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Abstract: The glutamatergic system is a key point in pathogenesis of schizophrenia. Sarcosine 

(N-methylglycine) is an exogenous amino acid that acts as a glycine transporter inhibitor.  

It modulates glutamatergic transmission by increasing glycine concentration around  

NMDA (N-methyl-D-aspartate) receptors. In patients with schizophrenia, the function of  

the glutamatergic system in the prefrontal cortex is impaired, which may promote negative 

and cognitive symptoms. Proton nuclear magnetic resonance (1H-NMR) spectroscopy is  

a non-invasive imaging method enabling the evaluation of brain metabolite concentration, 

which can be applied to assess pharmacologically induced changes. The aim of the study 

was to evaluate the influence of a six-month course of sarcosine therapy on the concentration 

of metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine and γ-aminobutyric 

acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left dorso-lateral prefrontal 

cortex (DLPFC) in patients with stable schizophrenia. Fifty patients with schizophrenia, 

treated with constant antipsychotics doses, in stable clinical condition were randomly 
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assigned to administration of sarcosine (25 patients) or placebo (25 patients) for six months. 

Metabolite concentrations in DLPFC were assessed with 1.5 Tesla 1H-NMR spectroscopy. 

Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS). 

The first spectroscopy revealed no differences in metabolite concentrations between groups. 

After six months, NAA/Cho, mI/Cr and mI/Cho ratios in the left DLPFC were significantly 

higher in the sarcosine than the placebo group. In the sarcosine group, NAA/Cr, NAA/Cho, 

mI/Cr, mI/Cho ratios also significantly increased compared to baseline values. In the placebo 

group, only the NAA/Cr ratio increased. The addition of sarcosine to antipsychotic therapy 

for six months increased markers of neurons viability (NAA) and neurogilal activity (mI) 

with simultaneous improvement of clinical symptoms. Sarcosine, two grams administered daily, 

seems to be an effective adjuvant in the pharmacotherapy of schizophrenia. 

Keywords: schizophrenia; dorso-lateral prefrontal cortex; glutamate; sarcosine; NMDA 

receptor; 1H-NMR spectroscopy 

 

1. Introduction 

Schizophrenia is one of the most devastating mental diseases, with lifetime prevalence from  

0.30% to 0.66% and incidence between 10.2 and 22.0 per 100,000 person-years [1]. It is considered  

a heterogeneous group of psychoses, caused by a constellation of genetic and environmental factors, 

with documented heritability [2,3]. A few regions of the central nervous system (CNS) are known to 

play an important role in pathogenesis of schizophrenia. Mostly reported is the prefrontal cortex (PFC), 

with its dorso-lateral (DLPFC) and medial (MPFC) regions [4,5]. DLPFC dysfunction is responsible  

for the negative symptoms of schizophrenia, called “axial symptoms”: autistic behavior, anhedonia  

and avolition, emotional flattening and social withdrawal [6]. DLPFC also plays a substantial role in 

cognition, including executive functions that are particularly important in daily life, such as working 

memory, abstract thinking, task flexibility, planning, and impulse control [7,8]. Cognitive impairment is 

better predictor of long-term functional outcome in schizophrenia than severity of positive, negative or 

affective symptoms [9]. 

From the neurochemical perspective, negative and cognitive symptoms are associated with 

impairment of the glutamatergic system, especially in the PFC, where ionotropic NMDA receptors are 

abundant [10–12]. Glycine is a necessary co-agonist of the NMDA receptor, and sarcosine (N-methylglycine) 

is an exogenous amino acid that acts as an inhibitor of glycine transporter type 1 (GlyT-1) [13]. Thus, 

sarcosine should improve the inadequate function of NMDA receptors [12]: a hypothesis confirmed  

by the observed reduction of schizophrenia symptoms (negative and total symptomatology) associated 

with the augmentation of antipsychotic therapy with sarcosine [14–18] excluding clozapine [19]  

or treatment with sarcosine alone [20]. 

