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Among the organisms that spread into and flourish in Arctic
waters with rising temperatures and sea ice loss are toxic algae, a
group of harmful algal bloom species that produce potent
biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate
that causes paralytic shellfish poisoning worldwide, has been a
significant threat to human health in southeastern Alaska for cen-
turies. It is known to be transported into Arctic regions in waters
transiting northward through the Bering Strait, yet there is little
recognition of this organism as a human health concern north of
the Strait. Here, we describe an exceptionally large A. catenella
benthic cyst bed and hydrographic conditions across the Chukchi
Sea that support germination and development of recurrent, lo-
cally originating and self-seeding blooms. Two prominent cyst ac-
cumulation zones result from deposition promoted by weak
circulation. Cyst concentrations are among the highest reported
globally for this species, and the cyst bed is at least 6× larger in
area than any other. These extraordinary accumulations are attrib-
uted to repeated inputs from advected southern blooms and to
localized cyst formation and deposition. Over the past two de-
cades, warming has likely increased the magnitude of the germi-
nation flux twofold and advanced the timing of cell inoculation
into the euphotic zone by 20 d. Conditions are also now favorable
for bloom development in surface waters. The region is poised to
support annually recurrent A. catenella blooms that are massive in
scale, posing a significant and worrisome threat to public and eco-
system health in Alaskan Arctic communities where economies are
subsistence based.
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As the earth’s climate has warmed, the Pacific sector of the
Arctic Ocean has experienced dramatic changes, particu-

larly the wide and shallow Chukchi Sea north of Bering Strait.
The persistence of sea ice has decreased markedly due to earlier
melt back and later freeze up (1), the input of warmer and
fresher Pacific water through Bering Strait has increased (2), and
air–sea buoyancy fluxes have led to enhanced heat gain in spring
(3). These changes are significantly altering hydrographic pat-
terns and structure over the Chukchi Shelf, as well as the timing
and extent of biological production and the biogeographic
boundaries of species at all trophic levels, driving an unprece-
dented regime shift in this ecosystem (4).
Many organisms will spread and flourish in Arctic waters as a

result of climate warming, but few present as significant a threat
to human and ecosystem health as Alexandrium catenella*, a
harmful algal bloom (HAB) species that produces paralytic
shellfish toxins (PSTs)—one of the most potent and globally
widespread of all HAB toxin families (5).
There is a long history of PST-related illness and fatality

events in southeastern Alaska and along the Aleutian Islands,
some dating back more than 200 y (6–9). North of the Bering

Strait, however, observations of this species are scattered and
few. Near Point Barrow, high concentrations (∼3,000 to 16,000
cells · L−1) of A. catenella (then called Goniaulax tamarensis)
vegetative cells were recorded in 1954 (10), yet surveys in sub-
sequent decades did not detect this species (11, 12). In 2003,
Walsh et al. (13) reported low concentrations in the Bering Strait
and on the Chukchi Shelf. More recently, Gu et al. (14) con-
ducted morphological and phylogenetic analysis on cultures
established from Chukchi Sea sediments, definitively confirming
the presence and toxicity of A. catenella in the region. Soon after,
Natsuike et al. (15) reported high concentrations of A. catenella
resting cysts in sediments of the eastern Chukchi Sea, as well as
vegetative cells of this species in surface waters (16). At that
time, these cyst concentrations represented the highest levels yet
recorded, indicating that a dense cyst population of unknown
spatial extent existed in the Chukchi Sea.

Significance

The neurotoxin-producing dinoflagellate Alexandrium catenella
is shown to be distributed widely and at high concentrations in
bottom sediments and surface waters of the Alaskan Arctic.
Future blooms are likely to be large and frequent given hydro-
graphic and bathymetric features that support high cell and cyst
accumulations, and warming temperatures that promote bloom
initiation from cysts in bottom sediments and cell division in
surface waters. As the region undergoes an unprecedented re-
gime shift, the exceptionally widespread and dense cyst and cell
distributions represent a significant threat to Arctic communities
that are heavily dependent upon subsistence harvesting of ma-
rine resources. These observations also highlight how warming
can facilitate range expansions of harmful algal bloom species
into waters where temperatures were formerly unfavorable.

Author contributions: D.M.A., R.S.P., M.L.R., M.L.B., and K.L. designed research; D.M.A.,
E.F., R.S.P., P.L., V.U., L.M., F.B., K.L., J.M.G., Y.L., and Y.F. performed research; S.L.D.
compiled and contributed hydrographic data; D.M.A., E.F., R.S.P., P.L., A.D.F., M.L.B.,
L.M., and F.B. analyzed data; and D.M.A., E.F., R.S.P., A.D.F., M.L.R., M.L.B., K.L., S.L.D.,
and J.M.G. wrote/edited the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: danderson@whoi.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2107387118/-/DCSupplemental.

Published October 4, 2021.

*Gu et al. (14) analyzed 55 strains of Alexandrium tamarense complex from the Chukchi
Sea and concluded that they belong to Alexandrium tamarense Group 1 (66). Subse-
quently, all Alexandrium species within the species complex were the subject of a re-
classification (67, 68) that determined that A. catenella has nomenclatural priority over
A. fundyense.
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Shore-based records of HABs in the Alaskan Arctic are
scarce, with the exception of folklore cited by Fair and Ningeu-
look (17), describing Ipnauraq (north shore of the Seward Pen-
insula) as “the location of a red tide at one time which caused
many deaths.” No details are provided on symptomology or
timing. More recent reports [e.g., Lefebvre et al. (18)] document
PSTs in seals, walruses, sea lions, whales, and other marine
mammals throughout the coast of Alaska, including in the Bering,
Chukchi, and Beaufort Seas. PSTs have also been implicated but
not confirmed as the cause of seabird and walrus mortalities (19,
20). The baseline picture is of blooms of A. catenella occurring on
a sporadic basis in Alaskan Arctic waters over the last 65+ years
but not to the extent where they have been recognized as a sig-
nificant threat to human and ecosystem health in the region.
In this study, the distributions of both cysts and planktonic

