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The virtual screening problems associated with acetylcholinesterase (AChE) inhibitors were explored using multiple shape, and
structure-based modeling strategies. The employed strategies include molecular docking, similarity search, and pharmacophore
modeling. A subset from directory of useful decoys (DUD) related to AChE inhibitors was considered, which consists of 105 known
inhibitors and 3732 decoys. Statistical quality of the models was evaluated by enrichment factor (EF) metrics and receiver operating
curve (ROC) analysis. The results revealed that electrostatic similarity search protocol using EON (ET combo) outperformed
all other protocols with outstanding enrichment of >95% in top 1% and 2% of the dataset with an AUC of 0.958. Satisfactory
performance was also observed for shape-based similarity search protocol using ROCS and PHASE. In contrast, the molecular
docking protocol performed poorly with enrichment factors <30% in all cases.The shape- and electrostatic-based similarity search
protocol emerged as a plausible solution for virtual screening of AChE inhibitors.

1. Introduction

Acetylcholinesterase (AChE; EC 3.1.1.7) terminates signaling
at cholinergic synapses by rapid hydrolysis of the neuro-
transmitter acetylcholine [1]. It is a validated target for the
treatment of the Alzheimer’s disease (AD). It is the only target
that has provided the few palliative drugs presently marketed
for the treatment of the AD [2]. AChE inhibitors are also used
for the treatment of Glaucoma [3],Myasthenia gravis [4], and
so forth.

AChE inhibitors are chemically diverse; the active site of
AChE is multifaceted and complex in architecture allowing
numerous structurally diverse ligands to bind to different
subsites [5], thereby, limiting the application of structure
based approaches for a universal virtual screening solution.
Though many groups [6–8] have reported the application
of structure based approaches to AChE, all the studies are
focused on exploring a specific set of analogs rather than
finding a universal solution.

In this study, we have explored both ligand-based and
structure based approaches for virtual screening of AChE.

Ligand based approaches such as similarity search and phar-
macophore mapping were used whereas molecular docking
was used as a structure based approach.The following virtual
screening tools were used for this study: (a) molecular
docking using AutoDock and Glide [9], (b) similarity search
using ROCS [10] and EON [11], and (c) PHASE-Shape based
module and PHASE-pharmacophore search module.

2. Material and Methods

2.1. Dataset Preparation and Query Selection. Known ligands
and decoys set for AChE as reported in the directory of useful
decoys (DUD) [12] was used. The latest structural databases
were downloaded directly from http://www.dud.docking
.org/ (DUD release 2, October 22, 2006) in mol2 file format.
The DUD dataset is a well-defined and unbiased dataset of
annotated active compounds and decoys for the validation
of virtual screening. Multiconformers for the dataset were
then created using OMEGA [13]. The ligand structures used
as queries were extracted from experimentally cocrystallized
structures obtained from the http://www.rcsb.org/ PDB IDs:
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1ax9 (edrophonium), 1eve (donepezil), 1gpk (huperzine), 1gqr
(rivastigmine), and 1odc (tacrine).

2.2. Structure Based Docking

2.2.1. Protein Preparation. PDB code 1b41 was downloaded
(http://www.rcsb.org/) and visually analyzed. All the protein
structures were initially corrected using MolProbity [14]
interactive server. The resulting structure was then further
refined using Schrödinger protein preparation wizard. The
ionizable residues were set to their normal ionization states at
pH 7, and a restrained energy minimization (relatively higher
convergence threshold of a gradient to <0.3 kJ/Å-mol) was
performed using OPLS2005 force field.

2.2.2. Ligand Preparation. For docking studies all the ligands
were energy minimized in the Macromodel minimization
panel using the OPLS-2005 force field and GB/SA water
model with a constant dielectric of 1.0. Polak-Ribiere first
derivative, conjugate gradient minimization was employed
with maximum iterations of 1000 and convergence thresh-
old of a gradient to <0.05 kJ/Å-mol. LigPrep2.0 module of
Schrödinger was used to generate possible ionization states
at target pH 7.0 ± 2.0. All possible tautomeric states at this
pH were also generated using the tautomerizer module of
LigPrep2.0. The resulting structures were saved in ∗.mae
format for docking using Glide and ∗.pdb format for docking
using AutoDock.