In schizophrenia, there is no consensus on the association between changes in CNS metabolites and 

exacerbation of symptoms, phase of the disease, treatment strategy or analyzed brain region [21–24]. 

Decreased concentrations of N-acetylaspartate (NAA), a marker of neuron viability and integrity,  

are commonly observed [25], and reflect neuronal loss and/or mitochondrial dysfunction [26,27]. 
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However, meta-analyses performed by Steen and Brugger [21,22] found that the NAA concentration  

in the PFC was similar in patients with a first episode of schizophrenia and in the chronic phase of the 

disease. It was also not affected by the duration of untreated schizophrenia (DUP) [28] and had already 

decreased during the pre-psychotic period [29]. Concentrations of NAA, glutamic acid (Glu) and 

glutamine (Gln) are important in the pathogenesis of schizophrenia, however, many studies have  

failed to confirm any correlation between metabolite concentration and clinical symptoms [30–36]. 

Nevertheless, a few studies have noted an association between negative symptoms and concentration of 

NAA in the PFC, thalamus and anterior cingulate cortex (ACC) [37–40]. 

Although the influence of medications was also evaluated spectroscopically, the findings are ambiguous. 

In some studies, antipsychotics increased levels of NAA after treatment [34,41], while in others, there 

were no significant changes [28,42–44]. It remains unclear if substances modifying glutamatergic 

transmission cause changes in concentrations of CNS metabolites detectable in spectroscopy. 

The aim of the study is to evaluate the influence of sarcosine therapy on the concentrations of  

NAA, Glx (complex of glutamate, glutamine and γ-aminobutyric acid GABA), mI (myo-inositol),  

Cho (choline-containing compounds) and Cr (creatine plus phosphocreatine) in the DLPFC of the left 

frontal lobe in patients with schizophrenia. Our experiment can support new data on the pharmacokinetics, 

pharmacodynamics and psychopharmacological value of sarcosine, as well as glutamatergic agents in 

general. It can also reveal new aspects of the role played by the glutamatergic system in the pathogenesis 

of schizophrenia. 

2. Results and Discussion 

At baseline, spectroscopy revealed no significant differences in metabolite concentrations between 

the groups (Table 1). 

Table 1. Comparison of substances concentrations ratios in study groups. 

Compared 

Ratios 

Baseline After 6 Months 
Baseline vs.  

after 6 Months 

Baseline vs. 

after 6 Months 

Sarcosine 

(Mean ± SD) 

Placebo 

(Mean ± SD) 
p-Level 

Sarcosine 

(Mean ± SD) 

Placebo 

(Mean ± SD) 
p-Level Sarcosine p-Level Placebo p-Level 

NAA/Cr 1.50 (0.65) 1.61 (0.55) >0.05 1.77 (0.30) 1.69 (0.27) >0.05 0.0171 0.0468 

Cho/Cr 0.75 (0.24) 0.72 (0.38) >0.05 0.72 (0.15) 0.83 (0.51) >0.05 >0.05 >0.05 

mI/Cr 0.28 (0.13) 0.26 (0.11) >0.05 0.38 (0.13) 0.28 (0.09) 0.0310 0.0309 >0.05 

Glx/Cr 1.10 (0.76) 0.94 (0.30) >0.05 0.77 (0.29) 0.80 (0.29) >0.05 >0.05 >0.05 

NAA/Cho 2.23 (1.12) 2.08 (0.72) >0.05 2.61 (0.69) 1.93 (0.58) 0.0061 0.0468 >0.05 

mI/Cho 0.43 (0.16) 0.46 (0.64) >0.05 0.71 (0.25) 0.49 (0.19) 0.0075 0.0064 >0.05 

Glx/Cho 0.99 (0.66) 0.81 (0.20) >0.05 0.99 (0.13) 1.01 (0.34) >0.05 >0.05 >0.05 

NAA, N-acetylaspartate; Cr, creatine; Cho, choline; mI, myo-inositol; Glx, glutamate, glutamine and GABA. 