vegetative cells of A. catenella are presented from the Chukchi
Sea and adjacent waters in 2018 and 2019. These are related to
hydrographic and circulation patterns that enhance the mecha-
nisms for bloom formation north of the Bering Strait. This ex-
tensive, multiyear field program documented a massive regional
cyst bed that is unprecedented globally, as well as equally large
and dense vegetative cell blooms. While we lack the long-term
observations needed to definitively link these blooms to climate
change, it seems likely that shifting regimes are leading to an
Arctic environment increasingly hospitable to A. catenella bloom
formation and persistence. This recently characterized A. catenella
population represents a serious and growing threat to Alaskan
Arctic communities who are justifiably concerned about their
health and the health of the ecosystems on which they depend for
food in a region where biotoxin-monitoring programs are often
not feasible.

Results
Cyst Distribution in Sediments. A. catenella spends the majority of
its life cycle as a resting cyst in benthic accumulations (“cyst
beds”) where the cysts cycle between successive states of dor-
mancy and quiescence. They germinate (21) when conditions
(e.g., temperature and oxygen) are favorable, producing motile
vegetative cells that photosynthesize, divide asexually, and form
the blooms that produce PSTs (5).
The regional bloom dynamics of this species are highly de-

pendent on the distribution and abundance of resting cysts (5, 22,
23). Distributional data provide an indication of the potential
size of the bloom inoculum as well as the areas where localized
germination and population development may occur. Fig. 1
shows a composite distribution map of live A. catenella cysts
based on sediment samples from cruises in 2018 (summer and
fall) and 2019 (summer) in the Northern Bering Sea (NBS),
Bering Strait, Chukchi Sea, and Beaufort Sea (24, 25). Since the
cruises occurred at different times in two different years and
covered different regions, a composite map was generated to
include all samples, with cyst counts from overlapping transects
averaged. This approach reveals the full spatial extent of the A.
catenella cyst distribution and general levels of cyst abundance.
The cyst distribution stretched ∼1,000 km along the coast,

beginning just south of the Bering Strait and extending beyond
Barrow Canyon to the western edge of the Beaufort Sea (Fig. 1).
Dense cyst accumulations were seen as far as 350 km offshore
and likely persist further west into unsampled Russian waters.
Two distinct cyst beds are evident. The first is centered offshore
of Ledyard Bay (herein called the Ledyard Bay area), extending
northeast to Icy Cape and south to Kotzebue Sound and the
Northern Bering Sea, with average shelf depths of 40 to 50 m.
This feature is termed the Ledyard Bay cyst bed. The second (the
Barrow cyst bed) lies near Barrow Canyon, with the highest
abundances east of the mouth of the canyon in the western
Beaufort Sea in water depths of ∼50 m. Maximum concentra-
tions were 17,600 and 14,800 cysts · cm−3 in the Ledyard Bay and

Barrow cyst beds, respectively. The total area of the cyst beds
(defined as the area containing 300 cysts · cm−3 or higher) was
145,600 km2, with the Ledyard Bay cyst bed at 128,100 km2 and
the smaller Barrow cyst bed at 17,500 km2 (Table 1). The total
number of A. catenella cysts within the top 3 cm of the entire
Alaskan Arctic cyst bed was 7.67 × 1018. Cysts typically germi-
nate from a thin (few millimeters) layer at the sediment surface
where there is oxygen (26), but cysts in deeper layers can con-
tribute to bloom initiation following bioturbation or current-driven
resuspension. There is active sediment mixing throughout this re-
gion (27–29), so the top 3 cm are tabulated here. Metrics for the
Gulf of Maine cyst bed, a well-studied feature with a long history of
seeding large-scale A. catenella blooms (30, 31), are presented in
Table 1 for comparison.

Vegetative Cells in Surface Waters. Dense blooms of vegetative
A. catenella cells were observed from August to early September
in 2018 and 2019 (Fig. 2) (25). A November cruise in 2018 found
virtually no vegetative cells anywhere in the region, highlighting
bloom seasonality.
The 2018 and 2019 blooms both had dangerously high cell

densities and covered large areas but were distributed differ-
ently. During both years, vegetative cells were sparsely observed
south of the Bering Strait. In 2018, the main bloom was centered
in the Ledyard Bay area, in close proximity to the cyst bed (Figs.
2A and 3), stretching along the entirety of that transect (150 km).
Given that high cell counts were observed at the westernmost
stations on those transects, the bloom was broader than shown,
extending into unsampled Russian waters. The highest A. catenella
cell concentrations were observed within Alaskan coastal water
(ACW; Fig. 2D), the warmest and freshest type of Pacific summer
water that passes through the Strait (SI Appendix). Maximum
concentrations were ∼5,000 cells · L−1 in the Ledyard Bay area,
more than an order of magnitude above levels known to be dan-
gerous (8). Cells were concentrated in the upper 20 m of the water
column (Fig. 3B) and across large areas laterally. The exception
was a near-bottom enhancement of the A. catenella vegetative cell
population at the two inshore-most stations where cyst abundance
was largest. A wind event mixed the entire water column in this
region at the time, perhaps resulting in local germination due to
resuspension and growth due to elevated temperatures.
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Fig. 1. Composite A. catenella cyst distribution and abundance in surface
sediments (0 to 3 cm) for 2018 and 2019. Data points are indicated by black
dots, black lines are the 100-m isobath, and gray contours are bottom depth
in meters from ETOPO-2.
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The 2019 A. catenella vegetative cell distribution was quite
different. As a benefit from two nearly concurrent cruises in 2019
covering partially overlapping domains, A. catenella distribu-
tional data can be broken down into two intervals to show bloom
progression. The first was August 4 to 19 and the second August
20 to September 11 (Fig. 2 B, C, E, and F). The highest-cell

concentrations observed during early August were in a bloom
patch southwest of Point Hope (Fig. 2B), with densities of 8,200
cells · L−1. This area was also the site of significant bird mortality
observed before and during the cruise, but the cause of the
mortality was not determined. Highest-cell concentrations were
associated with Bering summer water (BSW), a cooler, saltier