2.2.3. Docking. All the docking experiments were performed
with AutoDock4.0 and Glide. A grid size of 110 × 110 × 110
centered on the ligand was used. For Auto Dock, Lamarckian
Genetic Algorithm was employed as the docking algorithm.
For making the virtual screening protocol automated a
separate script was written and validated [15]. The docking
parameters used are as follows: number of genetic algorithm
(GA) runs: 10, population size: 150, maximum number of
evaluation: 2500000, and maximum number of generation:
27000. Glide standard precision mode was used for the
current docking study. 5000 poses were used for passing
through initial Glide screening. Scoring window for keeping
initial poses was kept at 100 poses. Best 400 poses were
chosen for energy minimization during docking; a distance
dependent dielectric constant of 2.0 and maximum number
of energyminimization steps of 100were used. All the docked
poses were then clustered based on heavy atom RMSD
clustering, with a maximum cutoff of 2.0 Å.

2.3. Similarity Search. ROCS shape-based virtual screening:
Multiconformer files, which were generated by OMEGA,
were saved in oeb.gz format. These generated multi-
conformational files were used as input database for per-
forming Rapid Overlay of Chemical Structures (ROCS) [10]
similarity search. ROC is designed to carry out large-scale 3D
database searches. It performs similarity searches by using
a shape-based superposition method that finds the similar
but nonintuitive compounds. It uses only the heavy atoms
of a ligand ignoring the hydrogens. The output files of the

similarity search were then ranked according to their combo
score (chemistry and shape search score).

EON electrostatic similarity-based virtual screening:
ROCSoutput structures (oeb.gz)were used as input for analy-
sis using EON. EON [11] calculates the Electrostatic Tanimoto
between each database molecule and the query (ROCS
overlay hits). EON does not perform any overlay or alter the
input orientation of the structures. It calculates new partial
charges for the input structures using MMFF94. The output
files were clustered according to the EON (ET combo) score.

PHASE-Shape based similarity: similar to the ROCS
program PHASE-Shape program [16, 17] was used to screen
a database, based on the shape of any query. The shape
search algorithm in PHASE can treat all atoms as equivalent,
or it can incorporate information on atom types as part of
the search. Searching on atom types favors alignments that
superimpose atoms of the same type. In the current study,
Macromodel atom types were assigned to all the queries and
volume scoring was used to cluster the molecules.

2.4. Pharmacophore Mapping. PHASE version 3.0 was used
for pharmacophore elucidation. For this dataset, we per-
formed the PHASE procedure with six built-in types of phar-
macophoric features: hydrogen bond acceptor (A), hydrogen
bond donor (D), hydrophobe (H), negative ionizable (N),
positive ionizable (P), and aromatic ring (R). The graphical
user interface of maestro was used. Ligands were processed
with the LigPrep program to assign protonation states appro-
priate for pH 7.0.

Conformer generation was carried out with the Macro-
model. Potentials were computed using the OPLS2005 force
field. The default pharmacophore feature definitions were
used in site generation. After the sites were generated
hypotheses were generated by a systematic variation of the
number of sites. The number of matching active compounds
was kept default, that is, entire training set. The process
started with five sites, but the set of five-point hypothesis
did not survive the scoring process. Gradually the number
of sites was reduced to four. Ten hypotheses were generated
by the program, out of which only two survived. The scoring
was done using the default parameters. The top hypotheses
were then used to build pharmacophore-based model. All
the molecules were considered active; no thresholds (active
or inactive) were applied to the training set for developing
the hypothesis. Before considering the model for virtual
screening, the hypothesis was overlayed on the enzyme active
site and then visually analyzed. After this overlay study, the
generated hypothesis was then used to screen the entire
DUD dataset. Receptor excluded volume was subsequently
considered.