In a second spectroscopy NAA/Cho, mI/Cr and mI/Cho ratios were significantly higher in patients 

receiving sarcosine. Moreover in experimental group after the therapy NAA/Cr, NAA/Cho, mI/Cr, 

mI/Cho ratios increased significantly, comparing to baseline values. 

Only NAA/Cr ratio increased after therapy in the placebo group, although to a lesser extent than in 

the sarcosine group (4.9% vs. 18%). 
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At the beginning of the study, no significant difference was noted between groups with regard to 

PANSS score (71.4 ± 14 vs. 73.3 ± 13 points in total score for sarcosine and placebo groups, respectively; 

p = 0.6736). However, at the end of the experiment, patients treated with sarcosine had significantly 

lower results (57.7 ± 15 vs. 71.5 ± 13 points for sarcosine and placebo group, respectively; p = 0.00487). 

Changes in the negative PANSS subscale followed the trends of the total PANSS subscale. At the 

beginning of the study there was no significant difference between groups (25.4 ± 5.2 vs. 26.1 ± 5 points 

for sarcosine and placebo groups, respectively; p = 0.45085). While the negative PANSS score decreased 

significantly in both groups (25.4 ± 5.2 vs. 18.6 ± 6.1 for the sarcosine group, p = 0.0000; and  

26.1 ± 5 vs. 25.4 ± 4.7 for the placebo group, p = 0.03031), this decrease was greater in the sarcosine 

group (18.6 ± 6.1 vs. 25.4 ± 4.7; p = 0.00001). The difference in metabolite ratios and negative PANSS 

subscale scores were calculated between the start-point and end-point of the experiment. Correlations 

between these differences are presented in Table 2 and in Figure 1. 

At the time of writing, this paper was the first attempt to spectroscopically assess the impact of  

the glutamatergic system modulators, particularly sarcosine, on metabolite concentrations in the  

DLPFC in patients with schizophrenia. Significant changes in the spectral characteristics co-occurring 

with alleviation of symptoms, assessed with the PANSS scale, imply that two grams of sarcosine  

daily sufficiently penetrates the blood-brain barrier to modify the neuronal activity in patients with 

schizophrenia. Moreover, significant negative correlations between differences in negative PANSS 

subscale score and spectroscopic parameters (NAA/Cho and mI/Cho ratios) suggest that these ratios 

might quantitatively correspond with clinical outcomes of therapeutic intervention. 

Figure 1. Correlation between the differences in metabolite ratios (A) NAA/Cho; (B) NAA/Cr; 

(C) mI/Cho; (D) mI/Cr and differences in negative PANSS subscale score. 
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Table 2. Correlation between differences in the score of the negative PANSS subscale and 

metabolite ratios assessed at the beginning and at the end of the experiment. 

Differences in Metabolite Ratios Correlated 
with the PANSS Negative Subscale Score 

Spearman’s Correlation Coefficient p-Value 

NAA/Cr −0.130768 >0.05 
Cho/Cr −0.200251 >0.05 
mI/Cr −0.089075 >0.05 
Glx/Cr 0.630062 >0.05 

NAA/Cho −0.562891 0.000026
mI/Cho −0.288039 0.044752
Glx/Cho −0.200251 >0.05 

2.1. NAA (N-Acetylaspartate) 

N-acetylaspartate is one of the most common amino acid in the human brain. It is synthesized in 

neuronal mitochondria and its production closely correlates with glucose metabolism. Due to the fact 

that it is not present in glial cells, it reflects neuronal activity well [45]. 

In our study, both NAA ratios (NAA/Cr and NAA/Cho) in the sarcosine group were significantly 

higher after six months, indicating an increase of neuronal viability in the DLPFC. In the placebo group, 

the NAA/Cr ratio was also significantly raised, however, the change was less distinct. Our findings indicate 

that sarcosine (and probably other GlyT1 inhibitors) might normalize disturbances in brain metabolism 

and reverse the tendency for NAA levels to decline in schizophrenia. Increased NAA concentrations 

were also described as an effect of the antipsychotic drugs [34], which may confirm the value of 

glutamatergic therapy in the management of schizophrenia. Further investigations should assess whether 

they act synergistically, and if NAA concentration can be used as a marker of clinical outcome. 