Table 1. Geographic size and abundance metrics for A. catenella cyst beds in the Alaskan Arctic and Gulf of Maine

Region Cyst bed area (km2) Total cysts × 1017 Maximum cysts · cm−3 Mean cysts · cm−3

Ledyard Bay 128,100 65.85 17,602 1,722
Barrow 17,500 10.86 14,852 2,068
Alaskan Arctic Total 145,600 76.7 17,602 1,768
Gulf of Maine* 23,000 5.1 11,655† 744*

Total, maximum, and mean are for the surface 3 cm of sediment.
*Average from 2004 to 2012 (Solow et al., 2014).

†Maximum observed at any station from 2004 to 2012 (Anderson et al., 2014).

A
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F

Fig. 2. Spatial distribution of vegetative A. catenella cells (Left) and associated water mass characteristics (Right) in surface waters for 2018 and 2019.
Sampling dates are indicated above (A–C). (A) Summer 2018. (B and C) Summer 2019. (D–F) Temperature salinity plots showing corresponding distributions of
samples within boundaries defined by major water masses (MWR = Melt Water/River runoff, RWW = Remnant Winter Water, NVWW = Newly Ventilated
Winter Water, and dashed line indicates seawater freezing line). The circles indicate samples derived from surface Niskin bottles, and triangles denote
underway measurements.
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type of Pacific summer water (SI Appendix), while moderately
high cell concentrations occurred in ACW (Fig. 2E). Tempera-
tures ranged from 5.6 to 9.7 °C.
Several weeks later in 2019, a large bloom was observed north

of Ledyard Bay with concentrations of ∼1,000 to 2,600 cells · L−1

in the vicinity of Icy Cape. Highest cell densities were associated
with ACW, plus a small amount of fresher, near-surface water
composed of sea-ice melt, run off from the continent, and/or
river water (SI Appendix) (Fig. 2F). Temperatures ranged from
5.6 to 10.0 °C. BSW was not sampled in this northern bloom,
likely because this water mass had been advected to the north-
west toward Herald Canyon in Russian waters (32). A third
patch of cells was found east of Barrow Canyon, with concen-
trations of ∼1,100 cells · L−1. In the Ledyard Bay area, the site of
the large population in 2018, there was a smaller patch in 2019
with a maximum concentration of only ∼400 cells · L−1 (Fig. 2C).
The A. catenella vegetative cell population was generally cen-
tered offshore and, as in 2018, most concentrated in the upper
20 m of the water column (Fig. 3E).

Experiments to Assess Temperature–Rate Relationships. Laboratory
experiments were conducted to examine the effect of tempera-
ture on A. catenella cyst germination and vegetative cell growth.
Sediments were collected from the Ledyard Bay area and qui-
escent cysts were isolated and incubated at typical in situ tem-
peratures (0, 4, and 8.5 °C) until no further germination was
observed. Germination time-course curves were fit to a log-
normal cumulative distribution function using nonlinear regres-
sion, and the median germination time was derived (Fig. 4 and SI
Appendix). Because of the difficulty of deriving a temperature–
germination rate relationship from only three data points, the
Chukchi Sea data were compared to well-established relation-
ships derived for A. catenella cysts from the Gulf of Maine and
the Nauset Marsh (Cape Cod, MA) (31) (SI Appendix). Strong
overlap across these datasets supported their aggregation to es-
timate a universal temperature–germination rate relationship.
The relationship can be simplified using a single metric that in-
corporates temperature and time: heating degree days (DD).

Thus, a quiescent cyst must accumulate ∼85 DD to germinate
(Fig. 4).
Vegetative growth experiments were conducted with A. cat-

enella isolates from Arctic (Chukchi Sea and Greenland), sub-
arctic (Iceland), and temperate (Gulf of Maine) regions. Growth
responses were quite similar among the 12 A. catenella strains
from these regions (SI Appendix, Fig. S1). Temperature had a
significant influence on growth rates, with values fluctuating
between 0.009 and 0.37 d−1. Cells maintained at 4 °C either did
not grow (though they survived) or grew very slowly. The highest
growth rate (0.37 d−1) was observed at 18 °C for the Chukchi
isolate.

Physical Drivers. The general circulation of the Chukchi Sea is
largely dictated by shelf topography. Pacific water flows north-
ward through Bering Strait and divides into three branches, with
much of the water ultimately veering eastward and draining
through Barrow Canyon (Fig. 5). In summer/early fall, the
eastern branch, known as the Alaskan Coastal Current (ACC),
together with the Central Channel branch, account for most of
the transport (33, 34). The shelf circulation is highly sensitive to
wind (35). Prevailing winds are out of the northeast, which, if
strong enough, are able to reverse the flow of the ACC as well as
the Central Channel branch (36–38).
Pisareva et al. (39) presented a map of depth-averaged flow

speed over the Chukchi Shelf using shipboard velocity data and a
numerical model, demonstrating that the ACC slows consider-
ably as it flows into the Ledyard Bay area, presumably due to the
change in bottom slope adjacent to the coast. To investigate this
further, a climatology of shipboard acoustic Doppler current
profiler (SADCP) data on the eastern Chukchi Shelf was com-
piled, spanning 2002 to 2018 for the warm months of the year.
This composite dataset is far more extensive than the measure-
ments in Pisareva et al. (39). The strong flow in and to the north
of the Bering Strait is the combination of the ACC and the
Central Channel branch (Fig. 6). This current undergoes a sta-
tionary cyclonic meander in accordance with the bend in ba-
thymetry at the mouth of Kotzebue Sound (note the 40-m

