CAND1 AT2G02560

ZmIMPα1/2/3/4 (P),
ZmIMB1 (P) Zm00001d028143 P-0.243,

P-0.363 CSN4 AT5G42970

ZmIMPα1/2 (P),
ZmIMB3 (P) Zm00001d008743 P-0.299,

P-0.255 UBP14 AT3G20630
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Table 3. Cont.

NTR Putative Interactor in
Maize

Interactive
Score

Ortholog of the Putative Interactor
in Arabidopsis

Name Gene ID

ZmIMPα1/2/3/4 (P),
ZmIMB1c/d (P) Zm00001d045109 P-0.299,

P-0.303 PKL AT2G25170

ZmIMPα4 (S) Zm00001d033309 S-0.421 PRL1 AT4G15900
ZmIMB3, ZmIMB4 (S),

ZmIPO8 (S),
ZmXPOT (S)

Zm00001d020810
S-0.716,
S-0.640,
S-0.505

TRM4B AT2G22400

ZmIMPα1/2/3/4 (P),
ZmXPO1/5 (S) Zm00001d050139 P-0.270,

S-0.805 HDA6 AT5G63110

ZmIMB3, ZmIMB4 (S)
Zm00001d013330

S-0.639 PCN AT4G07410Zm00001d033912
ZmIPO8 (S) Zm00001d006459 S-0.655 PRP16 AT5G13010

ZmIMB3, ZmIMB4 (S) Zm00001d030554 S-0.489 APUM23 AT1G72320

ZmIMPα1/2/3/4 (P)
Zm00001d037481

P-0.231 RPT5A AT3G05530Zm00001d018409

(S) for Data analysis from STRING (https://cn.string-db.org/ (accessed on 4 October 2022)), (P) for data anal-
ysis from plant.MAP (http://plants.proteincomplexes.org/ (accessed on 4 October 2022)), (P, S) for Data from
both STRING and plant.MAP databases. NTR: Nuclear transport receptor, CHR11/17: CHROMATIN REMOD-
ELING 11/17, LHP1: LIKE HETEROCHROMATIN PROTEIN 1, NRP1/2: NAP1-RELATED PROTEIN 1/2,
NRPB1/2: Nuclear RNA polymerase II (RNA Pol II) subunit 2, HSP90: HEAT SHOCK PROTEIN 90, CAND1:
Cullin-Associated and Neddylation-Dissociated, CSN4: CONSTITUTIVE PHOTOMORPHOGENIC9 (COP9)
signalosome subunit 4, UBP14: UBIQUITIN-SPECIFIC PROTEASE14, PKL: PICKLE, PRL1: Pleiotropic Regulatory
Locus 1, TRM4B: tRNA-specific methyltransferase 4B, HDA6: Histone deacetylase 6, PCN: POPCORN, PRP16:
pre-mRNA-processing factor 16, APUM23: Arabidopsis Pumilio 23, RPT5a: Regulatory particle AAA-ATPase 5a.

5.2.1. Auxin Biosynthesis

The tryptophan (TRP)-dependent/indole-3-pyruvic acid (IPyA) pathway in two-step
auxin biosynthesis has been well characterized to finely tune the local auxin synthesis in
response to various internal development cues and external stimuli [127]. AtIMPA1/2/3
play redundant roles in the nuclear import of LHP1 and are necessary for flowering
regulation [76]. In auxin biosynthesis, LHP1 links SUPERMAN (SUP) and polycomb
repressive complex 2 (PRC2) to repress the expression of YUC1 and YUC4 genes and fine-
tune local auxin signaling in the floral meristem [128]. However, another report shows that
LHP1 is a positive regulator for YUC genes in leaves, suggesting its complicated roles in
auxin biosynthesis in different tissues or at different developmental stages [129]. Chromatin
remodeling factors CHR11 and CHR17 and Arabidopsis DEAH-box splicing factor PRP16
are predicted to be the downstream targets for IMPα1/2/3/4 and IPO8 (Table 3). CHR11
and CHR17 form a complex with AGAMOUS (AG) at the proximal region of the YUC4
promoter to control its chromatin accessibility for transcription regulation in the floral
meristem [130]. The expression of the YUC4 gene is regulated via alternative splicing to
generate two splice variants with tissue-specific distributions [131]. The mutation of PRP16
disturbs the expression trait of YUC4 transcript variants in seedlings and cauline leaves, as
well as the expression of several other genes involving auxin biosynthesis [132].