2.2. Glx (Complex of Glutamate, Glutamine and GABA) 

An evaluation of Glx level was performed instead of separate glutamine, glutamate and GABA 

evaluations, as their peaks closely overlap in 1.5 Tesla spectroscopy. Glx is a surrogate of glutamatergic 

transmission in grey matter as the concentration of glutamate is five times higher than that of glutamine, 

and 10 times higher than GABA [46]. 

In schizophrenia, hypofunction of the NMDA receptor may involve GABAergic interneurons, which 

would result in disturbed glutamatergic transmission [47]. Moreover, there is a decrease of glutamate 

receptor density on GABAergic interneurons [48]. The summary effect is the inadequate inhibition of 

glutamatergic neurons, observed in electroencephalography as disturbances of coherent neuronal 

oscillation at a rate below 0.1 Hz [49] and γ rhythms (25–100 Hz) in PFC [47,50–52]. This information 

noise negatively affects the concentration process and cognitive functions [53–55]. Furthermore it  

can promote hallucinations [56], delusions, and disturbances of the thinking processes and cognitive 

functions typical of acute psychosis. One of the causes of these pathological conditions is a dysfunction 

of default mode network (DMN), the “rest system’ of the brain, which should be switched off when 

working memory networks such as the external attention system (EAS) are activated [53]. In schizophrenia, 
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DMN deactivation is impaired, increasing information noise, intensifying cognitive dysfunction [53,57] 

and general functioning problems [58]. 

There is no consensus on the glutamate concentration in the DLPFC of patients with schizophrenia [59]. 

Kegeles et al. showed no significant differences in Glx concentrations between healthy volunteers and 

groups of medicated and unmedicated patients with schizophrenia [60]. Only three studies have assessed 

effects of antipsychotics on Glx parameters in the DLPFC before and after treatment. Two studies explored 

the first episode of schizophrenia: Stanley et al. report a decrease in glutamine levels after 14 weeks of 

antipsychotic therapy [61], and Goto et al. note decreased Glx levels in patients after six months of 

treatment with second-generation antipsychotics [62]. Research conducted in a Polish population showed 

no changes in Glx levels between baseline assessment and after 40 days of antipsychotic treatment in 

patients with chronic stage of schizophrenia. However, responders had lower Glx levels at baseline when 

compared to non-responders [46,63]. 

On the other hand, the administration of ketamine, an NMDA receptor antagonist whose effect is 

opposite to sarcosine, resulted in increased glutamatergic transmission in ACC [64,65]. 

Most studies have failed to find any significant correlation between glutamatergic parameters and PANSS 

score [46,60,66–68]. Kegeles et al. report that PANSS positive symptoms subscale scores significantly 

correlated with levels of GABA and Glx only in MPFC but not in DLPFC [60]. 

In the present study, a trend was observed towards a decrease of Glx/Cr ratio in both groups. Although 

it was more expressed in the sarcosine group, the differences were not significant. Further studies using 

discreet analysis with a stronger magnetic field are required to support more reliable conclusions. 

2.3. mI (myo-Inositol) 

Myoinositol is a precursor in the transmission of phosphatidylinositol, which is a widely accepted 

glial marker [69]. In neurodegenerative processes, increased mI concentrations co-occur with reduced 

NAA concentrations. 

Significant increases of mI/Cr and mI/Cho ratios in the sarcosine group between two spectroscopies, 

and in comparison with the placebo group, might indicate unfavourable changes. However, some 

researchers report greater mI concentrations to be associated with treatment [41,70]. Thus, administration 

of sarcosine may secondarily activate glial cells, mostly astrocytes, because glycine transporters and 

other glutamatergic system transporters are abundant in their cell membranes [71]. 

2.4. Limitations of the Study 

Due to the limited number of patients and application of 1.5 Tesla magnetic resonance, conclusions 

should be formulated moderately, as precise separation of glutamate, glutamine and GABA spectra 

requires a 3 Tesla magnetic field, or higher. Analysis of GABA concentration could be of special interest, 

because sarcosine indirectly acts on the NMDA receptors located also on GABAergic interneurons.  