Fig. 3. Cross-sections of Ledyard Bay (LB) transects in 2018 and 2019 displaying temperature (A and D), A. catenella vegetative cells (cells liter−1) (B and E),
and cyst abundance (cysts · centimeter−3) (C and F). Panels show nearshore to offshore, Right to Left, and density contours are indicated by numbers (ki-
lograms · meter−3) with white background. Note the different color scales in B and E.
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isobath in Fig. 6). Shortly after passing Point Hope, the flow
bifurcates into the coastal and the Central Channel branches.
The latter flows northward to the latitude of Hanna Shoal, where
it veers eastward, flowing around both sides of the shoal before
draining into Barrow Canyon.
Consistent with the flow speed map of Pisareva et al. (39), the

coastal branch slows considerably north of Cape Lisburne where
the isobaths diverge and speeds up again near Icy Cape where
the isobaths converge (Fig. 6). The flow is weak in the Ledyard
Bay area, both in the ACC and the Central Channel branch,
which is conducive for the settling of material from the water
column to the sediments; this is where the largest cyst bed is
found. The highest counts of A. catenella cysts were from samples
beneath the ACC where the flow is especially weak (compare
Figs. 1 and 6). Cysts of several other dinoflagellate species were
also most abundant in the Ledyard Bay region (SI Appendix, Fig.
S2), indicating that the accumulation zone is a common depo-
sition feature for dinoflagellate cysts in the region. Similarly, the
circulation slows considerably as water emerges from Barrow
Canyon, flowing to the east into the Barrow cyst bed (Fig. 6),
which is also conducive for cyst settling.

Temperature Patterns, Germination, and Bloom Potential. To inves-
tigate bottom temperature conditions over a broad time scale, we
use a recently constructed climatology of hydrographic obser-
vations in the northern Bering and Chukchi Seas (3) (Materials
and Methods). The database spans 1922 to 2019, mainly July
through mid-October. Bottom temperatures are the mean over
the bottom 10 m of the water column.
The data’s spatial coverage is shown in Fig. 7A; here, the focus

is on the coastal current that advects the warmest water (red dots
in the figure). The temporal and spatial variation of bottom

temperatures are displayed as a time–latitude Hovmöller dia-
gram (Fig. 7B). While there are gaps in the diagram due to data
sparsity, it nonetheless reveals a clear signal of northward
propagation of temperature in the ACC. Notably, there is a
change in propagation speed near the latitude of Cape Lisburne,
consistent with the current vector map (Fig. 6), which shows the
flow weakening at this location. The slope of the arrows in
Fig. 7B gives advective velocities of 13.6 and 7.7 cm · s−1 south
and north of Cape Lisburne, respectively. Using the near-bottom
SADCP data (Fig. 6), the average ACC velocity south of Cape
Lisburne is 13.1 cm · s−1, while to the north (excluding Barrow
Canyon to be consistent with the Hovmöller calculation), the
value is 8.1 cm · s−1. This remarkable agreement in flow speeds
between independent datasets strengthens our conclusion that
the weakening of the flow in the Ledyard Bay area leads to the
formation of the cyst bed there.
Time to A. catenella cyst germination was estimated from

bottom water temperature climatology along the ACC track. The
bulk of germination is calculated to occur between July and mid-
September (Fig. 7 B and C), so blooms occurring outside this 2.5-
mo window most likely originate in the south and are advected
into the region. The largest in situ fluxes occur in August at 69 to
70°N within the Ledyard Bay area, where temperatures reach
8 °C and cysts germinate within ∼10 d (Fig. 3). North of 71.5°N,
bottom temperatures are colder, causing germination to be
slower and germling fluxes to be smaller and more gradual. In the
Barrow cyst bed, mean August bottom water temperature was ∼3
°C (Fig. 7B), extending time until germination to a minimum of
∼28 d (Figs. 4 and 7C)—one-third the rate in Ledyard Bay at the
same time of year.

Effect of Warming on Bloom Potential. Are these warm tempera-
tures a recent phenomenon? Using the hydrographic climatology,
mean bottom water temperatures from 1999 to 2008 and from
2009 to 2018 were calculated for June through October (Fig. 8 A
and B). Prior to 1999, the data were too sparse to provide robust
estimates. Warming extends all along the ACC from the Bering
Strait to Barrow Canyon, including the Central Channel branch to
the latitude of Hanna Shoal (Fig. 8C). Significant warming has
occurred in the Ledyard Bay region, where in some places the
temperature has increased by nearly 4 °C.
To examine the effect of warming on the potential for

A. catenella blooms, 5-y means of bottom temperatures from
1999 to 2018 were calculated separately for the Ledyard Bay and
Barrow cyst bed regions (outlined in green in Fig. 8D). For the
purpose of this analysis, the Ledyard Bay area is bounded be-
tween 68.8 and 70.5°N, while the Barrow cyst bed area is
bounded between the 20- and 100-m isobaths and 155.5 and
153°W. Seasonally, the warmest water arrives in the Ledyard Bay
area via the ACC roughly 1 mo before reaching Barrow, so tem-
perature data were used from July to August and from August to
September for these areas, respectively.
From 1999–2003 to 2014–2018, mean bottom temperatures in

the Ledyard Bay cyst bed area increased from 4.2 to 6.8 °C, while
near Barrow they increased from 2.1 to 3.8 °C (Fig. 9A). Using
the temperature–germination rate relationship (Fig. 4), warming
from 1999 through 2003 to 2014 through 2020 would have en-
hanced germling cell production 1.6- and 1.8-fold in the Ledyard
Bay and Barrow cyst bed regions, respectively (Fig. 9B). Bottom
water warming also reduced the calculated time until germina-
tion by ∼20 d (Fig. 8D).