2.5. Evaluation Metrics. The virtual screening protocols were
validated by their enrichment factors [18–21] and by Receiver
operating curve (ROC) [22, 23] analysis. Enrichment factor
expresses the number of active compounds found by employ-
ing a certain virtual screening strategy. It is a widely used
validation tool for assessing the quality of virtual screening
protocol. Conceptually the enrichment factor metric is sim-
ply the measure of how many more actives we find within a

http://www.rcsb.org/
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Figure 1: Active site of AChE. (a) Surface view of the active site gorge and donepezil in the active site of PDB ID 1eve. Surface view
generated using AutoDock 4.0. (b) Active site of the different PDBs was aligned. Depicting the amino acid residues of different subsites
of the active site. Different ligand engages different water molecules. PDBs: 1eve (donepezil): grey; 1gpk (huperzine): blue; 1odc (tacrine): red;
1gqr (rivastigmine): green; and 1ax9 (edrophonium): yellow. Representation: amino acid residues in wire, ligands in tube, and watermolecules
in ball and stick.

defined “early recognition” fraction of the ordered list relative
to a random distribution. The enrichment factors (1) were
calculated as follows:

𝐸𝑓 =
𝑁experimental𝑥%
𝑁expected𝑥%

=

𝑁experimental𝑥%
𝑁active ⋅ 𝑥%

(1)

(𝑁experimental is the number of experimentally found active
structures in the top x% of the sorted database, 𝑁expected is
the number of expected active structures, 𝑁active is the total
number of active structures in database).

ROC curve analysis is considered as one of the best
approaches for the performance characterization of virtual
screening protocols so far. The ROC is represented equiv-
alently by plotting the fraction of true positives (TPR: true
positive rate) versus the fraction of false positives (FPR: false
positive rate).

3. Results and Discussion

3.1. Active Site of AChE. The active site of the enzyme
is primarily hydrophobic, subdivided into several subsites:
esteratic subsite also called the catalytic triad, acyl binding
pocket, peripheral anionic subsite, and ligand recognition
site (Figure 1(a)). The active site is buried at the bottom of a
20 Å deep gorge approximately in the centre of the molecule
(Figure 1(b)). Different type of ligands binds with different
subsites; for example, rivastigmine binds with catalytic triad
[24]; donepezil interacts with ligand recognition and periph-
eral anionic site [25]; huperzine interacts with catalytic triad
and ligand recognition site [26]; tacrine interacts with ligand
recognition site and peripheral anionic site [27] (Figure 1(a)).
Every ligand engages different water molecule(s) [24–27] for
binding with the enzyme (Figure 1(a)).

Thus, it is not practically feasible to choose intrinsic water
molecule(s) for structure based virtual screening studies.
Thus, the complexity associated with active site of AChE
needs a valid model and working algorithms to overcome

the virtual screening difficulty. Therefore, exploration of
significant search protocol that reliably identifies the subsite
where a ligand is most likely to bind is warranted.

When screening a large dataset, a reasonable model
encompassing the entire chemical space is essential. If a
model of this category is developed, it can easily serve as
query tool for screening any dataset. The virtual screening
problem for AChE inhibitors was addressed. We have com-
pared different VS tools and discussed the advantages and
disadvantages of them.The molecular docking approach was
considered for pose analysis and scoring; in addition ligand
based strategies were employed for pharmacophore mapping
and similarity search.

3.2. Structure Based Studies. The active site of AChE has a
large volume and is divided into many subsites. Therefore,
we have used a larger grid (110 × 110 × 110 grid units)
that encompasses the entire active site (for both protocols
AutoDock and Glide). The results of structure based virtual
screening are as follows: for Glide-XP enrichment of 19%,
20% and 24% was observed for top 1%, 2%, and 5% of the
dataset, respectively. Whereas, for AutoDock the enrichment
was 30%, 34%, and 32%, respectively, for top 1%, 2%, and 5%
of the dataset (Figures 2 and 3).

During our redocking experiment, we observed that
increasing the grid size consistently increases the RMSD for
both AutoDock and Glide docking.