A few studies have found that GABA concentrations varied depending on the analyzed region, including 

different parts of the frontal cortex [60,72]. On the other hand, prior research has revealed an absence  

of abnormalities in glutamate or glutamine concentrations in the DLPFC of unmedicated patients with 

schizophrenia. Thus, the absence of schizophrenia-related glutamate abnormalities in this region may  
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limit the ability to detect a treatment-related change in Glx ratios, which could be detectable in other 

regions where baseline abnormalities were found, such as the MPFC, striatum, hippocampus or thalamus. 

Another important limitation of this work is its application of ratios of metabolites concentrations 

instead of exact concentrations. Despite changes of Cr and Cho concentrations, depending on duration 

of schizophrenia, it has previously be demonstrated that treatment with either atypical or typical medication 

does not alter Cr or Cho levels [73]. Thus, ratios might have a good intra-subject validity [73]. 

Finally, it should be noted that applied statistical methods did not protect against Type I errors 

associated with multiple testing. However, although significant differences in particular metabolites 

could be obtained by chance, the clinical improvement seems to confirm their relevance. 

3. Experimental Section 

Subjects with schizophrenia, aged 18–60 years who were physically, neurologically and 

endocrinologically healthy and had normal laboratory values (routine blood tests, biochemical tests 

including thyroid stimulating hormone, lipid profile, liver and kidney parameters) and electrocardiogram 

were eligible to enter the study. Patients in acute psychosis, on clozapine treatment or declaring suicidal 

tendencies were excluded from the study. This study is a part of the Polish Sarcosine Study in Schizophrenia 

(PULSAR); for further details, please see acknowledgments. 

Fifty right-handed patients diagnosed with schizophrenia (according to Diagnostic and Statistical 

Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR) criteria) with dominant negative 

symptoms, and who were in a stable clinical condition, were randomly assigned to a sarcosine or placebo 

group. 1H-NMR spectroscopy was performed according to the protocol described below at the beginning 

of the study and six months later. Sarcosine or placebo were added to the ongoing antipsychotic 

treatment in a double-blind manner. Patients in the study group were given plastic capsules containing 

2 grams of the amino acid, while subjects in the placebo group (similar age, sex, clinical presentation, 

duration of schizophrenia and treatment, Table 3) received capsules with microcrystalline cellulose. 

Subjects in both groups were ordered to drink the dissolved contents of one capsule once a day in  

the morning. All patients were treated with stable doses of antipsychotic and other medication for  

a minimum of three months before the baseline visit. Doses of antipsychotic and antidepressive drugs 

were calculated for defined daily dose (DDD) developed by the World Health Organization. 

Antidepressants were used as a supportive therapy [74] in 14 patients from the sarcosine group and 11 

from the placebo group. The differences in the numbers of treated patients and doses in each group were 

not significant (p > 0.05). The severity of schizophrenia symptoms was assessed with the Positive and 

Negative Syndrome Scale (PANSS) [75]. 

Subjects were recruited from the outpatient clinic. All patients included in the study have been informed 

about the aims and methods of the study, and had expressed their written informed consent for participation 

in this study. The study protocol was approved by the Bioethics Committee of the Medical University of 

Łódź (permission number and date: RNN/153/08/KE, 15.07.2008). There was no financial involvement 

from industry. 
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Table 3. Group characteristics. 

Features 
Group 

p-Value
Sarcosine (n = 25) Placebo (n = 25) 

Gender 
Female 14 12 

>0.05 
Male 11 13 

Age (mean) 36.5 40 >0.05 

Mean number of hospitalizations 5 4 >0.05 

Mean duration of the illness (years) 12.3 13.2 >0.05 

Mean timespan of education per patient 14.2 14.4 >0.05 

Antipsychotic treatment (DDD) 1.94 1.97 >0.05 

Antidepressive treatment (DDD) 0.58 0.6 >0.05 

PANSS total (±SD) 71.4 ± 14 73.3 ± 13 >0.05 

Abbreviations: n, number of patients; DDD, defined daily dose; PANSS, the Positive and Negative Syndrome 

Scale; SD, standard deviation. 