Discussion
A. catenella is among the most widespread and dangerous of all
HAB species, with a global distribution predominantly in tem-
perate and subarctic waters (5). While this species has been
recorded sporadically in the Alaskan Arctic (10, 13), these ob-
servations have been rare and are interspersed with many years

Fig. 4. Days needed for A. catenella cysts to germinate at laboratory in-
cubation temperatures. Data from Chukchi Sea cyst populations are shown
alongside data from cysts from western and eastern Gulf of Maine (GOM)
and the Nauset Marsh on Cape Cod, MA. All experiments were conducted
with quiescent (nondormant) and initially anoxic natural cyst populations
exposed to oxygen during incubations. Despite their geographic separation,
these cyst populations must all accumulate a mean of 85 heating degree-
days (85 DD, red curve) (a metric that incorporates temperature and time) to
germinate.

Anderson et al. PNAS | 5 of 11
Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan
Arctic

https://doi.org/10.1073/pnas.2107387118

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S
EA

RT
H
,A

TM
O
SP

H
ER

IC
,

A
N
D
PL

A
N
ET

A
RY

SC
IE
N
CE

S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2107387118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2107387118/-/DCSupplemental
https://doi.org/10.1073/pnas.2107387118


of no species reports (11, 12). More recent observations (16) of
planktonic A. catenella cells within and north of the Bering Strait
have been interpreted as evidence that Arctic blooms are epi-
sodically advected northward through the Strait in Pacific sum-
mer water. Here, we document massive accumulations of resting
cysts of this species across large areas of the Alaskan Arctic over
two successive years, as well as widespread and dense surface
water blooms of the vegetative cells that are the dominant source
of toxins in the marine food web. Two mechanisms for toxic
blooms in the Chukchi Sea are suggested, one reliant on in situ
bloom initiation and development in the Ledyard Bay and Bar-
row regions, and the second on populations transported through
Bering Strait from southern waters. The retentive effect of hy-
drography and bathymetry in the Ledyard Bay and Barrow areas,
combined with warming temperatures that support both in situ
cyst germination and vegetative cell growth, suggest that annu-
ally recurrent, self-initiating bloom events are already occurring
and are increasingly probable.

Cyst Distribution and Abundance. The A. catenella cyst distribution
in the Alaskan Arctic (Fig. 1) is the densest and geographically
largest known feature of its type globally. Because of interna-
tional restrictions preventing US vessels from sampling Russian
waters, this feature is likely more expansive than shown here.
The general configuration is that of two distinct cyst beds sepa-
rated by areas with low abundances (Fig. 1). East of Point Barrow
in the Beaufort Sea, cysts are less abundant but still present along
the Beaufort Shelf. A slowing of currents in the Ledyard Bay re-
gion (Fig. 6) is conducive to cyst deposition, consistent with the
size and persistence of this feature through time. Current veloci-
ties also decrease substantially in the area of the Barrow cyst bed,
which is located near a known bowhead whale hotspot—a recur-
rent feature associated with fronts and dense aggregations of
zooplankton (40). Hydrographic fronts are known to be sites for

aggregations of motile dinoflagellates and for deposition of their
cysts (41).
Cyst density and distribution can be important metrics for

predicting A. catenella bloom occurrence (42, 43), and the mas-
sive scale of the cyst bed described here raises major concerns
about future bloom potential in the Alaskan Arctic. Abundances
reported here are similar to, but larger than, observations from
Ledyard Bay in 2010 [10,600 cysts · cm−3 maximum (15)] and,
with one exception, are denser than the highest concentrations
reported for A. catenella cysts globally. The only higher count is
from the nearby Russian coast of the NBS, where Orlova and
Morozova (9) report concentrations of 25,860 cysts · cm−3 at one
location. In the Gulf of Maine, a region with what was until now
the world’s largest documented A. catenella cyst bed in area and
overall abundance, the mean cyst bed size from 2004 to 2012 was
23,000 km2 with 5.1 × 1017 total cysts. The estimated cyst
abundance in the Alaskan Arctic is thus 15 times greater, and the
total spatial extent of the cyst bed 6.3 times larger (Table 1). As
small as it might seem in retrospect, the Gulf of Maine cyst bed
has sustained large-scale, annually recurrent blooms and dan-
gerous levels of shellfish toxicity for decades (42, 44–46). The
same seems likely in the Alaskan Arctic going forward.

Vegetative Cell Distribution, Abundance, and Origin. Alaskan Arctic
blooms of motile, vegetative A. catenella cells were also notable
in scale and density. The 2018 bloom (Fig. 2) stretched at least
200 km adjacent to the coast and extended more than 150-km
offshore and likely further outside the survey area. In the most
intense patches, cells were distributed throughout at least the
upper 20 m of the water column, representing a large reservoir of
toxin to both planktonic and benthic food webs. For comparison,
a large A. catenella bloom in 2005 that closed shellfish beds from
central Maine to Massachusetts was about half as large in
alongshore and offshore dimensions or 25% in total area (47).
Furthermore, maximum cell concentrations in the 2019 Arctic
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Fig. 5. Schematic circulation of the Chukchi Sea (69). The bottom topography is from ETOPO-2.
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bloom were four times higher than in the open Gulf of Maine in
2005. Higher A. catenella cell concentrations are observed else-
where in fjords, bays, or localized areas globally [e.g., Brosnahan
et al. (48)], but these Alaskan values are notably high for open
coastal waters.
Two mechanisms, acting either separately or concurrently, are