5.2.2. Auxin Transport

Intercellular directional auxin transport depends on PIN-FORMED (PIN) auxin efflux
transporters [133]. IMPα1/2/3/4 and IMB1 seem to be responsible for the nuclear import
of NAP1-related protein NRP1/2 and nuclear RNA polymerase II subunit NRPB2, which
may influence the expression and location of PIN proteins (Table 3). Histone chaperones
NRP1 and NRP2 are recruited at the PIN1 locus for local chromatin modulation and
coordinate with the Arabidopsis chromatin-remodeling factor INOSITOL AUXOTROPHY 80
(AtINO80) to control the size of meristem inflorescence [134]. NRBP2 is the second-largest
subunit of RNA pol II required in mRNA and non-coding RNA biosynthesis [135]. The root
tips of the nrpb2-3 mutant display strongly decreased expression and positioning of the

https://cn.string-db.org/
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PIN1/2/3 proteins, which may change local auxin levels, resulting in WUSCHEL-RELATED
HOMEOBOX 5 (WOX5) ectopic expression in the root apical meristem (RAM) [136]. In
addition, PRP16 seems to regulate the expression of most PIN genes in flowers or seedlings
and influences the proper subcellular localization of PIN1 in roots as well [132].

5.2.3. Auxin Signaling

The SKP1/CULLIN1/F-BOX(SCF)-type E3 ubiquitin ligase complex is critical for auxin
perception and signaling in the nucleus [137]. The F-box proteins TRANSPORT INHIBITOR
RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB), as auxin receptors, mediate the
degradation of Auxin/Indole-3-Acetic Acid (AUX/IAA) transcriptional repressors via 26S
proteasome (26SP) to release AUXIN RESPONSE FACTOR (ARF) transcription factors,
leading to transcriptional reprogramming [138].

HDA6 is a negative regulator of gene expression, and AtXPO1A functions as an anti-
silencing factor by mediating the nucleocytoplasmic partitioning of HDA6 [139]. HDA6
and HDA9 may act synergistically in the auxin signaling pathway to regulate valve cell
elongation, and they exhibit functional redundancy in the expression of the ARF4 gene
in silique valves [140]. The ortholog HDA108 (Zm00001d050139) is essential for maize
development, and the mutant exhibits defects in fertility due to altered ear and tassel
growth and microgametogenesis in the anthers [141].

IMPα, IMB1, IMB3 and XPO1 appear to interact with HSP90, CAND1, CSN4, and
UBP14 proteins, which may be involved in the regulation of the SCF complex (Table 3).
HSP90 acts as a chaperone of TIR1 to facilitate its nuclear localization and positively regu-
lates its auxin receptor function in the nucleus [142,143]. Increased temperature promotes
HSP90-mediated rapid nuclear accumulation of TIR1, suggesting its role in integration
between temperature and auxin signaling [144]. CAND1 is likely to function in the assem-
bly and disassembly cycles of the SCF complex through its interactions with CULLIN1
(CUL1) to regulate SCFTIR1 activity [145]. The COP9 signalosome (CSN), composed of
eight subunits (CSN1-8), is a conserved nuclear protein complex required for the dynamic
modification of cullin [146]. The csn mutant exhibits impaired auxin responses, which may
be related to SCFTIR1/AFBs-mediated protein degradation [147]. CSN4 is involved in the
control of adventitious root (AR) formation and modulates the activity of CUL1 by affecting
de-neddylation for CUL1-NEDD8 [148]. UPB14 acts on the turnover of cellular proteins via
26SP-mediated degradation and is likely to function with TIR1, ARF7, and AUX1 in auxin
signaling [149]. A reduction in UPB14 activity results in delayed lateral root primordium
(LRP) initiation and impaired lateral root growth, which may be related to the stabilization
of the AUX/IAA repressor proteins in the mutant [149,150].