Taking the example of donepezil, when we redocked with
a 60 × 60 × 60 grid size, it yielded an outstanding RMSD
of 0.69 Å. Whereas when the same molecule is redocked
with 110 × 110 × 110 grid size, it yielded a very poor
RMSD of 4.34 Å. The redocked poses are shown in Figure 4.
Larger grid presents larger space and more conformational
freedom. This increase in space increases the number of
interacting pharmacophores, thereby increasing the chance
of false interactions. Consequently, this promotes the low
enrichment score through molecular docking algorithms.
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Figure 2: Enrichment factors (EF) calculated at different stages
(percent of database screened) of virtual screening. Shape based
screening methods such as ROCS and EON outperformed all the
other protocols employed.

3.2.1. Effect of Point Mutation on Structure Based Studies. We
have also studied the effect of docking studies on known
mutant of human AChE E202Q. We have used the known
ligands and cross-docked them with the mutant form of
AChE. As discussed by Krygar and coworkers [25], mutation
with neutral GLN in place of charged GLU residue does
not change the functional architecture of the active site of
AChE.The hydrogen bonding network of GLU202, GLU450,
TYR133 is conserved, as a result the architecture and shape of
the active site are also maintained. The docking results also
correspond to this observation, and no significant changes
in docking scores were observed, except rivastigmine. We
present a comparison, taking donepezil and rivastigmine as
an example (Figure 5).

GLU202 is near to catalytic triad; the presence of this
anionic residue is important in molecular recognition for
rivastigmine or ligands specific for binding to this triad.
Rivastigmine with the protonated nitrogen is naturally
attracted towards the anionic site. However, due to mutation
in GLU202, we observed a significantly lower affinity for
rivastigmine. The affinity of other ligands was unaffected.
However, separate studies considering the protein flexibility
and intrinsic water molecule(s) are warranted.

3.3. Pharmacophore Modeling. The pharmacophore model
was created with the same queries that were used for shape
based screening. The model was obtained through an auto-
mated mode in PHASE. Before choosing the final model,
it was visually inspected through superimposition study on
the enzyme active site along with ligand pharmacophore
map. Top scoring, four-point AHHR hypothesis was consid-
ered further. This generated hypothesis was overlaid on the

Table 1: Inter-pharmacophoric distances for the newly developed
pharmacophore model.

Site 1 Site 2 Distance
A1 H3 3.133
A1 H5 9.420
A1 R9 14.103
H3 H5 9.626
H3 R9 13.585
H5 R9 5.757

enzyme active site. The pharmacophoric features were com-
pared with crystallographic information; these interactions
were compared and substantiated (Figure 6).

A1 (H-bond acceptor): the ligands should have an accep-
tor group that accepts a hydrogen bond from protonated
W279 and H3 and H5 (Hydrophobes); H3 seems to be
accommodated in the hydrophobic pocket created by the
side chains of W279 and Q74; H5 occupies the hydrophobic
pocket created by the four aromatic amino acids F288, 330,
331 and Y334; R9 (ring aromatic feature) is stacked withW84.
The interpharmacophoric distances are presented in Table 1.
Thedistance between two extremely located pharmacophores
A1 and R9 is 14.103 Å. As described in the earlier section
the active site gorge is around 20 Å, around 6 Å deeper than
identified by the hypothesis. Therefore, we do not expect to
identify those ligands that interact deeper in the active site,
during the virtual screening experiment with larger dataset.
As expected the enrichment was poor with 32%, 35%, and
38% for the top 1%, 2%, and 5% of the dataset, respectively.
The inclusion of excluded volumes did not improve the results
(Figures 2 and 3).

3.4. Similarity Search. Three computational strategies were
employed: PHASE shape-based similarity, ROCS shape based
similarity search, and EON electrostatic search. An out-
standing enrichment factor (EF) of >90% for analysis by
a shape based screening using ROCS was observed in all
the cases (1%, 2%, and 5%). However, rescoring of this
dataset by EON (ET combo) improved the results to the
best possible outcome. It outperformed all other protocols
with outstanding enrichment of >95% in top 1% and 2% of
the dataset, with an AUC of 0.958. ROCS (AUC = 0.944)
and PHASE-Shape based (AUC = 0.898) protocol performed
well, but not as well as EON (ET combo) (Figures 1 and 2).
These results revealed the importance of considering both
the electrostatic and shape parameters during the similarity
search analysis of AChE inhibitors.