proposed for the origin of these blooms. One is suggested by the

observations of Natsuike et al. (49) and by our 2019 vegetative
cell distributions (Fig. 2B). In both cases, patches of cells were
observed within the strong poleward flow emanating from Bering
Strait (Fig. 6), suggesting advection into the Strait and the
Chukchi Sea from established blooms in southern waters. Nat-
suike et al. (49) argued that the blooms were carried within
Pacific summer water (they did not distinguish specific water
masses). Our 2019 data reveal that the highest cell concentra-
tions west of Point Hope were within BSW (Fig. 2E). This water
mass has higher nutrients than ACW and hence is more apt to
spur bloom activity. Orlova and Morozova (9) report high A.
catenella cyst abundances at several locations along the Russian
shore of the Bering Sea, so northward advection of blooms as-
sociated with these populations may occur through Bering Strait
via the Anadyr Current. The water in the current is one of the
constituents of BSW that flows offshore of the ACC, which ex-
plains why we sampled it at the seaward end of the Point Hope
transect in Fig. 2B.
One approach to investigations of the dispersal and connec-

tivity of A. catenella populations is via the saxitoxin congener
profile of isolates from different regions, as these are considered
constitutive markers for populations. Saxitoxin composition data
are available for isolates along the western coast of the Bering
Sea (50) and for the eastern Bering Sea and the Chukchi Sea (14,
49). Available profiles and a discussion of implications are given
in the SI Appendix. One preliminary conclusion from this limited
dataset is that the Ledyard Bay cyst bed may derive, at least in
part, from cells transported from the western Bering Sea via the
Anadyr Current and not from the eastern Bering Sea. Given
order-of-magnitude differences in toxicity among saxitoxin con-
geners, the human health and ecosystem implications are pro-
found and provide strong justification for further study of
population connectivity.
The overlap between regions of high cyst abundance with

warm bottom water temperatures strongly supports a second
mechanism: that blooms originate locally in the Ledyard Bay
area and just east of Barrow Canyon through localized cyst
germination. Vegetative cells were observed in close proximity to
the Ledyard Bay cyst bed at a time when bottom and surface
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water temperatures were at levels that support rapid cyst ger-
mination and cell division. A direct link between the Barrow cyst
bed and the bloom observed there in 2019 (Fig. 2C) is less clear
because of generally colder bottom temperatures (Fig. 9A) but
still possible.
In either case, whether blooms arise from local cyst germina-

tion or are delivered from bloom populations to the south, or
most likely, some combination of the two, our survey data doc-
ument surface temperatures ranging from 6 to 12 °C in both 2018
and 2019, a range at which laboratory cultures of Chukchi iso-
lates of A. catenella grow at 50 to 75% of their maximal rates (51,
52) (SI Appendix, Fig. S1).
The 2019 A. catenella vegetative cell distribution suggests that

both bloom formation mechanisms are at work. The first ob-
servations of a bloom southwest of Pt. Hope just north of the
Bering Strait in early August (Fig. 2B) indicates an advected
population, whereas the (less intense) bloom observed almost
a month later in the vicinity of Icy Cape (Fig. 2C) more likely
originated from local cyst germination, perhaps augmented with
advected cells. As previously noted, the Point Hope population
was in BSW (Fig. 2E), which likely was subsequently transported
northwest toward Herald Canyon (32, 53). By contrast, the
bloom that occurred several weeks later near Icy Cape was as-
sociated with warmer and fresher ACW (Fig. 2F), which flows
closer to the coast. The mean circulation map (Fig. 6) indicates
that it should take much longer for a parcel to advect from Point
Hope to Icy Cape (∼50 d) than the time between occupation of
the two transects (∼25 d). The same conclusion is reached using
synoptic SADCP data collected during the first 2019 cruise (53).
Notably, a signature of the Icy Cape bloom was developing

during the early cruise (Fig. 2B), adding further credence that it
developed via local cyst germination.

Cyst Bed Formation.What then is the fate of cysts formed by these
blooms, and why are the cyst beds so dense? One explanation is
suggested by the “trail of death” hypothesis described for zoo-
plankton transported from southern waters into the Arctic,
where cold temperatures prevent life cycle completion (54).
Applied to A. catenella, we can hypothesize that blooms advected
by relatively warm surface waters would form cysts that deposit
in bottom sediments, where temperatures are too cold to support
significant germination the following year. Viable cysts would
theoretically accumulate through time to very high levels because
of the imbalance between inputs and losses, creating a substan-
tial and growing seedbed. A. catenella cysts in bottom sediments
can survive from decades (55) to a century (56), so this type of
“sleeping giant” Arctic cyst bed would represent a significant and
dangerous site for in situ bloom inoculation as waters warm.
Though likely an apt description of conditions in the near past,

this hypothesis does not fit our recent observations. Bottom
temperatures even two decades ago were likely too cold to support
significant cyst germination, but emerging temperature patterns,
both those observed concurrently with blooms in situ (Figs. 3 and 4)
(53, 57, 58) and those calculated using historical data (Figs. 7 and
8), can drive rapid cyst germination and substantial germling fluxes.
Mean bottom water temperatures have warmed significantly over
the last two decades (Fig. 9A), increasing ∼2.5 and 1.7 °C in the
Ledyard Bay and Barrow regions, respectively (Fig. 9A). When this
temperature increase is applied to the temperature–germination
rate relationship for A. catenella cysts (Fig. 4), a nearly twofold
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increase in germling production is estimated in both cyst bed areas
(Fig. 9B). To place that increase in context, in the Gulf of Maine,
where a direct relationship between cyst abundance and the geo-
graphic extent of A. catenella toxicity has been established (42, 43),
a twofold increase in germling production would result in a 2.3-fold
increase in the length of coastline closed to shellfish harvesting
because of PSTs and a 6.5-fold increase in the cumulative shellfish
toxicity (42).
Warming temperatures have also advanced and expanded the