3.1. Spectroscopy 

Imaging was performed using 1.5 Tesla MR scanner (Siemens Avanto 1.5, Siemens AG, Munich, 

Germany) equipped with a standard head coil. 

NMR acquisition: 

(1) FLAIR sequences in axial plane with following parameters: Repetition Time (TR), 9000 ms; Echo 

Time (TE), 105 ms; inversion time (TI), 2500 ms; flip angle, 150°; voxel size 1.4 mm × 1.3 mm × 3 mm. 

(2) T2-weighted sequences were obtained in coronal plane with following parameters: TR = 5000 ms; 

TE = 100 ms; flip angle, 50°; voxel size 0.6 mm × 0.6 mm × 5.0 mm. 

(3) T1-weighted sequences in transverse plane with following parameters: TR = 400 ms; TE = 7.8 ms; 

flip angle, 90°; voxel size 0.9 mm × 0.9 mm × 0.5 mm. 

1H-MRS data was acquired by single voxel spectroscopy (SVS) using a point resolved spin echo 

(PRESS) sequence 128 averages; TR, 3000 ms; TE, 30 ms; voxel size was 15 mm × 15 mm × 15 mm. 

The region of interest was placed in the left DLPFC by the neuroradiologist (Figure 2). During the  

second spectroscopy, voxel localization parameters were copied and adjusted to the position of patient. 

Automated procedures were used to optimize radiofrequency pulse power, field homogeneity, and  

water suppression, as well as to convert the lines into a Gaussian shape. Spectroscopy data was processed 

by means of Avanto Syngo MR Software (Siemens AG, Munich, Germany), Level B15. The processing 

included: k-space Fourier transformation and a spatial 50 Hz Hanning filter; subtraction of the residual 

water signal; time domain 1 Hz exponential apodization; zero filling to 2048 points; Fourier transformation 

of the time domain signals; frequency shift correction, phase correction and baseline correction. The fitting 

error was automatically computed as a deviation between theoretical and measured spectrum determined 

using the last squares method. Values less than 0.5 were considered satisfactory, however, in the whole 

group mean fitting error was 0.36 (SD, standard deviation 0.07). The following metabolites were 

assessed: NAA, Glx, mI, Cho and Cr. No absolute concentrations of metabolites were determined,  

but their ratios to Cr and Cho. 
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Figure 2. Images showing voxel location in the left DLPFC (dorso-lateral prefrontal cortex) 

area and an example before (white line) and after (red line) fitting. Peak areas for  

N-acetylaspartate (NAA); creatine (Cr and Cr2); choline (Cho); and myo-inositol (Ins dd1) 

are labelled. 

3.2. Statistical Analysis 

Continuous variables are expressed as the mean ± standard deviation (SD). The Shapiro-Wilk test 

was used to determine the normality of the data. As the distribution was skewed in one or both compared 

groups in all cases, the Mann-Whitney test was employed to compare the ratios of substance concentrations 

between groups, and the Wilcoxon sign-rank test was used for comparisons within the same group.  

To evaluate the association between changes in concentrations ratios and differences in PANSS score, 

the Spearman’s rank correlation test was applied. Statistical analysis was performed using Statistica for 

Windows (version 12.0, StatSoft, Tulsa, OK, USA). A p-value of ≤0.05 was considered significant. 

4. Conclusions 

Our findings demonstrate that addition of sarcosine to antipsychotic treatment can cause increases of 

NAA and mI in DLPFC. These changes were associated with clinical improvement. It indicates that 

sarcosine improves neuron viability and integrity, and may activate neuroglial cells in brain regions 

essential for the pathogenesis of schizophrenia. It highlights the role of glutamatergic transmission in 

the pathogenesis of schizophrenia and confirms that two grams of sarcosine administered daily may 

become an effective adjuvant in the management of schizophrenia. 
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