IMB3, IMB4, IPO8 and XPOT are predicted to be potential interaction factors for tRNA-
specific methyltransferase TRM4B (Table 3). TRM4B mediates posttranscriptional methy-
lation of RNA cytosine residues to 5-methylcytosine (m5C), including tRNAs, mRNAs,
and noncoding RNAs [151]. It promotes the m5C modification of SHORT HYPOCOTYL 2
(SHY2) and INDOLEACETIC ACID-INDUCED PROTEIN 16 (IAA16) mRNA and plays a
positive role in mRNA stability in root development [152]. Chromatin remodeling protein
PKL and WD40-containing protein PRL1 may serve as the interaction targets of the IMPαs
and IMB1s (Table 3). PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to serve
as a transcriptional repressor of LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16),
which functions in the symmetric division of lateral root (LR) founder cells [153,154]. The
suppression of the PKL–RBR1 complex may be relieved from the LBD16 promoter by the
IAA14/ARF7/ARF19 signaling pathway to facilitate LR formation [154]. PRL1 encodes a
nuclear WD40 protein that has a pleiotropic effect on sugar and several hormone responses
and is necessary for the activity of the root stem cell niche and maintenance of the meristem
size [155,156]. PRL1 has cell- and tissue-specific expression traits in RAM during primary
root growth and appears to configure WOX5 expression in the quiescent center (QC) to act
as an upstream regulator of the PLT1/PLT2 dependent pathway [156].
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Additionally, IMPα1/2/3/4, IMB3, and IMB4 appear to interact with another WD40
protein, PCN, and a regulatory component of 26SP. The PCN gene encodes a nuclear WD40
protein that may integrate auxin signaling into the organization and maintenance of apical
meristems [157]. It appears to coordinate with BODENLOS (BDL) and TOPLESS (TPL)
to mediate the repression of MONOPTEROS (MP) genes and other targets in the auxin
signaling pathway [157]. The regulatory particle AAA-ATPase 5a (RPT5a) is a 26SP subunit
that possibly facilitates substrate recognition and unfolding [158,159]. In the rpt5a mutant,
drastically aberrant auxin and cytokinin responses in roots suggest a role of RPT5a in
adjusting the auxin/cytokinin signaling balance to maintain RAM morphology under high
boron stress [160].

5.3. Expression Profiles of ZmKAPs and Corresponding Interaction Partners in Root Development

Several orthologs of interaction partners have shown regulatory roles in root devel-
opment. To gain additional insight into the potential function of ZmKAPs and correlated
interacting partners, we searched for their detailed gene expression patterns in roots
through RNA-seq based B73 gene atlas data [161]. Figure 5 shows that seven candidates
have similar temporal–spatial expression profiles to those of their putative interacting
ZmKAP genes.
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Figure 5. Gene expression profiles of ZmKAPs and interacting partners in the root. PR: Primary Root,
MZ: Meristem Zone, EZ: Elongation Zone, DZ, Differentiation Zone, CP: Cortical Parenchyma, SR:
Seminal Roots, Z1: Zone 1(root tips region), Zone 2 (from the end of Z1 to the point of root hair or
lateral root initiation), Zone 3 (lower half of differentiation zone); Zone 4 (upper half of differentiation
zone), CR: Crown Roots, BR: Brace Roots, DAS: Day After Sowing, V: Vegetative.