temporal window during which blooms can form. With the de-
cadal warming documented in Fig. 9A, ∼20 fewer days would be
needed for a cyst to germinate in the Ledyard Bay and Barrow
regions than in the prior decade (Fig. 8D). With doubling times
of 2.5 to 4.5 d at the temperatures observed in Ledyard Bay in
August 2018 to 2019 (Fig. 3 A and D and SI Appendix, Fig. S2A),
significant additional population development would be possible
during the 20-d “head start.” Thus, the recent warming supports
earlier and faster germination, longer periods favorable to
planktonic blooms, and more rapid cell division and bloom de-
velopment, thereby dramatically increasing the potential for local
initiation of blooms from Alaskan Arctic cyst beds. Continued
warming will further enhance bloom potential in the region
through these complementary mechanisms.
Given observations of extremely high cyst concentrations in

2010 (15) as well as our own more recent observations of similar
and higher-cyst abundances (Fig. 1), it appears that the Alaskan
Arctic cyst beds are persistent features, as has been observed for
this species in the Gulf of Maine (42, 59).
The persistence of extremely high cyst concentrations in

Chukchi bottom sediments for a decade or longer under condi-
tions that support substantial cyst germination might reflect sev-
eral factors. One is simply replenishment of the cyst population
through completion of the full life cycle in the region of the cyst
bed [i.e., cysts germinate, and vegetative cells grow in the same
general area without significant advective losses, consistent with
the retentive current flows observed for the region and the high
vegetative cell densities (Fig. 6)]. Alternatively, if advected blooms
augment the size of the self-initiating blooms, cyst deposition

could be much larger than would be the case with in situ bloom
development alone.

Summary and Conclusions. Recent surveys have revealed massive
deposits of A. catenella resting cysts in bottom sediments of the
Alaskan Arctic, as well as abundant vegetative cells in the water
column during summer months. Two mechanisms are proposed
to explain the origins of the blooms, one reliant on the previously
hypothesized advection of established A. catenella populations
from waters south of the Bering Strait, and the second, more
worrisome, being a new concept of intensifying in situ germina-
tion from the cyst bed, which is likely to have been long dormant
until the region’s recent warming. Warming of surface waters
similarly enhances vegetative cell growth and bloom develop-
ment. It is likely that both advection and germination-driven
mechanisms operate concurrently at times.
These data suggest that there will be recurrent, locally origi-

nating, and self-seeding blooms of A. catenella in the Alaskan
Arctic going forward. This argument is based in part on striking
similarities between patterns of cysts, vegetative cells, and hy-
drography in the Alaskan Arctic and the Gulf of Maine, the
latter a well-studied region with a history of large-scale, annually
recurrent toxic blooms lasting many decades (47, 48).
The implications of these findings are significant in several

ways. First, they document a significant threat to food security in
the region due to the potential transfer of toxins through the food
web. Second, as climate warming continues and sea ice extent
decreases further, the emergence of toxic blooms represents an
additional stressor to ecosystems already undergoing unprece-
dented changes (4, 60). Productivity on the Chukchi Shelf sup-
ports multiple trophic levels, including important subsistence
harvest species such as seabirds, walruses, ice seals, and whales.
Alexandrium catenella blooms thus represent a significant threat to
Alaskan Arctic ecosystems and to the human communities that
depend on these resources for food and survival.

Materials and Methods
Cruise Details. Sampling took place during Distributed Biological Observatory-
Northern Chukchi Integrated Survey cruises in August 2018 and 2019 (HLY1801
and HLY1901), as well as during additional cruises of opportunity, including an
Arctic Observing Network cruise (HLY1803, October to November 2018), an
Arctic Integrated Ecosystem Research Program cruise (IERP, August to October
2019), and the NBS cruise (Aug to Sept 2019). Isolates used in temperature
gradient bar experiments were established from cysts in sediments collected
from the Chukchi Sea in 2010 (14). SI Appendix, Table S1 provides a complete
listing of sampling efforts.

Plankton Sampling and Alexandrium Hybridization.
Collection and preservation. At each station, 2 L water were collected from
Niskin bottle samples taken at the surface, 10 m, and chlorophyll maximum.
Additional depths were sampled when significant concentrations of Alex-
andrium cells were detected through shipboard microscopy or underway
imagery. During HLY1901 and IERP, the underway seawater system was used
to collect additional samples during transit. Water samples were processed and
preserved using formalin-methanol fixation for fluorescence in situ hybrid-
ization (FISH) analysis, as described in ref. 61 and detailed in SI Appendix.
Hybridization. FISH was used to label and enumerate A. catenella cells in the
methanol-preserved samples. This approach ensures quick and accurate
identification of A. catenella in samples that contain morphologically similar
dinoflagellates that can confound identification under traditional light mi-
croscopy. Methods for sample processing and analysis followed ref. 61 and
are detailed in SI Appendix.