The shape based screening protocol adopted in the
current study also shows the importance of using multiple
queries (Figure 7). Five query ligands were carefully chosen
each with different binding mode and occupying different
subsite; necessary chemical space is thereby encompassed.
Two top models, that is, similarity search using ROCS
and ROCS-EON, are scrutinized for influence of individual
query molecule on overall quality of the model. Amongst
the five queries used (edrophonium, donepezil, huperzine,
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Figure 3: (a) ROCcurves for the various protocols employed in the current study. (b)Area under the curve (AUC) values of different protocols
used for the virtual screening of AChE. These analyses clearly accentuate the excellent performance of ROCS and EON.

(a) (b)

Figure 4: Redocking experiment of donepezil using pdb 1b41. (a) When redocked with a 60 × 60 × 60 grid size, RMSD = 0.69 Å. (b) When
redocked with 110 × 110 × 110 grid, RMSD = 4.34 Å.

(a) (b)

Figure 5: Aligned structures of the wild type human AChE and E202Q mutant AChE. (a) With donepezil (b) With rivastigmine.
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(a) (b)

Figure 6: Chosen pharmacophoric hypothesis. (a) Overlaid on the binding site of donepezil bound to PDB ID 1eve. (b)The pharmacophore
model depicting the inter-pharmacophoric distances. Ligand structure aligned on the pharmacophore model is donepezil. Hydrogen bond
acceptor (A), hydrophobe (H), and aromatic ring (R).
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Figure 7: Percentage of different ligands in the top 1% of the dataset during the virtual screening process. (a) Using ROCS. (b) Using
EON. It clearly shows the importance of using multiple queries. Using a single query during virtual screening may omit the chemical space
encompassed by the others.

rivastigmine, and tacrine) in the study, donepezil alone
identified 58% and 60% of the entire actives from ROCS and
ROCS-EON analysis, respectively. Other query molecules
identified around 40% of the actives. If any query molecule
is used alone, we would have missed those molecules that
are otherwise identified by a different query. Using multiple
queries encompasses a much larger chemical space, which is
not possible when a single query is employed.

3.5. Comparison with BuChE. We have used five known lig-
ands donepezil, edrophonium, huperzine, rivastigmine, and
tacrine. Selectivity towards AChE and BuChE is presented
in Table 2. Donepezil [28], huperzine, and edrophonium [29,
30] are selective AChE inhibitors; rivastigmine [31, 32] and
tacrine [33, 34] are nonselective.

Donepezil identified around 60% of the HITs through
similarity search. It is a selective AChE inhibitor, so the iden-
tifiedHITs aremore likely to beAChE selective inhibitors. On
the other hand, tacrine and rivastigmine together identified
around 20%of theHITs.These identifiedHITs aremore likely
to be nonselective. However, there is no way to prove this
hypothesis until we perform biological screening.

Table 2: Comparison of AChE and BuChE selectivity of the selected
ligands for similarity search analysis.

S. No. Compound AChE𝐾𝑖 (nM) BuChE 𝐾𝑖 (nM)
(1) Donepezil 2.9 640
(2) Huperzine 0.026 120
(3) Tacrine 7 6.9
(4) Edrophonium 1.6 340000
(5) Rivastigmine 37 37

4. Conclusions

After an exhaustive validation of various virtual screening
methodologies, we have found that shape based search
using multiple queries performed better as compared to
standard docking studies. The study provided a plausible
solution to the virtual screening problem onAChE.We found
shape based similarity search methods (ROCS and EON)
performed significantly better than structure based methods.
The study also revealed the importance of using multiple
queries for exploring a larger chemical space and encompass-
ing the majority of the pharmacophoric features.
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