In Arabidopsis, the NRP1/2 double mutant displays a smaller meristem and shorter root
than the wild type [134]. Zm00001d050874/ZmNAP1 and Zm00001d016935/ZmNFA104 are
orthologs of AtNRP1 and -2 that show high transcription levels in the primary roots and the
root tip region. The expression level of ZmIMPα3/4 is the same as that of ZmNAP1, and that
of ZmIMPα1/2 is the same as that of ZmNFA104. In maize, the Zm00001d020898/ZmHSP4
gene has upregulated expression induced by heat stress [162]. The Arabidopsis HSP90
affects temperature-mediated root and hypocotyl growth through modulating the auxin
response [144]. ZmHSP4 shows high expression levels in primary roots and crown roots,
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and ZmIMPα1/2 may present co-expression patterns with ZmHSP4 during crown root
development. OsCAND1 is a regulator of the G2/M transition for meristem cells in-
volved in the emergence of crown root primordia [163]. In maize, the ortholog of CAND1,
Zm00001d053813, exhibits the same expression pattern as ZmIMPα1/2 in root development.

Analogously, Zm00001d008743, Zm00001d020810, Zm00001d013330, Zm00001d033912,
and Zm00001d030554 have high expression levels in the primary roots and the root tip
region, which may be closely related to the root meristem zone. Zm00001d020810 appears
to interact with more than one ZmKAP, while ZmIMB4 and ZmIPO8a exhibit a more
similar transcriptional trend to the UPB14 ortholog in maize. ZmIMB3b seems to have
the same expression profile in roots as the other three interaction partners. In addition,
Zm00001d030554 is the ortholog of the nucleolus localization protein APUM23, and the
mutation of APUM23 displays reduced and mislocalized auxin maxima within the root
tips, suggesting its potential role in auxin homeostasis maintenance [164].

6. Conclusions and Perspectives

The KAP-mediated nucleo-cytoplasmic transport of biomacromolecules is the core
link in organizing genome activities and triggering downstream cell behaviors. The KAP
superfamily and their regulatory mechanisms are highly conserved among eukaryotes and
display critical roles in various intracellular biological processes with indispensability in
plant growth and development (Supplementary Materials Table S1). However, the KAP
superfamily in corn has yet to be studied. Hence, identifying the ZmKaps is essential
for understanding new genetic regulatory mechanisms in maize biology. The compa-
rable sub-familial distribution and functional features between maize and Arabidopsis
suggest their potential similarity in biological functions and cargo recognition mecha-
nisms (Figure 1). Meanwhile, the expanded number of members in the ZmIMB1, ZmIMB2,
ZmIMB3, ZmPLANTKAP, ZmXOP2, ZmTNPO3 and ZmXPOT subfamilies may link to the
more complex cellular activities in the physiological environment (Figure 3). The proper
nucleo-cytoplasmic partitioning of nuclear proteins is a vital mechanism in the plant signal-
ing pathway, including the members of various hormone signal transduction chains [11].
In searching for the interaction partners of ZmKAPs, we obtained some function cues of
ZmKAPs in the auxin pathway (Table 3). Although these cues are enlightening, these
potential actors still need to be further explored and investigated in maize.

Considering some transient protein–protein interactions in cells is likely far beyond
what the database describes; more interaction partners of ZmKAPs and dynamic transport
mechanisms remain to be uncovered in the hormone signal transduction chain. Addition-
ally, how to transport some low-stability proteins or cargos lacking nuclear localization
signal motifs remains to be illustrated. For example, the F-BOX protein TIR1 lacks an
NLS, and HSP90 serves as its chaperone to function in the folding of the nascent protein
and promote its nuclear localization [139]. That is probably one of the nucleo-cytoplasmic
transport modes, whereas the vast majority of the regulatory networks of phytohormone-
related specific transcription factors remain yet unknown. In other respects, KAPs exhibit
multifunction beyond the transport receptors in maintaining protein stability, epigenetic
regulation, and miRNA processing and movement [43,82,165,166]. That will contribute to
a deep understanding of the functional characteristics in the ZmKAP superfamily. In the
future, based on the use of the predicted KAP information to build up a mutant library via
reverse genetics techniques such as the CRISPR/CAS9 system, these are all meaningful
subjects that warrant additional exploration in maize growth and development.
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