Sediment Collection and Cyst Enumeration.
Collection. Sediments used for A. catenella cyst abundance were collected via
a 0.1-m2 weighted Van Veen grab. A syringe tube was used to capture a
single 16-cm−3 plug of sediment, representing the 0- to 3-cm layer, from the
surface of the grab. For samples collected during the IERP cruise, several
plugs from the 0- to 3-cm layer were homogenized prior to analysis. Sedi-
ment was homogenized and stored in an airtight container maintained in
the dark at 1 to 4 °C. Methods for sample processing and cyst enumeration

Number of profiles
 1999–03:   48   10
 2004–08:   34   90
 2009–13: 122   25
 2014–18:   48   23

A

B

Ledyard Bay
Barrow

Fig. 9. Effect of bottom water temperature change on A. catenella germ-
ling cell production in Alaskan Arctic cyst bed areas. (A) Mean temperature
in July to August and August to September in the Ledyard Bay and Barrow
cyst bed areas, respectively. Number of profiles in each period is indicated in
the upper left. Data were binned in 5-y intervals to ensure a relatively even
data coverage of the summer months. (B) Factor change in the germling cell
flux from 1999 to 2003 values.
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followed Anderson et al. (42) and are detailed in SI Appendix. All counts
were normalized to cysts per cubic centimeter (cysts · cm−3).

Regional Cyst Bed Abundance Estimates. To estimate overall cyst abundance
within the study region, data from all cruises were combined, with repeat
stations averaged, to create a composite cyst dataset. The area corresponding
to cyst concentrations > 300 cysts · cm−3 was estimated using a gridded
lateral map of cyst abundance as described under Construction of Lateral
Maps and Vertical Sections. This was used to estimate the total cyst load
within the top 3 cm of each cyst bed region as well as across the entire
study area.

Hydrographic Analyses. Conductivity–temperature–depth (CTD) data were
collected during HLY1801, HLY1901, and HLY1803, using Healy’s Sea-Bird
911plus CTD. The CTD was mounted on a 24-position rosette with 10-L
Niskin bottles. Bottle salinity samples were taken for conductivity sensor
assessment and calibration when appropriate. Laboratory calibrations for
CTD sensors were performed by the manufacturer prior to and after each
field season. Resulting data quality from all cruises was excellent, and
downcast 1-db pressure-averaged files had resulting accuracies near 0.001 °C
for temperature and 0.002 for salinity.

SADCP Database. The SADCP dataset includes 33 cruises from Unitied States
Coast Guard Cutter (USCGC) Healy and 7 cruises each from R/V Sikuliaq and
R/VMirai between 2002 and 2018. All Sikuliaq cruises, and Healy cruises after
2004, were collected with the University of Hawaii Data Acquisition System
(UHDAS) software. The Mirai and the 2002 to 2004 Healy SADCP data were
collected with Vessel-Mounted Data Acquisition Software (VMDAS). Both
sets were further edited based on consideration of standard status variables,
including “percent good” and “error velocity.” Only on-station data were
used for the 2017 cruise due to calibration problems. A significant portion of
the 2002 to 2004 Healy underway data was edited out as well. A concern for
all ships was the so-called “forward bias:” Under poor conditions, the
measured ADCP velocity relative to the transducer can drift toward zero,
producing a bias in the direction of the ship’s motion. We adopted a con-
servative approach to transmit data, requiring additional evidence that they
were valid rather than only looking for obvious errors.

Historical Hydrographic Database. Water column hydrographic profile data
were obtained from the compilation described in ref. 3. All data were pro-
cessed from raw form by the originating institutions and subject to addi-
tional screening procedures outlined therein.

Construction of Lateral Maps and Vertical Sections. To make the lateral maps,
the data were interpolated onto a regular grid following the procedure used
in Davis (62) and Våge et al. (63). Enhanced weighting was given to data in
the along-isobath direction. This is appropriate given the predominantly
barotropic circulation in the study region. For the lateral temperature and
velocity maps, an effective radius of 30 km was used, and the grid spacing
was 0.1° × 0.1°. Since the biological (cyst and cell) data coverage is consid-
erably more sparse, an effective radius of 120 km was used, with a lateral
grid resolution of 0.2° × 0.2°. For the vertical sections, Laplacian spline in-
terpolation (64) was used with 10-km horizontal and 5-m vertical grid
spacing.

Temperature Gradient Bar Experiments. Laboratory experiments assessed the
effects of temperature on A. catenella germination and growth under
temperature conditions that bloom populations would experience during
summer in the Alaskan Arctic. Germination experiments were conducted
with cyst-rich sediment collected from Ledyard Bay at LB-6 (69.584°N
and −165.7427°E) and LB-8 (69.785°N and −166.452°E) on August 22, 2019.
Sediment was stored at 0 °C under anoxic conditions until June 2020, then
diluted with naturally oxygenated f/2 media to create a large, homogenized
slurry for aliquoting. Slurry subsamples were delivered to 34 glass flasks as
detailed in ref. 31. Four flasks were immediately harvested to determine
initial cyst concentration. The remaining flasks were randomly placed in
incubators set to 0, 4, and 9 °C. Illumination was set to 24 h at low light levels
(∼0.75 μmol · m−2 · sec−1) to match light conditions experienced in Ledyard
Bay during summer. Sampling intervals varied between incubation tem-
peratures to ensure adequate coverage of the germination time course and
ranged from 3 to 15 d. At each harvest interval, the flasks to be harvested
were thoroughly rinsed and their contents prepared for counting by staining
with primulin as in ref. 65. All uncounted slurries were thoroughly mixed
biweekly to provide consistent exposure to light and oxygenated media. To
calculate the percentage of cysts that germinated over each time interval,
the remaining cysts at each harvest interval were subtracted from the av-
erage initial cyst concentration.

Data Availability. Physical and environmental data collected during research
cruises in 2018 to 2019 have been deposited in the Arctic Data Center re-
pository (10.18739/A2D21RK4M, 10.18739/A28C9R51P, and 10.18739/
A2HT2GC7Z) (24, 25, 53). Data on Alexandrium catenella cyst and cell abun-
dance is available at the Arctic Data Center repository (10.18739/A2W66993S,
10.18739/A2RF5KG8) (57, 58). All other study data are included in the article
and/or supporting information.
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